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Simple Summary: Cancer is the leading cause of death worldwide and responsible for killing
approximately 10 million people per year. Fused heterocyclic ring systems such as benzofuran
have emerged as important scaffolds with many biological properties. Furthermore, derivatives
of benzofurans demonstrate a wide range of biological and pharmacological activities, including
anticancer properties. The main aim of this review is to highlight and discuss the contribution of
benzofuran derivatives as anticancer agents by considering and discussing the chemical structure of
20 different compounds. Evaluating the chemical structure of these compounds will guide future
medicinal chemists in designing new drugs for cancer therapy that might give excellent results in
in vivo/in vitro applications.

Abstract: Benzofuran is a heterocyclic compound found naturally in plants and it can also be ob-
tained through synthetic reactions. Multiple physicochemical characteristics and versatile features
distinguish benzofuran, and its chemical structure is composed of fused benzene and furan rings.
Benzofuran derivatives are essential compounds that hold vital biological activities to design novel
therapies with enhanced efficacy compared to conventional treatments. Therefore, medicinal chemists
used its core to synthesize new derivatives that can be applied to a variety of disorders. Benzofu-
ran exhibited potential effectiveness in chronic diseases such as hypertension, neurodegenerative
and oxidative conditions, and dyslipidemia. In acute infections, benzofuran revealed anti-infective
properties against microorganisms like viruses, bacteria, and parasites. In recent years, the com-
plex nature and the number of acquired or resistant cancer cases have been largely increasing.
Benzofuran derivatives revealed potential anticancer activity with lower incidence or severity of
adverse events normally encountered during chemotherapeutic treatments. This review discusses
the structure–activity relationship (SAR) of several benzofuran derivatives in order to elucidate
the possible substitution alternatives and structural requirements for a highly potent and selective
anticancer activity.

Keywords: benzofuran; SAR; hybrid benzofurans; anticancer activity; anticancer potency; anticancer
selectivity
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1. Introduction

Several heterocyclic compounds are found in many medications and have formed
an essential base for medicinal chemistry research. This is mainly due to heterocyclic
compounds’ versatility and distinctive physicochemical features [1]. Among these discov-
ered heterocyclic compounds is benzofuran [2], known as a natural compound originating
from plants such as Asteraceae, Rutaceae, Liliaceae, and Cyperaceae [3]. Benzofurans can
also emerge from non-natural sources through the dehydrogenation of 2-ethylphenol [4,5].
Structurally, benzofuran is characterized by a distinctive motif consisting of fused benzene
and furan rings, as illustrated in Figure 1 [6].
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It is suggested that introducing substituents at specified positions within the benzo-
furan’s core [2] results in new derivatives with unique structural characteristics that may
possess an excellent therapeutic value [7]. Therefore, in recent years, derivatives of benzo-
furans have been frequently used in the development of new drugs [8]. These derivatives
exhibited a promising anti-infective activity against bacteria, viruses, and parasites [9–11].
For example, in treating neurodegenerative disorders, derivatives of benzofurans revealed
potential efficacy in slowing down the progression of Alzheimer’s [12] as well as min-
imizing Parkinson’s severity [13] and presented potential neuroprotective functions in
brain disorders [14]. Furthermore, derivatives of benzofurans have the ability to achieve
anti-dyslipidemic and antioxidative effects [15]. Some researchers extended the use of
benzofurans’ derivatives to design an effective class of benzofuran-based vasodilators to
treat some cardiovascular conditions [16]. In practice, the synthetic derivatives of benzo-
furans are represented by Amiodarone, which is used in the treatment of ventricular and
supraventricular arrhythmias [17], and by Bufuralol as a non-specific β-adrenergic blocker
with an affinity for β1- and β2-adrenergic receptors [18,19].

Despite the major progress that has been achieved in research, there are still barriers
limiting the effective improvement of therapy, especially in cancer [20]. Nowadays, cancer
is known to be the leading cause of death worldwide, accounting for approximately
10 million deaths in 2020 [20]. As cancer cases are constantly increasing, oncology research
is investing significant efforts to identify novel, safe and effective therapies to minimize
critical side effects caused by conventional treatments [19].

Fused heterocyclic ring systems have emerged as important scaffolds with many
biological properties [1,21]. Accordingly, the peculiar structural motif of oxygen-containing
heterocycles demonstrates a wide range of biological and pharmacological activities, in-
cluding anticancer properties [2,18,22]. Earlier structure–activity relationship (SAR) studies
of benzofurans’ derivatives found that ester or heterocyclic ring substitutions at the C-2
position were crucial for the compounds’ cytotoxic activity [18]. These modifications have a
significant role in influencing the selectivity of these compounds toward cancer cells, which
have significant importance given the damage to normal cells caused by the cytotoxic
side effects of anticancer therapy. Therefore, this review will discuss the SAR of several
anticancer derivatives of benzofurans to determine the critical substitution patterns and
structural requirements useful to gain potent and selective anticancer activity.

2. Materials and Methods

The aim of this review is to highlight and discuss the contribution of benzofurans’
derivatives as anticancer agents. This review will discuss how the SAR of benzofuran
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can be used to predict their biological activity and better understand their applications in
cancer treatment.

A comprehensive electronic literature search of PubMed (MEDLINE), EMBASE, and
Web of Science without language or date restrictions was conducted. The keywords related
to “benzofuran” OR “derivatives” OR “compounds” OR “agent” OR “class” OR “anti-
proliferative” OR “anti-tumor” OR “anti-cancer” OR “anti-neoplastic” OR “novel” OR
“new” OR “active” OR “activity” OR “efficacy” OR “agent” OR “potent” OR “cytotoxic”
OR “scaffolds” OR “heterocyclic” OR “modeling” OR “experimental” OR “computational”
OR “potent” OR “selective” OR “drug design” OR “docking” OR “synthesis” OR “in vitro”
were used to search the literature.

All figures in this paper were produced by the authors using ACD/ChemSketch,
which is a free molecular modeling software used to create images of chemical structures.

3. Benzofuran Derivatives as Anticancer Agents
3.1. Halogenated Derivatives of Benzofuran

Some halogen additions into the benzofuran ring, such as bromine, chlorine, or
fluorine atoms, have consistently resulted in a significant increase in anticancer activi-
ties [23–30]. This is most likely due to the ability of halogens to form a “halogen bond”;
an attractive interaction between the electrophilic halogen and a molecule’s nucleophilic
sites, which substantially improves the binding affinity [31,32]. For example, a set of seven
derivatives (1,1′-(5,6-dimethoxy-3-methyl-1-benzofuran-2,7-diyl) diethanone) were synthesized
via standard bromination reaction and condensation with aryl/heteroarylpiperazine [28].
Consequently, those novel halogen derivatives underwent 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) assays against three cancer cell lines (human chronic
(K562), and acute (HL60) leukemia cells, human cervical cancer cells (HeLa)), and one
normal endothelial cancer cell (HUVEC). Compound 1 (see Figure 2) has a bromine atom
attached to the methyl group at the 3-position of the benzofuran ring; and was found
to possess remarkable cytotoxic activity against K562, and HL60 leukemia cells with an
inhibitory concentration (IC50) value of 5 µM and 0.1 µM (see Table 1), without cytotoxicity
towards normal cells. This means that the position of the halogen in the benzofuran ring is
a critical determinant of its biological activity [28].

In most cases, the halogen atom is attached to alkyl or acetyl chains rather than directly
onto the benzofuran ring [28,33]. This placement does not deter the compound’s cyto-
toxic activity, as evidenced by electron-rich bromomethyl- or bromophenacyl-substituted
benzofuran, which produced pronounced cytotoxic activity in both normal and cancer
cells [34–37]. Selective Polo-like kinase 1 Polo-Box Domain (PLK1 PBD) inhibitor MCC1019
(compound 2) (see Figure 2) is a bromomethyl-substituted benzofuran developed by Ab-
delfatah and colleagues for the treatment of lung cancer and evaluated via in silico, in vitro,
and in vivo models [33]. There are two key interactions between MCC1019 and PLK1 at
residues Tryptophan 414 (Trp414) and Histidine 538 (His538), which must be maintained
for optimum activity. In vitro testing against lung adenocarcinoma cells (A549) showed that
MCC1019 successfully inactivated the serine-threonine kinase (AKT) signaling pathway
and inhibited cancerous cell replication, causing a mitotic catastrophe [33,38]. This resulted
in achieving selective inhibition of PLK1 PBD with an IC50 of 16.4 µM (see Table 1) [33].
Further in vivo testing using a murine lung cancer model demonstrated a significant anti-
cancer activity by reducing the growth of metastatic lesions in the lung without affecting
body weight or vital organ size [33].

The substitution of the N-phenyl ring of the benzofuran with halogen is considered
beneficial due to their hydrophobic and electron-donating nature, which enhances ben-
zofuran’ cytotoxic properties [27]. Several studies in the literature have emphasized the
influence of the position of the halogen atom on the cytotoxic activity [39,40]. So far, the
maximum activities have been recorded when a halogen atom is placed at the para position
of the N-phenyl ring [41].
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Table 1. In vitro inhibitory activities of halogenated derivatives of benzofuran against multiple cancer
cell lines.

Compound Cell Line IC50, µM GI50, µM Reference

1
K562 5 ND

[28]
HL60 0.1 ND

2 PLK1 PBD 16.4 ND [33]

3

A-549 ND 1.8

[42]
MCF-7 ND 0.7

Panc-1 ND 1.3

HT-29 ND 1.6
The definitions of all abbreviations are provided in a list at the end of the manuscript.

A series of fourteen apoptotic anticancer derivatives were developed using the Allosteric
cannabinoid receptor type 1 (CB1) modulator 5-chlorobenzofuran-2-carboxamides [42]. Each
compound was then tested to evaluate its antiproliferative activity against the human mam-
mary gland epithelial cell line (MCF-10A) via cell viability assays [43]. Although multiple
compounds exhibited excellent antiproliferative activity against tumor cells, compound
3 stood out as the most active derivative (see Figure 2). According to the SAR analysis,
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the presence of the N-phenethyl carboxamide significantly enhances its antiproliferative
activity. This activity was further enhanced by morpholinyl substitution at the para position
of the N-phenethyl ring [42]. This explains why compound 3 exhibits similar antiprolif-
erative activity to oral anticancer drug doxorubicin (IC50 of 1.136 µM) [42], (see Figure 2
and Table 1). Interestingly, regardless of the halogen used (e.g., Cl, Br, F, etc.), all the
aforementioned halogen-substituted compounds exhibit significant cytotoxicity [28,33,42].
This suggests that, while the nature of the halogen does not impact the cytotoxic activity of
the compound, the position of the halogen is of great importance [28].

3.2. Hybrid Benzofuran as Anticancer Agents

Recent studies have highlighted novel classes of hybrid benzofurans’ derivatives
like chalcone, triazole, piperazine, and imidazole substituted benzofuran, which have
emerged as potent cytotoxic agents [44–49]. Utilizing the synergetic cytotoxic effect of
heteroatom-substituted benzofuran presents a promising approach for the development of
potent anticancer drugs with activities against malignant tumors.

3.2.1. Benzene-Sulfonamide-Based Benzofuran Derivatives

Benzene-sulfonamide has become a biologically significant scaffold, with several of its
derivatives being used as anticancer and antitumor agents [50]. Benzene-sulfonamide-based
benzofuran derivative (5-[benzyl-(4-chlorophenyl)sulfonylamino]-n-[2-(dimethylamino)ethyl]-3-
methyl-1-benzofuran-2-carboxamide) represented in compound 4 (see Figure 3) was designed
and synthesized to inhibit the hypoxia-inducible factor (HIF-1) pathway [51], which is in-
volved in the carcinogenesis of tumor protein (p53)-independent malignant cancers [51–53].
In vitro testing of compound 4 against HCT116 and HCT116−/− p53-null cell lines showed
the inhibition of both p53-null cells and p53-mutated cells (see Figure 3 and Table 2). Thus,
the addition of a chlorine atom at the para position along with the replacement of the
ester group by N containing alkyl chains were major determinants for the antiproliferative
activity [51].

3.2.2. 6-Substituted Hexamethylene Amiloride (6-HMA)-Based Benzofuran Derivatives

The urokinase-type plasminogen activator (uPA) system mediates cancer invasion and
metastasis through the uPA and its receptor (uPAR) [54]. Targeting uPA is one of the key
strategies for combating metastasis in malignant cancers including triple-negative breast
cancer [55,56]. In recent in vitro and in vivo studies, high doses of amiloride, a potassium
channel blocker, have been found to inhibit uPA proteolytic activity, prompting the search
for novel amiloride analogs as uPA inhibitors [57–59].

In order to investigate the potential of amiloride-benzofuran derivatives as uPA in-
hibitors, a series of 6-HMA, 6-N,N-(hexamethylene) amiloride derivatives were synthesized
via the Suzuki–Miyaura coupling reactions as potential uPA inhibitors [60]. The addition
of a benzofuran group to 6-HMA yields a compound with higher potency, and cytotox-
icity (Ki = 183 nM) [61]. In compound 5, the addition of fluorine atom at position 4 of
2-benzofuranyl resulted in a 2-fold increase in potency and inhibitory activity (Ki = 88 nM;
IC50 = 0.43 µM) [61] (see Figure 3 and Table 2). Such halogen substitutions at the para
position of benzofuran are more likely to form favorable hydrophobic interactions, and
therefore are more potent [62,63].

3.2.3. Quinazolinone- and Imidazolium-Based Benzofuran Derivatives

Quinazolinone is an aromatic heterocyclic ring that contains a quinazoline with a
carbonyl group [64]. Quinazolinone, like imidazole, is regarded by many as a privileged
scaffold with significant anticancer properties [65]. Two of its derivatives, gefitinib, and
erlotinib, were introduced to the market as anticancer agents [66]. One study reported the
synthesis of a small library of benzofuran derivatives fused to two prominent scaffolds,
imidazole and quinazolinone, to create a molecule with a desirable drug-like profile and
cytotoxicity [47]. Accordingly, the cell viability and proliferation rates of nine hybrid
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derivatives (1-[[(1-(benzofuran-2-yl)-2-(quinazolin-4(3H)-one-3-yl)]ethyl-1-yl]-3-methylimidazol-
1-ium chloride) or (compounds 6a–i) were tested via MTT assays against human breast
cancer (MCF-7) cells [47] (see Figure 3). All derivatives successfully inhibited the growth
of cancer cells except compound 6e. Analysis of its structural features suggested that the
presence of two halogen-substituted rings coupled with the lack of methoxy substituent on
the heterocyclic ring was detrimental to its activity, resulting in no cytotoxicity, as shown in
Table 2. This is expected, as the addition of halogen-substituted rings is usually resulting
compounds with little to no cytotoxic activity [47].

Cancers 2022, 14, x  6 of 22 
 

 

 
Figure 3. Chemical structures of anticancer hybrid benzofuran 4–10. 

3.2.2. 6-Substituted Hexamethylene Amiloride (6-HMA)-Based Benzofuran Derivatives 
The urokinase-type plasminogen activator (uPA) system mediates cancer invasion 

and metastasis through the uPA and its receptor (uPAR) [54]. Targeting uPA is one of the 
key strategies for combating metastasis in malignant cancers including triple-negative 
breast cancer [55,56]. In recent in vitro and in vivo studies, high doses of amiloride, a po-
tassium channel blocker, have been found to inhibit uPA proteolytic activity, prompting 
the search for novel amiloride analogs as uPA inhibitors [57–59]. 

In order to investigate the potential of amiloride-benzofuran derivatives as uPA in-
hibitors, a series of 6-HMA, 6-N,N-(hexamethylene) amiloride derivatives were synthesized 
via the Suzuki–Miyaura coupling reactions as potential uPA inhibitors [60]. The addition 

Figure 3. Chemical structures of anticancer hybrid benzofuran 4–10.



Cancers 2022, 14, 2196 7 of 22

3.2.4. Carbohydrazide- and Substituted Benzaldehydes-Based Benzofuran Derivatives

The condensation of 3-methyl-2-benzofuran carbohydrazide with various substituted
benzaldehydes yielded a set of new benzofuran derivatives, compounds 7a–k (see Figure 3).
The eleven benzofuran analogues were screened for potential anticancer activity using the
triphenyl blue dye exclusion technique on Erlich ascites carcinoma (EAC) cells [67–69]. Out
of these eleven benzofuran analogues, derivatives 7a, 7c, 7d, 7f, 7i, and 7j demonstrated
the greatest anticancer activity, as evidenced by their high cytotoxic concentration scores
(CTC50) shown in Table 3. The SAR results have shown that the presence of the CONH
group is necessary for anticancer activity [70]. The addition of phenol and chlorine groups
in compounds 7c, 7d, and 7i increased the number of binding interactions formed with the
target, resulting in improved anticancer activity (see Figure 3). As for the nitro group in
compound 7a, it significantly boosted activity by reducing the melting temperature of DNA
in EAC cells [71] (see Figure 3). Interestingly, the phenolic hydroxy group of benzofuran
was found to be crucial for modulating anticancer activity. The presence of a hydrogen
donating group promotes the formation of favorable interactions with the target, hence
inducing its cytotoxic properties [17,44,70,72].

3.2.5. Trimethoxyacetophenone-Based Benzofuran Derivatives

Combretastatin A-4 (CA-A4), which is a naturally occurring chemical, isolated from
the roots of Combretum Caffrum, has recently attracted considerable attention for its
antitumor and antimitotic activity [2,73]. The CA-A4 analogue (compound 8) consists
of trimethoxy acetophenone and a benzofuran core, and it has an IC5O of 0.43 µM (see
Figure 3). Subsequently, Flynn and colleagues used compound 8 as the lead compound
for the SAR-guided design of novel tubulin polymerization inhibitors [74]. The results
demonstrated that the introduction of C7-OH and a C2-substituent, as seen in compound 8a
(BNC105), improved its anticancer activity with a tubulin inhibition IC50 of 0.8 µM [74] (see
Figure 3 and Table 2). Notably, the observed antimitotic activity is approximately tenfold
stronger than that of the lead compound. The presence of a hydrogen bond donor (hydroxyl)
at C7 adds to the pharmacophore’s interactions; as for the C-2 substituent, it maintains
conformational bias, ensuring that the compound remains in the cis-conformation. Further
efforts to enhance the activity were made by formulating a prodrug, disoduimphosphase
ester derivative compound 8b (BNC105P), which is rapidly cleaved in vivo to return to its
active state compound 8a [74] (see Figure 3). When tested in vitro, the prodrug produced
tenfold stronger antitumor activity, eightyfold better selectivity, and a fivefold longer half-
life than the free drug [74]. This means that adjusting the formulation is equally important
to modifying the substituents on the compound in terms of increasing antitumor activity.

3.2.6. N-Methylpiperidine-Based Benzofuran Derivatives

The hallmark of many cancers is the activation and dysregulation of the AKT/mammalian
target of the rapamycin (mTOR) pathway, making it promising for drug discovery [75–77].
A series of mammalian targets of the rapamycin complex 1 (mTORC1) protein complex
inhibitors were synthesized by performing different isosteric replacements on the lead
compound ChemBridge 5219657, which was identified through high-throughput screening
(HTS) [78,79]. Derivative 1-((2-(2-(benzyloxy) phenyl)-5-methoxybenzofuran-4-yl) methyl)-n, n-
dimethylpiperidin-4-amine (compound 9) was found to exhibit the greatest cytotoxic activity
against head and neck (SQ20B) cancer cell line with an IC50 value of 0.46 µM (see Figure 3
and Table 2). The replacement of the phenolic hydroxyl group with another H-bond donor
like triflylamide conserved the cytotoxicity of the compound, whereas replacement with an
H-bond acceptor altered its activity [78,79]. Whilst the introduction of triflate ester (a group
that cannot donate or accept an H-bond) was well tolerated, the absolute removal of the
phenolic hydroxy diminished the cytotoxicity of the compounds. Furthermore, substituting
the dimethylamine and benzyl groups, with bulkier amine-containing groups such as
4-piperidino-piperidine, enhanced the cytotoxicity of the compounds [79].
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Hypoxic microenvironments accelerate tumor metastasis and progression in solid
tumor cancers, including pancreatic ductal adenocarcinoma (PADC) [80,81]. With the HIF-1
pathway being a target of interest, a small library of thirty-two benzofuran-derived HIF-1
inhibitors based on compound 10 were developed [82] (see Figure 3). MTT assays have
found that derivatives 10a and 10b exhibit similar activity, but derivative 5-(4-bromo-N-(4-
bromobenzyl) phenylsulfonamido)-3-methyl-N-(1-methylpiperidin-4-yl) benzofuran-2-carboxamide
(compound 10b) emerged as the most promising candidate due to its significant antiprolifer-
ative activity and selective inhibition of HIF-1 pathway [83] (see Figure 3 and Table 2). The
inclusion of hydrophilic heteroatom-containing groups, like piperidine, on the benzofuran
ring significantly improved the compound’s physicochemical properties [82]. Addition-
ally, the para-substituted halogen on the phenylsulfonyl- and N-containing alkyl chains
contributed to the resultant antiproliferative activity [83].

Table 2. In vitro cytotoxicity of hybrid benzofuran derivatives 4–20 against multiple cancer cell lines.

Compound Cell Line IC50 (µM) References

4
HCT116 (p53-null) 2.91

[51]
MDA-MB-435s (p53-mutated) 4.71

5 uPA 0.43 [61]

6a MCF-7 7.70

[47]

6b MCF-7 9.14

6c MCF-7 1.00

6d MCF-7 20.58

6e MCF-7 inactive

6f MCF-7 73.26

6g MCF-7 1.00

6h MCF-7 100

6i MCF-7 0.57

8 Tubulin 0.43

[74]8a Tubulin 0.76

8b Tubulin ND

9 SQ20B 0.46 [79]

10 ND ND

[82]

10a

PANC-1 1.52

BxPC3 1.08

HCT116 2.39

HCT116(p53−/−) 1.66

MCF-7 2.84

A549 2.98

MDA-MB-231 3.73

10b

PANC-1 1.07

BxPC3 0.65

HCT116 1.81

HCT116(p53−/−) 1.61

MCF-7 2.39

A549 2.68

MDA-MB-231 1.90
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Table 2. Cont.

Compound Cell Line IC50 (µM) References

11a

A549 0.12

[84]

Hela 26.32

SGC7901 2.75

11b

A549 6.25

Hela 18.71

SGC7901 36.23

11c

A549 8.11

Hela 28.74

SGC7901 >40

11d

A549 34.13

Hela 12.68

SGC7901 7.45

12 HT-1080 8.86 [85]

13a

HL60 2.34

[86]

SMMC-7721 2.63

A549 4.5

MCF-7 3.24

SW480 3.61

13b

HL60 0.64

SMMC-7721 2.10

A549 3.34

MCF-7 4.78

SW480 5.56

13c

HL60 0.61

[86]

SMMC-7721 2.30

A549 5.35

MCF-7 3.03

SW480 3.14

13d

HL60 0.08

SMMC-7721 0.52

A549 0.55

MCF-7 0.51

SW480 0.47

14a ND ND

[87]
14b ND ND

14c ND ND

14d ND ND
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Table 2. Cont.

Compound Cell Line IC50 (µM) References

15a

MCF-7 1.90

[88]

A549 2.38

Colo-205 2.11

A2780 1.05

15b

MCF-7 3.90

A549 4.17

Colo-205 ND

A2780 ND

15c

MCF-7 0.011

A549 0.073

Colo-205 0.10

A2780 0.034

15d

MCF-7 7.23

A549 6.91

Colo-205 2.84

A2780 10.2

15e

MCF-7 12.5

A549 5.34

Colo-205 ND

A2780 9.55

15f

MCF-7 3.16

A549 ND

Colo-205 7.10

A2780 8.64

15g

MCF-7 10.76

A549 19.42

Colo-205 ND

A2780 ND

15h

MCF-7 1.55

A549 1.93

Colo-205 1.28

A2780 2.13

15i

MCF-7 0.21

A549 0.43

Colo-205 0.17

A2780 1.84

15j

MCF-7 0.14

A549 0.25

Colo-205 0.12

A2780 0.33
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Table 2. Cont.

Compound Cell Line IC50 (µM) References

16 K562 ND

[89]17a K562 ND

17b K562 ND

18

A549 9

[90]MCF-7 2

PC-3 10

19 A549 6.3

[49]20a A549 10.9

20b A549 Inactive
The definitions of all abbreviations are provided in a list at the end of the manuscript.

Table 3. In vitro cytotoxicity inhibition of hybrid benzofuran derivatives 7a–k against EAC cancer
cell lines.

Compound CTC50 (µM/mL) Reference

7a 35.5

[71]

7b 472

7c 33.5

7d 33.75

7e 255

7f 43

7g 280

7h 365

7i 34

7j 49

7k 478
The definitions of all abbreviations are provided in a list at the end of the manuscript.

3.2.7. Piperazine-Based Benzofuran Derivatives

Piperazine is a six-membered ring containing two nitrogen atoms at opposite posi-
tions [91]. In vitro and/or in vivo studies have shown that several piperazine compounds
revealed significant activities against a variety of cancers cell lines [92]. Given this, a
hybrid of 2-benzoyl benzofuran with N-aryl piperazine linker is considered to be more
biologically active than unsubstituted benzofuran [18,40,84]. Benzofuran piperazine hy-
brids were designed, synthesized, and tested via MTT assays against lung cancer (A549),
human cervical carcinoma (Hela), and colonic cancer (SGC7901) cell lines [84]. Derivatives
bearing keto-substituent on the piperazine ring (compounds 11a–d) exhibited the most
cytotoxic activity against cancer cells [84] (see Figure 4). Similarly, the addition of an
electron-withdrawing group or halide such as fluoro-, chloro-, and cyano- at the para posi-
tion of benzene in compounds 11b, 11c, and 11d was beneficial for anticancer activity [84]
(see Figure 4). Furthermore, compound 11a showed promising activity and selectivity
to lung (A549) and colonic cancer (SGC7901) cell lines with IC50 values of 0.12 µM and
2.75 µM, respectively [84] (see Figure 4 and Table 2).
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3.2.8. Neolignans-Based Benzofuran Derivatives

Naturally occurring dihydrobenzofuran neolignans are often found in high concentra-
tions in aerial parts of plants like Mappianthus iodoies, Dorstenia kameruniana, and Aris-
tolochia fordiana [45,93–97]. Many neolignans have shown considerable activity against a
variety of cancers cell lines [98]. Neolignan-based benzofurans’ derivatives are expected to
benefit from the synergistic cytotoxic effect of both molecules. Thus, eight dihydro benzofu-
ran neolignans analogs were isolated from the seeds of crataegus pinnatifida [85]. In vitro
testing recognized 7R,8S-balanophonin (compound 12) as the most potent analogue, with
stronger inhibitory activity against HT-1080 cancer cells than positive control 5-fluorouracil
(5FU) (IC50 = 35.62 µM) (see Figure 4 and Table 2). The SAR studies of hybrid dihydroben-
zofuran neolignans revealed that the presence of a double bond at C-7′/C-8′ next to the
aromatic ring is vital for cytotoxicity and that the reduction of the double bond can reduce
the activity by tenfold or greater [85].

3.2.9. Imidazole-Based Benzofuran Derivatives

Imidazoles are five-membered, nitrogen-containing heterocycles with significant anti-
cancer activity against a variety of biological targets [99]. However, there is no consensus
surrounding the cytotoxic activity of benzofuran-imidazole derivatives [48,100,101]. It
has been reported that the addition of an imidazole ring to the benzofuran produced
compounds with weak cytotoxic properties [36]. Therefore, to yield optimal benzofuran
imidazole hybrids, some modifications must be implemented. The 2-benzylbenzofuran
ring is altered to 2-alkylbenzofuran to improve both the steric effect and charge distribution
of the compound [100,101]. Then, electron-rich groups like 2-bromophenacyl, phenacyl,
and napthylacyl- are substituted onto the imidazole ring, preferably into the 3-positon [102].
These alterations are crucial to ensure a maximal cytotoxic activity against cancer cells.
Similar findings were observed in 2-phenyl-3-alkylbenzofuran imidazole/triazole hybrids
(compounds 13a–d) (see Figure 4) [86]. These highly potent anticancer derivatives often
include a 2-ethyl-imidazole or benzimidazole ring with a 2-bromobenzyl or napthylacyl
substituent at the 3-position of the imidazole ring, all of which are important groups in
modulating antitumor activity [103]. Among these compounds, compound 13d has shown
the strongest inhibitory activity and selectivity towards breast cancer (MCF-7) and colon
cancer (SW480) cells, with IC50 values ranging from 0.08 to 0.55 µM [86] (see Figure 4 and
Table 2).

3.2.10. Pyrazole-Based Benzofuran Derivatives

The non-receptor tyrosine kinase (c-Src) has been identified as a promising target
for cancer treatment, sparking the interest of researchers [104–106]. Pyrazole is a five-
membered aromatic heterocyclic ring containing two neighboring nitrogen atoms [107].
Pyrazole derivatives have previously demonstrated antitumor activity against numerous
types of cancer [108]. In an effort to discover novel potent c-Src inhibitors as anticancer
agents, a set of benzofuran-pyrazoles hybrids containing chalcones, pyrazoline, isoxazole,
and thiopyrimidine substituents were in vitro-synthesized and tested for their anticancer
activity [87].

Compounds 14c and 14d, which consist of 3-furano-N-acetylpyrazoline and 3-furano-
isoxazole rings, respectively, exhibited remarkable and broad-spectrum anticancer activity
(see Figure 4). Incorporating acetyl, an electron-withdrawing group, into the N-1 of the
pyrazoline ring appears to be essential for antiproliferative activity. Hence, the deriva-
tives lacking the acetyl group such as compound 14a exhibited weak anticancer activity
in-vitro [87] (see Figure 4). Increasing the size of the hetero-ring systems attached to
the parent core resulted in weak-to-moderate antiproliferative potency [21]. Among all
derivatives, compound 14b containing 3-pyrrolo-N-acetylpyrazoline demonstrated significant
antiproliferative and anticancer activity against leukemia, lung cancer, colon cancer, central
nervous system (CNS) cancer, melanoma, ovarian cancer, breast cancer, and renal cancer
cells [87] (see Figure 4). Enzyme assays of compound 14c detected significant inhibition
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of Src and zeta-chain-associated protein (ZAP-70) kinases [87] (see Figure 4). Overall, the
potent antitumor activity and favorable absorption, distribution, metabolism, and excretion
(ADME) characteristics of compound 14b make it a viable candidate worthy of further
investigation and modifications (Figure 4).

3.2.11. Imidazopyridine-Based Benzofuran Derivatives

Imidazopyridine is fused bicyclic heterocycles that are synthesized by several strate-
gies such as condensation, oxidative coupling, tandem reaction, etc. [109]. A series of
imidazopyridine-substituted benzofurans (compounds 15a–j) were derived from sulfon-
amides, and subsequently underwent MTT assays to evaluate their in vitro cytotoxicity
against human cancer cells [110] (see Figure 4). Moreover, compounds 15a, 15c, 15h, 15i,
and 15j were found to produce considerable anticancer activity against tested cell lines [88]
(see Figure 4). Among these, derivative 15c, with the greatest cytotoxicity, significantly
inhibited the growth of breast (MCF-7), lung (A549), colon (Colo-205), and ovarian (A2780)
cancer cell lines with IC50 values of 0.011, 0.073, 0.10, and 0.034 µM [88], respectively (see
Figure 4 and Table 2). The SAR has shown that the addition of electron-positive groups at
the para position on the phenyl group significantly improved anticancer activity, regard-
less if it’s a strong group like 4-methoxy (compound 15c) or a weak group like 4-methyl
(compound 15h). On the other hand, substitution with electron-withdrawing groups like
chloro (15d), bromo (15e), nitro (15f), and cyano (15g) resulted in significant drop-in activity
(Figure 4 and Table 2). Interestingly, compound 15a lacked any phenyl ring substituents
but still maintained good anticancer activity [88] (see Figure 4). Furthermore, replacing
the aryl ring with a hetero-aromatic ring such as 2,6-dimethylpyridine (compound 15i) or
4,5-dimethylthiophene (compound 15j) rings was more beneficial for anticancer activity than
keeping the aryl ring (compound 15a and 15h) [88] (see Figure 4).

3.2.12. Aurones-Chromone- and -Coumarin-Based Benzofuran Derivatives

Flavonoids, aurones, chromones, and coumarins are abundantly found in plants, fungi,
and bacteria [109]. These natural products are capable of modulating a wide range of biolog-
ical pathways and achieving selective anticancer activity with few side effects [109,111,112].
Yet, only a limited number of hybrids with aurone-chromone, -coumarin fused heterocycles
have been reported. Therefore, a series of 26 hybrid compounds between benzofuran
core of aurones-chromone and -coumarin were designed [89]. This combination takes
advantage of the potential synergistic anticancer effect of these flavonoids [113–115]. These
derivatives were then evaluated for their anticancer activity against a panel of human
leukemia cells (K562) at different concentrations. In particular, compounds 16, 17a, and
17b were able to induce around 24% apoptosis [89] (see Figure 4). Interestingly, the potency
of the compounds is unaffected by different substitutions of the chromone [29]. Further-
more, it appears that exchanging the benzofuranone or methylbenzofuranone moieties
with napthofuranone induces a stronger apoptotic effect [89]. In order to understand the
pro-apoptotic properties of these benzofuran–coumarin derivatives, (Z)-7-methoxy-4-[(6-
methyl-3-oxobenzofuran-2(3H)-ylidene) methyl]-2H-coumarine (compound 17a) was compared
to 7-methoxy-coumarin-4-aldehyde and (Z)-2-(4-methoxybenzylidene)-6-methylbenzofuran-3(2H)-
one by testing them in K526 cells at doses ranging from 5 to 100 µM [89]. The results demon-
strated that compound 17a produced the strongest apoptosis induction at higher doses,
outperforming both unsubstituted benzofuran and coumarins [89]. These findings imply
that coupling aurone-like benzofuran with a chromone or coumarin can yield novel com-
pounds with more potent pro-apoptotic properties compared to unconjugated benzofuran.

3.2.13. Chalcone-Based Benzofuran Derivatives

Many naturally occurring compounds are derived from plants, including the sim-
ple chalcone scaffold [116]. These structures are simple to synthesize, allowing for the
chalcones to be incorporated into several derivatives with a wide range of biological activi-
ties [117]. Moreover, chalcones have been recognized as a valuable scaffold with potent
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anticancer activity [118]. Thus, a synergistic cytotoxic effect could be observed after the
hybridization of chalcones and benzofuran, yielding compounds that are used to treat
malignant tumors [18,29,44].

Encouraged by the anticancer potential of chalcones, a set of 1-(7-ethoxy-1-benzofuran-
2-yl) substituted chalcone derivatives via the base-catalyzed Claisen-Schmidt reaction was
synthesized [46,90]. All derivatives were then tested by sulforhodamine B (SRB) and
adenosine 5′-triphosphate (ATP) cell viability assays, against breast (MCF-7), non-small-
cell lung (A549), and prostate (PC-3) cancer cell lines [43]. The best cytotoxic activity
was observed in chalcone derivative compound 18, with IC50 values ranging from 2 to 10
µM [90] (see Figure 4 and Table 2). Interestingly, compound 18 showed selective cytotoxicity
toward human breast cancer cell line (MC-7), while being non-toxic towards normal breast
cancer cells (MRC5). Furthermore, compound 18 was successful in inducing apoptosis in
cancer cells while maintaining a promising safety profile, indicating that hybrid benzofuran
chalcones have greater cytotoxic activity compared to unsubstituted benzofuran [90].

3.2.14. Oxadiazole- and Triazole-Based Benzofuran Derivatives

Oxadiazoles and triazoles are nitrogen-oxygen and nitrogen-containing five-membered
heterocyclic aromatic rings commonly hybridized with other anticancer scaffolds, such
as benzofuran [119–121]. These hybrid derivatives have shown substantial anticancer
potential and play essential roles in cancer management [122,123]. Hence, ultrasound-
and microwave-assisted green synthetic protocols were implemented for synthesizing a
set of 15 benzofurans–oxadiazole and –triazole. Then, those compounds were evaluated
for the anticancer activity against the lung cancer cell line (A549) [49]. Compound 19,
benzofuran-oxadiazole hybrid, was reported as the most potent anticancer derivative, with
cell viability of 27.49 µM and IC50 of 6.3 µM, outperforming reference drugs crizotinib and
cisplatin, which had IC50 of 8.54 and 3.88 µM, respectively [49]. The enhanced anticancer
activity is believed to be due to meta methoxy or para ethoxy substitutions on the phenyl
ring of N-(substituted-phenyl)-acetamide (see Figure 4).

Although benzofuran triazole derivatives 20a and b exhibit excellent thrombolysis ac-
tivity and minimal toxicity, they did not demonstrate strong anticancer activity against A549
cancer cells (see Figure 4 and Table 2). The presence of two adjacent electron-withdrawing
chloro groups at the ortho and para positions of the phenyl ring in compound 20a was
detrimental to its anticancer activity [49]. Similarly, in compound 20b, the addition of
two adjacent methyl groups on the ortho and para positions of the phenyl ring yielded an
inactive compound [49]. These SAR studies highlight the possible positive and negative
impacts of structural modifications to oxadiazole- and triazole-benzofuran derivatives as
anticancer drug candidates.

3.3. Cytotoxicity of Benzofurans’ Derivatives against Selected Cancer Cell Lines

Many of the compounds presented have been tested against the same cancer cell
lines, and while they show high cytotoxicity, it is notable how different substitutions can
influence the compound’s cytotoxicity against selected cancer cell lines. Imidazopyridine-
benzofuran analogs bearing electron-positive groups at the 4-position on the phenyl group,
for example, have significantly improved anticancer activity against various cancer cell lines
(A549, MCF-7, HL-60, SW480, A2780, and Colo-205) [88]. The most effective modifications
to the cytotoxicity of MCF-7 cell lines were quinazolinone and Imidazolium, Imidazole,
and Chalcone-based benzofuran compounds [47,86,90]. A halogen atom attached to the
methyl group at the 3-position of the benzofuran ring promotes cytotoxicity toward both
A549 and HL60 cell lines [28,33]. More specifically, the presence of oxadiazole and triazole-
benzofuran hybrids further boosts the anticancer activity of A549 cells [49]. The majority
of the novel hybrids demonstrated potential anticancer agents against specific cancer cell
lines, while maintaining a remarkable safety profile against normal cells. Most of the
novel hybrids demonstrated potential anticancer agents against specific cancer cell lines
while maintaining a remarkable safety profile against normal cells. Hence, benzofuran
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derivatives have the potential to be developed as novel therapeutic agents given their
recent experimental findings and documented selectivity against cancer cells.

4. Conclusions

This review suggests benzofuran as a versatile scaffold with significant anticancer
activity on various human cells such as breast, lung, and prostate cancer. Understanding
the SAR of benzofurans’ derivatives facilitates the design and development of novel, safe,
and potent in vitro therapeutic options in cancer. Therefore, this may provide a more
robust assessment of anticancer activities before considering in vivo studies. The anticancer
activity of benzofuran scaffolds is dependent on the type of substituent present and is
frequently multifactorial. Furthermore, hybrid structures bearing benzofuran moiety stand
out as highly potent anticancer agents. They utilize the functionalization or structural
configuration of the conjugate molecule. This review recommends that studying the
chemical structure of these compounds will result in anticancer agents that limit tumor
progression with minimal adverse effects. Therefore, this could potentially have an impact
on improving patients’ adherence to medication and subsequently disease prognosis.
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Abbreviations
5FU 5-fluorouracil
6-HMA 6-substituted hexamethylene amiloride
6-HMA 6- N, N-hexamethylene
ADME Absorption, distribution, metabolism, and excretion
AKT signaling Serine–threonine kinase signaling
ATP Adenosine 5′-triphosphate
A549 Hypotriploid alveolar basal epithelial cell lines
A2780 Ovarian cancer cell line
BNC105P Disoduimphosphase ester derivative compound 8b
BxPC3 Human pancreatic cancer cell lines
CB1 5-chlorobenzofuran-2-carboxamides
CNS Central nervous system
CB1 modulator Cannabinoid receptor type 1 modulator
CA-A4 Combretastatin A-4
CTC50 cytotoxic concentration scores
Colo-205 Colon cancer cell lines
EAC Erlich ascites carcinoma cells
HT-29 Human colorectal adenocarcinoma cell lines
HCT116 Human colorectal carcinoma cell lines
HIF pathway Hypoxia-inducible factor pathway
HUVEC normal endothelial cancer cell lines
HT-1080 Fibrosarcoma cell lines
HL60 Human acute leukemia cells
HeLa human cervical cancer cells
HTS High-Throughput Screening
IC50 half-maximal inhibitory concentration
Ki Dissociation constant
K562 Human leukemia cell lines
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MCF-7 human breast cancer cells
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
mTOR pathway mammalian target of the rapamycin
mTORC1 Mammalian target of rapamycin complex 1
MDA-MB-23 Metastatic adenocarcinoma cell lines
MCF-10A human mammary gland epithelial cell line
MRC5 normal breast cancer cells
NA Not Applicable
Panc-1 Human pancreatic cancer cell lines
P53 Tumor protein
PADC pancreatic ductal adenocarcinoma cell lines
PC-3 Prostate cancer cell lines
PLK1 PBD inhibitor Polo-like kinase 1 Polo-Box Domain inhibitor
SAR Structure–activity relationship
SRB sulforhodamine B
SQ20B head and neck cancer cell lines
SMMC-7721 Hepatocellular carcinoma cell lines
SGC7901 Colonic cancer cell lines
Src Non-receptor tyrosine kinase protein
SW480 Colon cancer cell lines
TNBC Triple-negative breast cancer cell lines
uPA urokinase-type plasminogen activator
uPAR urokinase-type plasminogen activator receptor
ZAP-70 kinases Zeta-chain-associated protein kinase 70
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