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Abstract
Microbial biofilms are important components in macrophyte decomposition, and their composition depends on the decompo-
sition stage and host plant quality. Here, we investigated how macrophyte tissue quality (i.e., C:N:P stoichiometry and phe-
nolic contents) influences epiphytic microbial biofilms during litter decomposition. Consecutive experiments were conducted 
to (1) modify the C:N:P stoichiometry and phenolic content of the freshwater macrophyte Elodea nuttallii by manipulating 
light and nutrient availability and (2) test how the modified tissue quality affected epiphytic microbial biofilm diversity and 
community composition before and during macrophyte decomposition. Our results showed that shading led to lower C:N 
ratios (28.6 to 12.6) and higher phenolic content (10.8 to 19.2 µg/mg dry weight). Simultaneously, shading affected the 
epiphytic bacterial and fungal community composition, and these shifts correlated with the macrophyte C:N ratio. While 
no effects of macrophyte tissue quality on decomposition rates were observed, the epiphytic bacterial community composi-
tion on the litter was significantly affected by light treatment, time, and their interaction. Bacterial community composition 
shifted from a high abundance of Comamonadaceae to a more diverse community over time. Overall bacterial diversity was 
lower on the litter grown in the shaded mesocosms. Fungal diversity and community composition during litter decomposition 
were not affected by litter quality. Overall, our results reveal a structuring role of macrophyte tissue quality on its associated 
microbial biofilm and uniquely show a continuation of light-driven changes in epiphytic bacterial community composition 
after exposure. We conclude that light-driven changes in C:N stoichiometry are a crucial factor in shaping epiphytic microbial 
communities during macrophyte decomposition.
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Introduction

Submerged macrophytes are key elements of organic car-
bon (C) cycling in freshwater ecosystems [23]. Decom-
position of macrophyte detritus is relevant for both C 
burial [7] and greenhouse gas emissions [16]. The rela-
tionships between microbial communities in freshwater 
ecosystems and the functioning of those systems are often 
closely intertwined [26]. Epiphytic microbial biofilms, for 
instance, are known to affect decomposition of macrophyte 
detritus [51]. Existing studies of epiphytic microbial bio-
films focus primarily on bacterial and algal components [1, 
26], and more recently, on their fungal community com-
ponent [13, 51]. A large variety of bacterial classes are 
represented in epiphytic biofilms [21]. Generally, bacterial 
diversity is higher on macrophytes than in the surrounding 
water [26, 50]. Biofilms can also host a diverse community 
of fungi [47], and while these organisms play an important 
role in macrophyte decomposition [51], their community 
composition and ecology has been less frequently studied.

Microbial diversity and community composition of epi-
phytic biofilms are highly variable, and dependent on time, 
environmental conditions, as well as organic matter com-
position of the host plant [47]. Environmental stress can 
have a destabilizing effect on microbial communities, lead-
ing to decreased diversity [22]. Macrophytes can contain 
and exude polyphenols [15], which can have antimicrobial 
properties [5, 30] and alter the bacterial community com-
position of macrophyte biofilms [21]. In a similar manner, 
the elemental composition of primary producers in general 
is often used as a food quality predictor for higher trophic 
levels [42]. Bacterial assemblages in lakes are relatively 
phosphorus (P)-rich compared to environmental concen-
trations [41], indicating that macrophytes with a low C:P 
ratio could pose a more suitable environment for bacterial 
growth. Similar investigations on the role of macrophyte 
stoichiometry and metabolites for epiphytic fungal diver-
sity are lacking for freshwater habitats.

Both the elemental and the polyphenolic content of 
freshwater macrophytes can vary depending on their 
environmental conditions. For instance, macrophyte C:N 
and C:P ratios are dependent on environmental nutrient 
availability [2, 45]. The effect of light availability on mac-
rophyte tissue stoichiometry is debated in the scientific 
literature with examples of increased [17] and decreased 
[10] C:N ratios under shaded conditions, as well as no 
obvious light effects on macrophyte tissue stoichiom-
etry [6]. Phenolic content can vary significantly between 
and within macrophyte species [24, 40] and are among 
other environmental variables dependent on light avail-
ability [17]. How light- and nutrient-driven changes in 
macrophyte quality influence structure and functions of 

microbial biofilms on living and decaying macrophytes 
remains to be investigated.

Here, two consecutive experiments were conducted to (1) 
modify the C:N:P stoichiometry and phenolic content of a 
submerged macrophyte by a full factorial combination of 
light and nutrient availability and (2) test how the modified 
tissue quality affected microbial macrophyte decomposition 
under field conditions. The freshwater macrophyte Elodea 
nuttallii was chosen as a model species due to the wide-
spread occurrence in its native (North America) and inva-
sive (most European countries, China, Japan, Türkiye, and 
the Philippines) range where it can form large monospecific 
stands with high biomass [9, 34, 49], its flexible tissue nutri-
ent stoichiometry [45], and the presence of phenolic sub-
stances in its tissue [15]. In our experiments, the potential 
effects of the modified tissue quality on the diversity of the 
epiphytic microbial biofilm on E. nuttallii were evaluated. 
We hypothesized in the first experiment that tissue carbon 
(C):nitrogen (N) and C:P ratios decrease under high nutrient 
availability, while phenolic content is elevated under high 
light conditions. Under low light conditions, macrophytes 
may need to invest in more N-rich chlorophyll molecules 
[4], thus leading to decreased C:N ratio. We hypothesized 
in the second experiment that decomposition rates of E. 
nuttallii decrease with increasing carbon:nutrient ratios as 
well as with increasing phenolic content. Additionally, we 
anticipated that differences in the biofilm bacterial and fun-
gal community composition and diversity during decompo-
sition are related to macrophyte tissue quality. In general, 
microbial diversity is hypothesized to be impoverished under 
environmental stress(i.e., decreased light availability).

Materials and Methods

Experimental Modification of Macrophyte Tissue 
Quality

E. nuttallii was grown in outdoor mesocosms (66 L water 
and 24 L sediment) with distinct nutrient and light treat-
ments. The two sediment nutrient treatments consisted of 
10 and 100% pond soil and were achieved by mixing com-
mercial pond soil (FloraGard Vertriebs-GmbH, Germany) 
and sand, according to Velthuis et al. [45] (Table S1). The 
mixed sediment was topped by a 1 cm layer of sand to pro-
vide a barrier for nutrient leaching from sediments into 
the water. The mesocosms were filled with tap water and 
half of them were covered with a green mesh shade cloth 
to achieve a light reduction of 78 ± 3.5% (mean ± SD) at 
the water surface (measured with a spherical PAR sensor 
(QSPL2101, Biospherical Instruments, USA)). The experi-
ment was performed in a full-factorial design (n = 3) for a 
period of 2 months (from 15 June to 15 August 2018). To 
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prevent excessive phytoplankton growth in the mesocosms, 
5 L of water was refreshed twice a week from 26 th of July 
onwards. Detailed information on the experimental setup is 
included in the supplementary methodology.

After 2 months, the aboveground E. nuttallii biomass 
was harvested by cutting the stems just above the sediment 
surface. In the lab, the plants were carefully rinsed with tap 
water to remove any loosely attached algae. From each mes-
ocosm, one plant tip (the top 5 cm) of a randomly selected 
E. nuttallii plant was weighed and freeze-dried for the deter-
mination of phenolic content, and one plant tip was weighed 
and frozen at − 80 °C for the analysis of microbial commu-
nity composition. The remaining plant material, as well as 
the removed attached algae, was dried at 60 °C for 3 days 
and weighed. The plant material was then stored dry and 
in the dark for the decomposition experiment. The relative 
growth rate (RGR) was calculated as in Velthuis et al. [45].

The phenolic content was determined by the extraction 
of polyphenols from powdered, freeze-dried (1–4 mg) plant 
material [18]. The samples were incubated with 1 mL of 
80% ethanol at 80 °C for 10 min and centrifuged for another 
10 min at 10.000 rpm to separate the supernatant from the 
plant pellet. SDS/TEA solution (1% (w/v) and 5% (v/v), 
respectively) and a 0.01 M FeCl3 reagent were added to the 
supernatant in a 2:1 volume ratio. For the SDS/TEA solu-
tion, 2 g of sodium dodecyl sulfate (SDS) was dissolved in 
190 mL demineralized water and mixed with 10 mL Trietha-
nolamine (TEA). To create the ferrous chloride solution, 
0.27 g of iron(III) chloride hexahydrate was dissolved in 100 
mL 0.01 M HCl. Absorption at 510 nm was measured on 
a microtiter plate reader (BioTek, Bad Friedrichshall, Ger-
many) using a tannic acid calibration curve as a reference. 
The P content was determined by combusting 1–2 mg of 
dry plant material at 550 °C for 30 min and converting all 
organic P to PO4

3− by digestion with a 2.5% (w/v) persul-
fate solution for 30 min at 121 °C. Thereafter, PO4

3− was 
measured colorimetrically on a QuAAtro39 Auto-Analyzer 
(SEAL Analytical Ltd. Southampton, UK). The C and N 
contents were determined on a Vario Micro Cube elemental 
analyzer (Elementar Langenselbold, Germany).

Macrophyte Decomposition Under Field Conditions

Microbial decomposition of E. nuttallii aboveground bio-
mass was determined using a litter bag method. Polyester 
litter bags of 6 × 10 cm and 300 µm mesh size were filled 
with 0.1 g of dried E. nuttallii biomass. These litter bags 
were placed in five 50 × 50 cm PVC-coated galvanized wire 
mesh cages with 2.5 cm mesh size (to exclude most herbi-
vores and to facilitate retrieval at individual time points with 
limited disturbance of the remaining litter bags). Each cage 
contained 12 litter bags with E. nuttallii litter material. To 
correct for possible periphyton growth on and erosion of the 

litter bags, two empty litter bags were included in each cage 
as a control. The cages were deployed on the sediment of 
Lake Müggelsee at 2 m depth (52°26′51.4″ N 13°38′51.6″ 
E) on the 5 th of August 2019. After 7, 14, 28, 42, and 58 
days, one of the cages was retrieved from the field location, 
and the litter bags were brought into the lab for further pro-
cessing. Upon arrival in the lab, DNA samples were taken 
from the contents of the litter bags by swabbing them with 
a sterile cotton swab. This swab was flash frozen in liquid 
nitrogen and stored at − 80 °C until further processing for 
microbial sequencing analysis. Thereafter, the outside of the 
bags was rinsed with deionized water to remove any mac-
roinvertebrates, and its contents were dried at 60 °C for 72 
h and weighed. The mass loss of the litter bags with E. nut-
tallii biomass was corrected for the mass loss of the empty 
litter bags (0.01 ± 0.72%, n = 10).

Community Composition and Diversity 
of the Microbial Biofilm

To quantify the microbial community grown on the plants 
in the mesocosms, frozen plants were swabbed with a sterile 
cotton swab, in a similar manner to the swabs from the litter 
bag samples as described above. DNA was extracted accord-
ing to Nercessian et al. [31]. In short, each sample (i.e., the 
tip of the cotton swab) was mixed with 0.5 g of each 0.1 and 
0.7 mm zirconia-silica beads, 750 µL extraction buffer (10% 
CTAB in 1.6 M NaCl and 240 mM potassium phosphate 
buffer at pH 8.0, mixed in a 1:1 ratio), 75 µL 10% sodium 
dodecyl sulfate, and 75 µL 10% N-lauroylsarcosin solution. 
To this mixture, 750 µL phenol–chloroform-isoamyl alco-
hol (25:24:1) was added, and the samples were vortexed 
for 35 s at 6.0 m/s (FastPrep-24™ 5G, Bio-Connect, Huis-
sen, The Netherlands). After centrifugation at 14,000 g for 
10 min at 4 °C, 500 µL of the upper phase was recovered 
and further mixed with 500 µL chloroform-isoamyl alcohol 
(24:1). After another round of centrifugation at 14,000 g for 
10 min at 4 °C, the upper phase was mixed with 2 volumes 
of PEG buffer (30% PEG 6000 in 1.6 M NaCl) and 1 µL of 
LPA and incubated at room temperature in the dark for 2 h. 
After centrifugation at 17,000 g for 10 min at 4 °C, the pre-
cipitated DNA was recovered by removing the supernatant. 
This pellet was washed with 800 µL ice-cold 70% ethanol, 
centrifuged at 17,000 g for 10 min at 4 °C. After discarding 
the supernatant, the pellet was dissolved in 30 μL PCR water 
and stored at − 80 °C until further analysis.

For DNA samples from the growth experiment, PCR 
amplification (oligonucleotide primers in Table S2), library 
preparation, and sequencing (300-bp paired-end reads, Illu-
mina Miseq v3 sequencing kit) of the bacterial 16S V5-V6 
region of the rRNA gene and the fungal LSU rRNA gene 
regions were carried out by LGC Genomics GmbH (Berlin, 
Germany). For the decomposition experiment, bacterial 16S 
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PCR amplification and sequencing-library preparation steps 
were performed at the Berlin Center for Genomics in Bio-
diversity Research on an automated workstation Biomek i7 
hybrid (Beckman Coulter GmbH, Krefeld, Germany) in two 
PCR steps and using dual indexing, as described by Warter 
et al. [46]. Fungal LSU was PCR-amplified and sequenced 
as follows: a first PCR (96 °C for 30 s; 20 cycles of 96 °C for 
30 s, 50 °C for 30 s, 72 °C for 60 s; 72 °C for 3 min) was car-
ried out using 10 ng template DNA, 1 μL of each primer (10 
µM), 2.5 μL mi-Taq Crystal buffer, and 0.2 μL polymerase 
(both Mi-Taq Only, Metabion International AG, Planegg/
Steinkirchen, Germany), 0.5 μL dNTP-Mix and 0.25 μL 100 
mM MgCl2 (Metabion International AG) and RO-filtered 
water for a total reaction volume of 25 μL. A second PCR 
(96 °C for 30 s; 20 cycles of 96 °C for 30 s, 55 °C for 30 s, 
72 °C for 60 s; 72 °C for 5 min) was performed using 1 µL 
PCR product from the first step as a template. PCR products 
were purified using a magnetic bead protocol (Agencourt 
AMPure XP, Beckman Coulter, Indianapolis, IN, USA) fol-
lowing the manufacturer’s instructions. DNA concentration 
was measured using a Quantus fluorometer and the QuantiF-
luor dsDNA System (Promega, Madison, WI, USA), and all 
PCR products were normalized to a concentration of 5 ng/
μL. An indexing PCR (95 °C for 2 min; 8 cycles of 95 °C for 
20 s, 52 °C for 30 s, 72 °C for 30 s; 72 °C for 3 min) added 
unique 12-bp inline sequence barcodes (Nextera Index Kit, 
Illumina, San Diego, CA, USA) to each sample using 10 μL 
of PCR product mixed with 5 μL reaction buffer and 0.25 
μL polymerase (both Herculase II Fusion DNA Polymer-
ase, Agilent), 0.25 μL dNTP-Mix (25 mM each, Agilent), 
0.625 μL each of index primers P5 and P7, and 1 μL DMSO 
and RO-filtered water. PCR products were purified twice 
and quantified as above. All samples were then pooled in 
equimolar amounts and sequenced (300-bp paired-end reads, 
Illumina MiSeq v3 sequencing kit, 600 cycles) at the Berlin 
Center for Genomics in Biodiversity Research. Due to insuf-
ficient fungal DNA yield from samples of day 14 and 28 of 
the light treatment, these were omitted from further analysis.

The resulting sequences were analyzed with the DADA2 
bioinformatics workflow [8]. After visual inspection of 
the quality of the bacterial 16S sequences, forward reads 
were trimmed at a length of 230 and 280 bp for the growth 
and decomposition experiment, respectively, while reverse 
reads were all trimmed at a length of 200 bp, with maximum 
expected errors (maxEE) of 2 (function filterAndTrim). Fun-
gal LSU sequences were trimmed with a minimal read length 
of 50 bp, maximum read length of 210 bp, and a maxEE of 
2. The reads were denoised (function dada, pool = TRUE) 
and merged, and any chimeras were removed (function 
removeBimeraDenovo). Around 60% of raw reads were 
maintained and used for downstream analyses (Table S3). 
Taxonomy was assigned for the obtained amplicon sequence 
variants (ASVs) using Silva v138.1 and Eukaryome LSU 

v1.9.2 databases [36, 43]. As we were specifically interested 
in fungal LSU sequences, ASVs classified to other kingdoms 
were omitted from further analysis (52 and 37% of growth 
and decomposition sequences, respectively). Similarly, 16S 
ASVs that were classified as Archaea (< 1% for both growth 
and decomposition sequences) were omitted from further 
analysis. The accuracy of the taxonomic identification is 
summarized in Table S4.

Statistics

All statistical analyses were carried out in R [37]. Plant 
parameters (relative growth rate, phenolic content, C:N:P 
stoichiometry, and elemental composition) were tested for 
effects of nutrient treatment, light treatment, and their inter-
action using two-way ANOVA models (function aov). Mod-
els were tested for normality by visual examination of the 
residuals, and data was transformed when necessary. Litter 
decomposition was described with a two-phase model [20] 
to obtain estimates for the decomposition rate k and recalci-
trant fraction s (function nlsLM. Differences in the fraction 
of remaining dry weight in the litter bags over time were 
tested using a three-way ANOVA model (including nutrient 
treatment, light treatment, and time; function aov).

ASV diversity for both bacterial and fungal communi-
ties was calculated using the bias-corrected Chao1 index 
with the function estimateR from the vegan package [33] and 
tested for treatment effects in the same manner as the plant 
parameters. Differences in microbial community composi-
tion were assessed by testing the Bray–Curtis dissimilarity 
matrix for treatment effects with a Permutational Multivari-
ate Analysis of Variance (PERMANOVA; adonis2 function, 
vegan package). Furthermore, general patterns and cluster-
ing were assessed using distance-based redundancy analysis 
(dbRDA; function capscale, vegan package). In this analy-
sis, Bray–Curtis distances were related to the nutrient and 
light treatments in a first model and to E. nuttallii quality 
characteristics (phenolic content, C:N, and C:P ratio) in a 
second model. The resulting models were tested for signifi-
cance (P < 0.05) using a permutation test with 999 permuta-
tions (function anova).

Results

Experimental Modification of Macrophyte Growth 
and Tissue Quality

Throughout the growth experiment, mean (± SD) tempera-
ture was 19.66 ± 2.37 °C, pH 7.99 ± 0.23, and oxygen con-
centrations 8.32 ± 1.47 mg/L (see Table S5 for experimen-
tal conditions). Relative growth rates of E. nuttallii were 
significantly higher at high light availability (0.01 ± 0.003) 
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Fig. 1   Growth and tissue qual-
ity (mean ± SE) of aboveground 
biomass of Elodea nuttallii 
grown in high and low sediment 
nutrient conditions in outdoor 
mesocosms, with (a) relative 
growth rate (RGR), (b) total 
phenolic content (TPC), (c) 
molar C:N ratio, and (d) molar 
C:P ratio. Light treatments 
include full light (◌) and 
shaded (●) conditions, and let-
ters indicate significant pairwise 
differences

Table 1   Effects of nutrient 
treatment and light treatment 
and their interaction on growth, 
elemental composition, and 
phenolic content of Elodea 
nuttallii (two-way ANOVA). 
Bacterial (16S rRNA gene) 
and fungal (LSU rRNA gene) 
community composition was 
tested with a PERMANOVA 
test on Bray–Curtis distances

Significant F-values are indicated in bold, with ***P < 0.001, **P < 0.01, *P < 0.05, ˙P < 0.10

F values

Factor Nutrient treatment Light treatment Nutrient * 
light treat-
ment

Plant parameters
Relative growth rate 5.29˙ 141.19*** 8.71*
Total phenolic content 2.18 35.43*** 0.066
C:N 1.17 22.17** 1.02
C:P 0.14 0.08 0.10
C content 2.02 0.002 1.41
N content 0.004 48.69*** 0.28
P content 0.025 0.022 0.003
Microbial parameters
Bacterial ASV diversity 0.02 1.17 2.86
Fungal ASV diversity 2.98 2.54 0.08
Bacterial community composition 1.16 2.20*** 1.14
Fungal community composition 0.90 2.13** 0.99
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compared to shaded conditions (− 0.01 ± 0.006, Fig. 1a, 
Table 1). There was a significant interaction between light 
and nutrient treatments (Table 1). In the high nutrient treat-
ments, the negative effects of shading on macrophyte growth 
were stronger than under low nutrient conditions (Fig. 1a).

Phenolic content in macrophyte tissue was significantly 
higher under shaded conditions (19.2 ± 2.9 versus 10.8 
± 2.0 µg mg DW−1), while C:N ratios were significantly 
lower (12.6 ± 2.7 versus 28.6 ± 7.9; Fig. 1). Concurrent to 
the changes in C:N ratios, the N content of E. nuttallii was 
significantly higher under shaded conditions (6.77 ± 0.88 
mmol g DW−1) compared to high light availability (3.09 
± 0.77 mmol g DW−1; Fig. S1). No effects of light treat-
ment on C:P ratios, nor on C and P contents were observed. 
Furthermore, no effects of nutrient treatment on any of the 
measured growth or quality parameters of the plants were 
detected. The observed changes in phenolic content and C:N 
ratio were significantly correlated with each other (Fig. S2) 
in the sense that macrophyte tissues with high C:N ratios 
contained low phenolic content (F(1,10) = 10.46, R2 = 0.46, 
P = 0.009).

Linking Microbial Community Composition 
to Macrophyte Tissue Quality During the Growth 
Experiment

In the growth experiment, 1507 bacterial ASVs were 
retrieved from the biofilm of E. nuttallii and were classified 
as Pseudomonadota (55%), Bacteroidota (15%), Actino-
mycetota (7%), and Bdellovibrionota (6%) (Fig. 2a). The 
remaining sequences were allocated to various low-abun-
dance (< 5%) bacterial phyla, with 1% of sequences not clas-
sified to any bacterial phylum. For the fungal community, 
312 ASVs were revealed in our analysis and belonged to 
Ascomycota (34%), Basidiomycota (29%), Chytridiomy-
cota (11%), and Mucoromycota (10%) (Fig. 2b). Remaining 
sequences belonged to various low-abundant fungal phyla (< 
5%), and 11% of the sequences could not be assigned with 
the Eukaryome database. Microbial alpha diversity did not 
differ between nutrient or light treatments for both bacterial 
and fungal communities (Fig. S3, Table 1).

Potential differences between treatments in bacterial and 
fungal community composition were visualized and related 
to the environmental parameters measured in the growth 
experiment. For both bacterial and fungal datasets, light 
treatment significantly affected the community composi-
tion (F(1,6) = 2.09, P = 0.004, and F(1,6) = 2.33, P = 0.007, 
respectively), while no other measured environmental fac-
tors showed any correlation (Fig. 3). These results aligned 
with Permutational Multivariate Analysis of Variance 
(PERMANOVA) on Bray–Curtis distances, which showed 
significant differences in community composition between 
light treatments (Table 1). Under shaded conditions, the 

relative abundance of the bacterial family Methylophilaceae 
increased (Fig. S4). For the fungal community, relative 
abundance of Saksenaeaceae increased in the shaded treat-
ment at the expense of Cladosporiaceae (Fig. S5). Interest-
ingly, when experimental light and nutrient treatment were 
not included as explanatory factors, differences in bacterial 
community composition significantly correlated with E. nut-
tallii C:N ratio (F(1,8) = 1.65, P = 0.04). Similarly, differ-
ences in fungal community composition showed significant 
correlations with E. nuttallii C:N ratio (F(1,8) = 2.04, P = 
0.006) and C:P ratio (F(1,8) = 1.85, P = 0.02).

Macrophyte Decomposition Under Field Conditions

Decomposition of E. nuttallii in eutrophic Lake Müggel-
see occurred rapidly. The percentage of remaining biomass 
declined significantly over time, and no effects of light or 
nutrient treatment on this decline was observed (Fig. S6; 
Table 2). Across treatments, the percentage of recalcitrant 
material (s) was 17.9 ± 1.1% (mean ± SD). Decomposi-
tion rates k were on average 0.122 ± 0.007 day−1 across all 
treatments.

Biofilm Microbial Community Composition During 
Macrophyte Decomposition

While no effects of light or nutrient treatment on macrophyte 
decomposition rates were observed under field conditions, 
bacterial ASV diversity significantly increased over time 
and was lower on the decomposing plants previously grown 
in the shaded mesocosm treatment (Table 2, Fig. 4a). The 
most abundant bacterial phyla were Pseudomonadota (40%), 
Bacteroidota (25%), Bdellovibrionota (8%), and Myxococ-
cota (6%) (Fig. 5a). The remaining 21% of sequences were 
allocated to various non-abundant (< 5%) bacterial phyla.

Over time, the bacterial community composition shifted 
from a high abundance of Comamonadaceae (Pseudomon-
adota) to a more diverse bacterial community (Fig.  5a, 
Fig. S7). Patterns and clustering of the bacterial commu-
nity composition were assessed using dbRDA (Fig. 6). The 
overall model was significant (F(3,54) = 10.55, P = 0.001), 
and differences in bacterial community composition were 
significantly related to both light, sampling date, and their 
interaction (Table 2).

The fungal community composition during macrophyte 
decomposition was significantly affected by time and dis-
played a marginally significant effect of light treatment 
(Table  2, significant dbRDA model; F(3,39) = 4.61, P = 
0.001). The most abundant phyla, similar to the growth 
experiment, were Mucoromycota (29%), Chytridiomy-
cota (21%), and Ascomycota (11%) (Fig. 5b). Twenty per-
cent were allocated to various fungal phyla, and 19% of 
the sequences could not be assigned with the Eukaryome 
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database. The initial community contained a high abundance 
of Saksenaeaceae (Mucoromycota), and the proportion of 
unknown sequences increased over time (Fig. 5b, Fig. S8). 
Fungal ASV diversity was not affected by nutrient treatment, 
light treatment, nor by sampling time (Table 2, Fig. 4b).

Discussion

Understanding the effects of macrophyte tissue quality 
on their microbial decomposition is important, as quality 
can vary strongly depending on environmental conditions. 

Fig. 2   Relative abundance of the bacterial (a) and fungal (b) phyla in 
the Elodea nuttallii growth experiment. Each panel represents three 
replicates of a unique combination of nutrient and light treatment, 
with low (N0) and high (N1) nutrient treatments and shaded (L0) and 

full light (L1) treatments. Unknown sequences are indicated with NA. 
Bacterial phyla with a low abundance (< 0.5%) were grouped into the 
category “Other”
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In our experiments, light rather than nutrient availability 
altered macrophyte tissue nutrient stoichiometry and phe-
nolic content, partially confirming our first hypothesis. As 
expected, the altered macrophyte tissue quality affected the 
fungal and bacterial community composition of epiphytic 
microbial biofilms. Surprisingly, no effects on macrophyte 
decomposition rates were observed. Lower light availabil-
ity in freshwater ecosystems due to processes related to 
global change, such as eutrophication, brownification, or 
species invasions, may thus affect both macrophyte tissue 
quality and their associated microbial community structure. 

Ecosystem functioning such as macrophyte decomposition 
may still remain unchanged due to counteracting effects of 
tissue stoichiometry and polyphenols or functional redun-
dancies in microbial communities.

Macrophyte Tissue Quality in Response to Changes 
in Nutrient and Light Availability

Plants can adapt to low light conditions by investing more in 
N-rich chlorophyll compounds to enhance light acquisition 
[27]. In an experiment by Twilley and Barko [44], shaded 

Fig. 3   Distance-based Redundancy Analysis results of bacterial (a) 
and fungal (b) community composition on Elodea nuttallii. Signifi-
cant parameters are indicated by solid arrows and different nutrient 

(high (N1) and low (N0)) and light (full light (L1), shaded (L0)) treat-
ments are indicated by color

Table 2   Effects of nutrient treatment, light treatment, time, and their 
interactions on Elodea nuttallii decomposition and microbial diver-
sity during the decomposition experiment in Lake Müggelsee (three-

way ANOVA). Bacterial (16S rRNA gene) and fungal (LSU rRNA 
gene) community compositions were tested with a PERMANOVA 
test on Bray–Curtis distances

Significant results are indicated in bold, with ***P < 0.001, **P < 0.01, *P < 0.05, ˙P < 0.10

F values

Factor %DW remaining BacterialASVdiversity(log-
transformed)

Bacterial com-
munity composi-
tion

Fungal ASV 
diversity (log-trans-
formed)

Fungal commu-
nity composition

Nutrient treatment 0.00 1.53 1.28 3.47˙ 1.11
Light treatment 0.00 8.00** 7.44*** 3.39˙ 1.60˙
Time 57.04*** 19.24*** 23.53*** 1.34 11.38***
Nutrient treatment * light treatment 0.20 0.56 1.24 0.82 1.14
Nutrient treatment * time 0.05 0.38 0.94 0.87 1.16
Light treatment * time 0.03 1.30 2.06* 1.35 1.37
Nutrient treatment * light treatment 

* time
0.01 1.39 0.76 0.46 1.06
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conditions led to increased chlorophyll contents in three 
freshwater macrophytes. This may explain why shaded con-
ditions led to increased N contents and decreased C:N ratios 
in E. nuttallii, though chlorophyll content was not meas-
ured. Under full light conditions, similar N content has been 
observed in a previous study using the same species [45].

In contrast to our hypotheses, C:N:P stoichiometry was 
unaffected by nutrient treatments, and shaded conditions led 

to increased phenolic content. These observations contradict 
previous research, where increased phenolic content under 
high light availability [17] and decreased C:P ratios with 
high nutrient availability [45] were observed. A possible 
explanation for this discrepancy could be the observed over-
all low growth rates of E. nuttallii in the experiment, and, 
in particular, the negative growth rates under the shaded 
conditions. These low growth rates could reduce stress by 

Fig. 4   Bacterial (a) and fungal (b) alpha diversity, expressed as the 
bias-corrected Chao1 index (mean ± SE) over time during decom-
position of Elodea nuttallii in Lake Müggelsee grown on low and 

high nutrient availability. Light treatments include full light (◌) and 
shaded (●) condition. Note that no fungal diversity data is available 
for day 14 and 28 in the light treatment due to insufficient DNA yield
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Fig. 5   Mean relative abundance of bacterial (a) and fungal (b) phyla 
over time during decomposition of Elodea nuttallii in Lake Müggel-
see (sample size varies between 1 and 3). Each panel represents a 
unique combination of nutrient and light treatment, with low (N0) 

and high (N1) nutrient treatments and shaded (L0) and full light (L1) 
treatments. Unknown sequences are indicated with NA. Note that no 
fungal community composition data is available for day 14 and 28 in 
the light treatment due to insufficient DNA yield
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nutrient limitation and thereby avoid stoichiometric shifts. 
Similarly, growth stagnation under shaded conditions may 
have led to a relative buildup of phenolic content compared 
to the full light conditions, where plants may have invested 
in growth instead of secondary metabolite synthesis. The 
hypothesized light-driven increase of phenolic contents 
was based on studies in Myriophyllum spicatum [17] and 
the observed light-driven decrease in phenolic contents in 
Elodea nuttallii could thus indicate species-specific differ-
ences as well. In general, terrestrial literature suggests that 
slow-growing shade-tolerant plant species typically have a 
higher phenolic content [14], which fits with our experimen-
tal findings. Overall, our experimental results point to the 
dependence of macrophyte responses on variations in light 
and nutrient conditions and highlight the need for further 
research to better understand and predict phenolic acid syn-
thesis in aquatic macrophytes.

Effects of Macrophyte Tissue Quality 
on Decomposition

Previous studies have observed that both tissue stoichiom-
etry and phenolic content of submerged macrophytes can 
affect their decomposition under field conditions. Faster 
decomposition rates are, for instance, reported for freshwa-
ter macrophytes with lower C:N ratios [3]. Alternatively, 
plants with higher phenolic content decompose slower, 
as illustrated, for instance, in salt marsh vegetation [48]. 
However, changes in tissue quality do not always lead to 
changes in decomposition rates, as Smith and Bradford 

[39] found no difference in decomposition rates of single 
species grass litter with different N content. In this study, 
no differences in decomposition rates between E. nuttallii 
plants were observed, despite the manipulated differences 
in both C:N ratio and phenolic content. Possibly, the lack 
of changes in decomposition rates of E. nuttallii of different 
quality in our study may be explained by a simultaneous 
increase in phenolic content and decrease in C:N ratio under 
shaded conditions. Alternatively, the changes in microbial 
community composition observed in our experimental setup 
during decomposition may have counteracted any changes in 
decomposition rates due to a high functional redundancy in 
their effects on macrophyte decomposition. As interspecific 
differences related to C:N:P stoichiometry in decomposition 
rates can be observed [3], intraspecific differences in C:N 
and phenolic content in our study were either not strong 
enough to elicit a response in decomposition rates, or these 
parameters are less important on an intraspecific level to 
drive decomposition rates. Whether any of these hypoth-
esized processes are major causes of our experimental find-
ings remains an open question and would be an interesting 
avenue for future research.

Macrophyte Tissue Quality Altered Microbial 
Community Composition

Both nutrient and light treatments affected bacterial and fun-
gal community composition in epiphytic biofilms, and the 
effects of the light treatment during the growth experiment 
continued during the following decomposition experiment. 

Fig. 6   Distance-based Redundancy Analysis (dbRDA) results of bac-
terial (a) and fungal (b) community composition during the decom-
position of Elodea nuttallii. Different nutrient and light treatments 
are indicated by color (see Fig.  3) and sampling dates by symbols. 
The first dbRDA axis is related to changes in community composition 

over time, whereas the effect of light treatment is visualized by the 
second dbRDA axis. Significant parameters (P < 0.10) are indicated 
by solid arrows. Note that light treatment was marginally significant 
(P = 0.08) in the fungal community composition (b)
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As no effects of experimental treatments on ASV diversity 
were observed (Table 1), these findings indicate an ASV 
(i.e., species) replacement in the bacterial community. It 
should be noted that during the growth experiment, attached 
algae were present on the macrophytes, and their biomass 
responses to the light treatments was similar as their host 
plants (Table S5). As attached algae can release exudates 
that affect microbial community composition and abundance 
[19], the observed changes in biofilm composition may be 
the result of both macrophytes and their attached algae. An 
earlier study on epiphytic bacterial communities on the mac-
rophyte Cabomba caroliniana did not reveal any differences 
in ASV richness across a range of shading treatments [28]. 
The experimental effects of the light treatment persisted dur-
ing macrophyte decomposition, as epiphytic bacterial ASV 
diversity and community composition differed significantly 
between light treatments. To our knowledge, this is the first 
demonstration of a continuation of the selecting effects of 
light on epiphytic microbial community composition after 
exposure.

Bacterial communities in epiphytic biofilms in all experi-
ments were dominated by Pseudomonadota (formerly known 
as Proteobacteria), which are a diverse phylum of gram-neg-
ative bacteria commonly observed in freshwater ecosystems 
[25, 52]. In particular, the families Comamonadaceae and 
Methylophilaceae dominated the bacterial community com-
position during the growth experiment (Fig. S4). The first 
family is diverse and commonly observed as a dominant 
bacterial group in oxic freshwater habitats [32]. Methyl-
ophilaceae, on the other hand, are a phylogenetically small 
group of methylotrophic bacteria which can be associated 
with the turnover of single-carbon compounds from phy-
toplankton blooms [38], and their presence in macrophyte 
biofilms has been described previously [11, 21]. During the 
initial phase in the decomposition experiment, character-
ized by fast litter decomposition, the bacterial community 
composition was dominated by Comamonadaceae as well. 
When decomposition rates decreased and the recalcitrant 
fraction was reached, this community was replaced by a 
more diverse bacterial assemblage (Fig. S7). In particular, 
the Saprospiraceae family made up a larger proportion at the 
end of the decomposition experiment. This bacterial family 
is known for its role in the breakdown of complex organic 
compounds [29], and its presence in decomposition of recal-
citrant litter is thus consistent. It is possible that the shift in 
the bacterial community on the decomposing macrophytes 
toward the Saprospiraceae indicates a beneficial selective 
environment for their proliferation.

The fungal community in our experiments mainly con-
sisted of Saksenaeaceae (Figs. S5 and S8), a family within 
the Mucoromycota, of which Saksenaea oblongispora was 
the dominant species during macrophyte decomposition. In 
a laboratory setting, this species is able to grow on a large 

range of carbon sources compared to other fungi within the 
Mucoromycota [35]. Its hypothesized associations with 
decomposition processes are reinforced here by its presence 
during macrophyte decomposition in Lake Müggelsee. Dur-
ing the growth experiment, shading led to a significantly 
altered fungal community as the proportion of unknown 
fungal sequences increased and the relative abundances of 
Aspergillaceae, Mycosphaerellaceae, and Psathyrellaceae 
decreased (Fig. S5). These changes in fungal community 
composition were correlated with light-driven changes in 
macrophyte stoichiometry (Fig. 5). As there is an overall 
lack of data on the effects of litter stoichiometry on aquatic 
fungi [12], these results contribute to our collective under-
standing of the link between macrophyte stoichiometry and 
its associated fungal community composition.

Conclusion

We conclude that changes in light availability, a common 
phenomenon in freshwater environments during processes, 
such as eutrophication and brownification, significantly 
affect E. nuttallii tissue quality and their epiphytic bacterial 
and fungal biofilm composition during macrophyte decom-
position. These alterations in macrophyte tissue quality and 
their associated biofilm may indicate either a high functional 
redundancy of diverse epiphytic microbial communities or 
were simply not sufficient to illicit changes in macrophyte 
decomposition rates. Nonetheless, our findings indicate that 
C:N:P stoichiometry of litter material, rather than phenolic 
content, appears to be a crucial factor in shaping the micro-
bial communities during decomposition.
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