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Levels of 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK) in 
raw wastewater as an innovative 
perspective for investigating 
population-wide exposure to  
third-hand smoke
Foon Yin Lai   1, Katerina Lympousi2, Frederic Been1, Lisa Benaglia3, Robin Udrisard3, 
Olivier Delémont3, Pierre Esseiva3, Nikolaos S. Thomaidis2, Adrian Covaci1 & 
Alexander L. N. van Nuijs1

Tobacco smoking is the major cause of many chronic diseases, especially lung cancer. Knowledge about 
population-wide tobacco use and exposure is essential to characterise its burden on public health and 
evaluate policy efficacy. Obtaining such knowledge remains challenging with current methods (e.g., 
surveys, biomonitoring) but can be achievable with wastewater analysis, a promising tool of retrieving 
epidemiology information. This study examined population-wide exposure to tobacco toxicants and 
carcinogens through wastewater analysis and explored relationships among these chemicals. Cotinine, 
trans-3′-hydroxycotinine, anabasine, anatabine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK) were analysed in samples from Greece, Switzerland and Belgium, where tobacco control policies 
are different. Measured per-capita mass loads were ranked as: nicotine biomarkers ≫ tobacco markers 
> carcinogens. Relationships between nicotine biomarkers and tobacco markers implied substantial 
use of non-tobacco nicotine items besides tobacco products. Geographic profiles of tobacco markers 
revealed higher levels in Geneva and Athens than Geraardsbergen and Ninove. Environmental third-
hand smoke led to NNK detection, with elevated levels observed in Athens where indoor smoking is 
widespread, posing potential health risks to the population. Our novel outcomes are relevant for public 
health authorities as they provide indications about external exposure and can thus be used to plan and 
evaluate tobacco control policies.

Worldwide, tobacco smoking remains a priority public health concern due to its negative impacts on health, from 
single individuals to entire populations1,2. Approximately 22% of all cancer deaths were attributed to tobacco use, 
particularly lung cancer3,4. Globally, tobacco smoking causes more than 6 million deaths per year3,4. This figure 
has been predicted to rise to 8.3 million by 20305. Since 1950s, numerous studies have shown the adverse effects 
on human health from the intake of toxicants and carcinogens in first-hand and second-hand tobacco smoke6,7. 
In contrast, exposure to these chemicals through third-hand smoke (THS) started raising concern only about a 
decade ago6,7.

Third-hand smoke, a newly recognised form of environmental exposure to tobacco-related chemicals, is the 
deposition of toxicants and carcinogens from second-hand smoke on indoor surfaces and objects (e.g., walls, 
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ceilings, carpets, clothing and furniture)6–8. Third-hand smoke also coats on body surfaces (e.g., skin and hair) 
and clothing fabrics of both smokers and bystanders. Residual nicotine from THS accumulated on surfaces 
over time has been showed to react with ambient nitrous acid to form tobacco-specific nitrosamines (TSNAs)9, 
especially 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), a Group I carcinogen classified by the 
International Agency for Research on Cancer (IARC). Recent studies have also detected nicotine and NNK in 
indoor dust and found these chemicals in indoor environments due to THS contamination (e.g., cars and homes 
of smokers and non-smokers)10–12. These chemicals attributed to THS have even been noticed in hospital set-
tings13. Exposure pathways for THS include inhalation (e.g. dusts) and dermal uptake from contact with con-
taminated surfaces and clothes/textiles, as well as ingestion from the hands or food that are exposed to tobacco 
smoke7. Negative health impacts of THS exposure on rodents have been recently revealed8,14; however, further 
studies are required to assess health risks for humans.

So far, environmental sampling methods to estimate the extent of indoor THS exposure have mainly relied on 
the collection of indoor air, dust and surface-wipe samples7,11–13,15. These sampling strategies however may remain 
less practical as they are labour-intensive, especially when it comes to large scale monitoring studies over the 
whole population, and can be confronted with ethical or privacy issues (e.g., sampling in individual households). 
Furthermore, people are mostly unaware of being exposed to THS as it clings to surfaces long after smoking 
events. Measurements of THS-related compounds in the environment can be used to assess external exposure 
to THS. Collectively, these aspects, together with the fact that THS is pervasive, suggest that there is a clear need 
for innovative and efficient approaches which can complement existing methods used to evaluate, over space and 
time, environmental exposure to THS in large populations.

Raw wastewater has been recognised as an emerging and useful source to retrieve epidemiological informa-
tion about substance use and exposure to environmental chemicals at the population level16. The approach relies 
on the fact that wastewater generated by the population of a given catchment contains biomarkers of lifestyle, 
health and exposure to environmental pollutants. These biomarkers are collected in the sewage system and con-
veyed to municipal wastewater treatment plants (WWTPs). For instance, studies have measured endogenous 
chemicals in raw wastewater collected at the inflow of WWTPs, such as isoprostanes (oxidative stress markers), 
to assess the potential health status in the populations17. Also, analysis of relevant (bio)markers in raw wastewater 
has been illustrated as an alternative tool to monitor community-wide exposure to environmental chemicals, such 
as pesticides, phthalate plasticisers and organophosphorus flame retardants18–21. Analogously, the concept can be 
extended to investigate population-wide exposure to environmental THS, where levels of chemicals related to 
THS in wastewater originate from, such as, textiles (e.g., laundries), washing off indoor surfaces (e.g. cleaning), 
human body (e.g., hair and hand washing), etc.

The advantages of wastewater analysis can be also seen through the numerous studies22–24 that have meas-
ured nicotine biomarkers (i.e., cotinine and trans-3′-hydroxycotinine) in raw wastewater to back-estimate 
nicotine-equivalent cigarette use in communities. Despite limited studies, other minor tobacco alkaloids (i.e., ana-
basine and anatabine) in wastewater were suggested to reveal population tobacco use25. To date, no attention has 
been drawn to the potential co-occurrence of nicotine biomarkers, tobacco alkaloids and carcinogens (e.g., NNK) 
through wastewater analysis. This could provide highly valuable information on the extent of population-wide 
exposure to the carcinogens from tobacco smoking. Also, a potential emphasis can be on environmental THS 
since NNK is present in tobacco smoke and showed as a key THS compound7,10,12,26, while anabasine and anat-
abine are specific to tobacco use27. Furthermore, the relationship between nicotine biomarkers and tobacco spe-
cific alkaloids in wastewater may provide indications about the prevalence of the use of non-tobacco nicotine 
items (e.g. electronic cigarettes, nicotine replacement products) in populations. To the best of our knowledge, 
these last three aspects have not been studied so far.

By means of wastewater analysis, the overall objective of our study was to explore population-wide expo-
sure to the tobacco-related (bio)markers across a selection of cities in three European countries (Belgium, 
Greece and Switzerland) where have different tobacco control policies28,29. To achieve the goal, raw wastewa-
ter samples (daily composite) were collected at the inflow of municipal WWTPs and analysed for cotinine, 
trans-3′-hydroxycotinine, anabasine, anatabine and NNK based on our previously validated analytical method30. 
Specifically, this study aimed to: (a) assess the geographical level and profile of these chemicals over the three 
different European populations; (b) evaluate the relationship between nicotine biomarkers and tobacco markers 
for a possible indication of nicotine use from non-tobacco nicotine items apart from tobacco products in the pop-
ulations; and (c) examine wastewater levels of NNK in relation to population-wide external exposure to THS, and 
explore its association with tobacco markers for a model that allows preliminary evaluations of population-wide 
exposure to NNK in THS from tobacco use.

Results
Geographical patterns and levels of target (bio)markers across different locations.  The target 
(bio)markers were measurable in all samples with the levels in a decreasing ranking: nicotine biomarkers (coti-
nine: 1450–6360, 2550 (median) ng/L; trans-3′-hydroxycotinine: 3130–10900, 4960 ng/L) ≫ tobacco markers 
(anabasine: 11–38, 19 ng/L; anatabine: 26–69, 40 ng/L) > carcinogens (NNK: 1.6–8.8, 2.3 ng/L). The ranking pat-
tern was the same across all locations.

To compare data across locations, population-normalised daily mass loads (mg/day/1000 people) (Fig. 1) 
were computed through Monte Carlo simulation using measured concentrations, daily wastewater flow data and 
catchment populations. Differences between locations were assessed statistically using Mann-Whitney test. The 
highest daily load (median) of cotinine and trans-3′-hydroxycotinine was observed in Athens (1160 and 1960 mg/
day/1000 people respectively) followed by the two Belgian cities (Geraardsbergen: 740 and 1470 mg/day/1000 
people; Ninove: 640 and 1250 mg/day/1000 people, respectively) (Athens vs. Belgian cities: p < 0.001) and Geneva 
(520 and 1010 mg/day/1000 people, respectively) (Athens vs. Geneva: p < 0.0001). For anabasine and anatabine, 
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Geneva (6.7 and 15 mg/day/1000 people, respectively) showed the highest daily loads followed by Athens 
(5.4 and 11 mg/day/1000 people, respectively) (Geneva vs. Athens: p < 0.05, anabasine; p < 0.002, anatabine). 
Geraardsbergen and Ninove were found at the lowest daily loads of anabasine (4.2 and 2.9 mg/day/1000 people, 
respectively) and anatabine (9.1 and 7.7 mg/day/1000 people, respectively) (Geneva vs. Belgian cities: p < 0.0005). 
The largest daily loads of NNK were measured in Athens (1.5 mg/day/1000 people) followed by Geneva (1.0 mg/
day/1000 people) (Athens vs. Geneva: p < 0.005), whereas lowest daily loads were found in the two Belgian cities 
(0.5 mg/day/1000 people; Athens vs. Belgian cities: p < 0.0002).

Mann-Whitney analysis did not show any distinct weekly pattern, suggesting that day-to-day loads of target 
(bio)markers were similar over the monitoring period across different locations. The load of each chemical on an 
individual day was approximately 12% (median) of the total weekly load (11–13% during weekdays and 10–13% 
on weekends).

Relationships among target (bio)markers.  According to correlation analysis, the target (bio)mark-
ers demonstrated different relationships. A strong correlation (Spearman ρ = 0.95, p < 0.0001) was found 
between cotinine and trans-3′-hydroxycotinine in wastewater of all locations, in agreement with findings from 
previous studies22,31. Similarly, the relationship between anabasine and anatabine was statistically significant 
(ρ = 0.90, p < 0.0001). However, no significant correlations were noticed between nicotine biomarkers (cotinine, 
trans-3′-hydroxycotinine) and tobacco alkaloids (anabasine and anatabine). NNK exhibited a strong association 
with anabasine (ρ = 0.75, p < 0.0001) and anatabine (ρ = 0.62, p < 0.0001) and a weak, but statistically significant, 
correlation with cotinine (ρ = 0.38; p = 0.03) and trans-3′-hydroxycotinine (ρ = 0.35; p = 0.05). The relationship 
between NNK and the two tobacco alkaloids was further assessed using a generalised linear model (Fig. 2). This 
was performed using log-transformed population-normalised mass loads with NNK as the dependent variable 
and anabasine or anatabine as the independent variable (Fig. 2). The best model, showing the smallest mean 
square error (MSE), was selected and its performance was assessed using leave-one-out cross-validation. A quad-
ratic function was found to be the best model for NNK vs. anabasine while a linear function performed the best 
for NNK vs. anatabine. The obtained models can assist in estimating levels of NNK based on levels of anatabine 
and anabasine measured in wastewater in future studies. Particularly, anabasine appeared to be a better predictor 
of NNK compared to anatabine (i.e., Akaike information criterion: 2.63 vs. 14.5 and MSE: 0.065 vs. 0.085, respec-
tively). The developed model is supposed to provide only indicative and preliminary information about levels of 
NNK in wastewater based on those of anabasine and anatabine since NNK has not been to date among the com-
monly monitored compounds while anabasine and anatabine levels have been previously reported25.

Discussion
The present article explored the co-occurrence of toxicants and carcinogens associated with tobacco use (espe-
cially smoking) at the population level using wastewater as an information source. Through a selection of cities 
from three European countries with different prevalence of tobacco use and tobacco control policies (e.g., indoor 
smoke-free environments, restrictions on advertising tobacco products), this study exhibits new findings and 
perspectives from which the prevalence and public health related to population tobacco smoking can be assessed.

Figure 1.  Violin plots of population-normalised mass loads (mg/day/1000 inhabitants) for (A) cotinine (red) 
and trans-3′-hydroxycotinine (blue); (B) anabasine (green) and anatabine (purple); and (C) NNK in different 
studied locations. Each violin plot includes a boxplot which indicates the median, inter-quantile range and 
range of daily estimates over the monitored period.
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The strong and significant correlation between cotinine and trans-3′-hydroxycotinine suggested a substan-
tial consumption of and exposure to nicotine in the studied populations. This can be also revealed by examin-
ing the concentration ratio of these two chemicals in wastewater (trans-3′-hydroxycotinine/cotinine, average: 
1.9 ± 0.2 (standard deviation, SD)), which is similar to the urinary excretion found in clinical studies32,33 (average: 
2.1 ± 0.6 SD, n = 80) after nicotine intake. The occurrence of cotinine and trans-3′-hydroxycotinine in the samples 
could result not only from exposure of first- (i.e. consumption) and second-hand smoke to nicotine, but also THS. 
In this light, recent studies11,34 have shown that levels of nicotine in household dust were relatively higher com-
pared to other tobacco alkaloids, as a result of tobacco smoking and also the use of non-tobacco nicotine items 
(e.g., electronic cigarettes). Indoor human exposure to nicotine through THS has been only recently reported13,35. 
Although being the most abundant alkaloid (about 95%) found in tobacco, levels of nicotine biomarkers meas-
ured in this study reflect the use of all kinds of nicotine-containing products, from tobacco products (e.g., ciga-
rettes, cigars, snuss, chewing tobacco) to non-tobacco nicotine items (e.g., electronic cigarettes and products used 
for nicotine-replacement therapies, such as patches, gum, sprays), at the population level. With the increasing use 
of non-tobacco nicotine items, especially electronic cigarettes36, back-estimating population tobacco/cigarette 
use based on cotinine and trans-3′-hydroxycotinine, as earlier proposed22 and applied in previous studies23,24,31, 
will become less relevant for future studies. In fact, this may be readily revealed in our data as the two nico-
tine biomarkers and tobacco-specific alkaloids were not correlated with one another; yet, such correlation was 
observed in urine from smokers27 and these compounds were found stable in wastewater25,30. Despite of potential 
inter-individual variations, the overall excretion rate would tend to an average value when taking into account a 
large number of people, which is the case for WWTP catchments. The stability test conducted so far has shown 
that the target chemicals remained stable in raw wastewater25,30; but future studies with the presence of biofilms 
would be useful for a further evaluation. Overall, the non-correlation observed between the two nicotine bio-
markers and tobacco-specific alkaloids suggested that the consumed nicotine over the studied populations could 
be sourced from the use of non-tobacco nicotine items in addition to tobacco products. Actually, the prevalence 
of the current use of electronic cigarettes or similar devices in Greece (3%) and Belgium (4%) was above the aver-
age prevalence of the 28 European member states (2%)37. In Switzerland, about 0.3% of the population has used 
electronic cigarettes daily38 and approximately 16% of the heavy smokers relied on non-tobacco nicotine items to 
stop smoking, with an increasing trend of electronic cigarettes as the first choice39.

Anabasine and anatabine have been reported in urine of smokers and used as specific markers for the detec-
tion of tobacco use in clinical and human biomonitoring studies (e.g27,40). Besides transferring to mainstream 
smoke, anabasine and anatabine could thermally decompose during tobacco burning40,41 and thus remain less 
available in second- and third-hand smoke. Since our data showed a ratio of these two markers (anatabine/ana-
basine, average: 2.2 ± 0.4 SD) consistent with previous clinical studies (average: 1.9 ± 0.6 SD, n = 111)27,40, as well 
as the significant correlation between their levels measured in wastewater, the detection of anabasine and anat-
abine in the samples was more likely attributed to tobacco use (i.e., first-hand smoke) in the studied populations. 
Furthermore, the ratio of anabasine to anatabine in this study was also similar to that measured in Australian 
wastewater samples25, implying a consistent observation.

There was a geographical difference in the levels of the two tobacco markers, reflecting distinctive prevalence 
of tobacco use among the studied locations. Significantly high levels of anatabine and anabasine measured in 
Athens and Geneva than Geraardsbergen and Ninove may suggest a more widespread use of tobacco in large 
cities than small towns. However, different tobacco control policies employed in the studied countries cannot be 
excluded for examining the observed geographic profile. Still, similar geographical findings where higher usages 
in large cities than small towns were also observed for other substances, such as alcohol42 and illicit drugs43,44, in 
different international studies based on wastewater analysis. Levels of anabasine and anatabine measured in the 
two small Belgian towns were very similar to those in the city of Adelaide, a large city in Australia25. This is in line 
with the latest figure from the World Health Organisation (WHO) about prevalence of tobacco use, which was 
substantially lower in Australia (15%) compared to most European countries (13–42%) in 201545.

Figure 2.  The best fit model for the relationship of (A) NNK vs. anabasine and (B) NNK vs. anatabine based on 
log-transformed population-normalised mass loads (mg/day/1000 inhabitants) in the studied populations.
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While the WHO data reported Greece (42%) as the country in Europe with the highest prevalence of tobacco 
smoking, the highest levels of anatabine and anabasine were measured in Geneva, not Athens. Yet, a very recent 
study conducted in Switzerland46 pointed out a likely underestimation of the actual prevalence of smoking in 
Switzerland since smokers tended to under- and/or mis-report their smoking habits in population-based surveys. 
The study also reported that Switzerland was ranked as the last European country regarding bans on tobacco 
advertising in public places (e.g. billboards, outdoor displays, etc.), magazines, newspapers and on the internet, 
which are considered by the WHO as one of the most effective ways to reduce tobacco consumption47. Our data 
may suggest that prevalence of tobacco use in Geneva could be higher compared to Athens, at least over the short 
period considered in our study. These findings highlight the high geographical dimension of population tobacco 
use and the utility of data comparison by means of wastewater analysis, allowing to prioritise cities and regions 
with interventions in the future.

The moderate to strong relationships (Fig. 2) between NNK and the two tobacco markers (anabasine and ana-
tabine) indicate that the detection of NNK is linked to tobacco use. Since NNK could not be measured in urine 
of cigarette smokers48, first-hand smoking could not be the major source of NNK in wastewater. Second-hand 
smoke is also unlikely the main contributor of NNK to wastewater as it lasts over only short intervals7. It appears 
impossible to exclude THS as the predominant source of NNK in wastewater because of its environmental ubiq-
uity and pervasiveness from tobacco smoking6–8,10–12. There are numerous routes for THS to be dispersed in the 
environment. For instance, recent studies have shown that despite smoking outside, hospitalised smokers and 
visitors re-entering a hospital facility caused indoor THS contamination of nicotine and NNK through their arti-
cles (e.g., clothes, hands and hair of both smokers and non-smokers) being contaminated with tobacco smoke13,49. 
This phenomenon was also reported in other settings, such as households, hotels, cars, casinos, etc.7,15. As THS 
can be readily dispersed and transported from outdoors to indoors, these previous studies generally suggest that 
exposure to tobacco alkaloids and carcinogens in the environment cannot be easily avoided, even with policies 
of banning indoor smoking. Obviously, higher levels of these compounds, particularly nicotine and NNK, can be 
reasonably expected in places where indoor tobacco smoking is widespread and/or where the policy of banning 
indoor smoking is not being strictly enforced. In such environments, THS will be much more prevalent and the 
measurement of NNK could be used as an indication of population-wide external exposure. Our data clearly 
reflects this phenomenon, with elevated levels of NNK and nicotine biomarkers observed in Athens, where the 
policy of prohibiting indoor smoking (e.g., cigarettes, cigars, electronic cigarettes, etc.) in public places (e.g., 
transports, offices/workplaces, universities, restaurants, café, pubs, etc.) is not strictly enforced, while this is not 
the case for the other studied locations28,29. This may pose higher health hazards to the Athenian population 
from being exposed to tobacco carcinogens indoors. Our finding agrees with the latest public health report of 
the European Commission in 2017 documented the assessment of exposure to tobacco smoke in public places37. 
Greece was reported as a stand out country where 87% and 78% of the respondents who encountered indoor 
smokers in bars and restaurants, respectively, in the last six months37. Our data highlight the potential of waste-
water analysis to indirectly monitor environmental contamination of NNK from THS at the population level, 
as a complimentary tool to the existing methods, and also to evaluate the effectiveness of law enforcement and 
intervention strategies.

Being carcinogenic, it is highly compelling to assess NNK levels in wastewater over time for a continuous 
evaluation of potential health hazards to populations in relation to tobacco smoking. For such assessments, NNK 
concentrations could be directly measured in wastewater or estimated using the developed model (Fig. 2) with 
previous wastewater data where the ratio of anabasine to anatabine is consistent with results from urine analysis 
in clinical studies. This would allow to obtain an estimate of NNK levels based on concentrations of tobacco 
markers measured in wastewater for a preliminary indication of the extent of population-wide levels of carcino-
gens linked to THS. Beyond the fact that these chemicals have been measured in other studies, this also offers an 
analytical advantage since anabasine and anatabine are in substantially higher concentrations compared to NNK, 
and thus their determination is less challenging.

As with every monitoring approach, there are a few potential uncertainties which need to be taken into 
account when interpreting the results. First, chemical leaching from littered cigarette butts in surface runoff 
waters might lead to the occurrence and high level of tobacco-related chemicals (e.g. NNK) in wastewater during 
precipitation events (i.e. high wastewater flow). However, this is considered very limited due to an absence of 
positive correlations between concentrations of NNK and wastewater flows in the studied locations. This further 
implied that the key sources of NNK in wastewater were unlikely from environmental runoff waters and precipi-
tations outdoor, but rather THS contamination (e.g. in textiles, indoor settings and human body being exposed to 
tobacco smoke) in the populations. Daily activities, for example laundries, indoor cleaning and washing of hands 
and hair, likely lead to the contribution of THS-related chemicals (e.g. NNK) measured in wastewater. Our data 
on the significant association of the levels between NNK and the tobacco markers reinforced that the presence 
of NNK in wastewater was highly likely due to events of tobacco smoking by humans. Second, the obtained data 
spans over a period of about one week and thus may not be representative of levels measured in other periods of 
the year, since seasonal variations in tobacco smoking could occur, as it is the case for illicit drugs50,51. Therefore, 
sampling over prolonged periods, as well as the inclusion of additional locations will certainly provide further 
insights into the spatio-temporal patterns of exposure to tobacco-related toxicants and carcinogens in future 
studies. Lastly, back-estimation of tobacco use based on its specific markers, anabasine and anatabine, remains 
difficult due to the lack of human pharmacokinetic data on these compounds. Only one study has reported the 
urinary excretion of anabasine (about 28%) based on a single subject52. The availability of human pharmacoki-
netic studies will allow the specific back-estimation of tobacco consumption at the population level, similar to the 
practice for illicit drugs44,53. These consumption data could also assist in estimating tobacco black markets in a 
country. Nevertheless, the lack of pharmacokinetic data does not prevent the use of mass loads of target chemicals 
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from detecting temporal and geographical changes, which will still reflect both tobacco use and exposure to its 
related carcinogens in the investigated populations over space and time.

In conclusion, our work provides the first exploratory study, based on wastewater analysis, to assess the occur-
rence and relationship between tobacco-related toxicants and carcinogens in four European cities. Specifically, 
taking into account our findings, the following conclusions could be drawn:

	(a)	 Being frequently detected in the samples, the target (bio)markers and carcinogen were ubiquitous in waste-
water from the studied populations.

	(b)	 Besides tobacco products, consumption of and exposure to non-tobacco nicotine items in the populations 
led to the occurrence of cotinine and trans-3′-hydroxycotinine in wastewater. This result could be further 
evaluated by including countries with high consumption of non-tobacco nicotine items, such as snuss in 
Nordic countries, in future studies.

	(c)	 Geographic profiles of anabasine and anatabine indicated a higher level of tobacco markers in Geneva and 
Athens compared to Geraardsbergen and Ninove, exhibiting distinctive patterns of tobacco use across the 
studied locations.

	(d)	 Environmental THS contributed to the detection of NNK in the wastewater samples. This underlined 
potential health risks for the populations. Athens (Greece), the only location in this study where indoor 
smoking is not strictly prohibited and thus widespread, showed the highest level of NNK and nicotine 
biomarkers, in agreement with their occurrence at high levels in THS10,11,13. These findings highlight the 
need for intervention policies aiming at reducing exposure to THS in the population. Future long-term 
wastewater monitoring campaigns, conducted before and after possible introduction of new policies on 
restricting indoor smoking in Athens, will be of importance to evaluate its efficacy over time.

Overall, wastewater analysis is a useful tool to monitor population-wide nicotine and tobacco use. Notably, it 
facilitates an initial examination of external exposure to tobacco carcinogens through THS at the population level. 
Considering that THS is a dimension of emerging concerns, wastewater analysis provides both a new perspective 
from which to evaluate the extent of the problem as well as an additional and relevant source of information about 
a newly recognised threat to human health.

Methods
Caution: Adequate safety precautions should be taken as NNK is a Group I carcinogen classified by IARC.

Wastewater sampling.  Raw wastewater samples (24-hour composite; 9AM-9AM) were collected at the 
influent stream of the WWTPs from Athens (Greece), Geneva (Switzerland) and Geraardsbergen and Ninove 
(Belgium). Each studied municipality has only one WWTP. The study period was over approximately one week: 
23–30 January 2017 in Athens, 6–11 February 2017 in Geneva, 11–18 March 2015 in Geraardsbergen, 25 March-1 
April 2014 in Ninove. No particular events occurred in the studied catchments over the monitoring period, and 
thus no substantial changes in population sizes are expected. The sewer catchment of the selected WWTP cov-
ered about 3,700,000 persons in Athens, 600,000 persons in Geneva, 29,100 persons in Geraardsbergen, 36,200 
persons in Ninove. Sampling over 24 hours was conducted under refrigeration using flow-proportional mode in 
Athens, volume-proportional mode in Geneva and time-proportional mode (every 10 min) in Geraardsbergen 
and Ninove. These sampling methods have been previously used to assess illicit drug use in the respective 
populations54. An aliquot (1 L) of composite samples was transferred to polypropylene bottles prewashed 
with ultrapure water and methanol, and immediately frozen at −20 °C until analysis. For Geraardsbergen and 
Ninove, the samples have been archived in small aliquots (100 mL), frozen at −20 °C, and without extensive 
freeze-and-thaw cycles to minimise issues with stability. While the target chemicals were found stable in raw 
wastewater at 4 °C and even 20 °C over 24 h30, future studies regarding the chemical stability at −20 °C and over 
long-term storage should be carried out. Nevertheless, based on our previous finding30, the target compounds can 
be assumed to remain stable during the storage at −20 °C. Furthermore, the fact that consistent chemical ratios 
(trans-3′-hydroxycotinine/cotinine and anatabine/anabasine) in wastewater and in clinical urinary analysis fur-
ther supports that the investigated chemicals are stable during long-term storage.

Chemical analysis.  Target chemicals in the samples were analysed using a previously validated analytical 
assay30. Briefly, for the analysis of anabasine, anatabine and NNK, solid-phase extraction with Oasis® MCX car-
tridges (60 mg, 3 cc) was applied as a clean-up step and also pre-concentration (a factor of 1000) of the target 
chemicals from the samples (100 mL) treated with enzymatic deconjugation. As high in concentrations, coti-
nine and trans-3′-hydroxycotinine in the samples were analysed by direct injection (i.e., no sample extraction 
required). Samples and final extracts were injected (2 µL) and analysed using liquid chromatography (1290 
Infinity, Agilent, California, USA) coupled to tandem mass spectrometry (AB-SCIEX Q-TRAP®5500, Ontario, 
Canada). Separation of the target analytes was performed using a Waters® Atlantis T3 column (150 × 2 mm, 3 
μm, Waters, Zellik, Belgium) with the mobile phase of (A) ultrapure water and (b) methanol, each consisted 
of 0.1% formic acid and 5 mM ammonium formate. Method quantification limits were estimated based on a 
signal-to-noise ratio of 10 in wastewater samples: 120 ng/L for cotinine, 37 ng/L for trans-3′-hydroxycotinine, 
3.5 ng/L for anabasine, 9.0 ng/L for anatabine, and 1.5 ng/L for NNK. Together with a six-point calibration curve 
(0.5–100 ng/mL), concentrations of the target chemicals in the samples and extracts were quantified through the 
isotope dilution approach. This used the corresponding mass-labelled chemical to correct the analyte concentra-
tion with the extraction recovery of the analyte and matrix effect during instrumental analysis. Blank samples of 
pure water and samples spiked with native standards of the corresponding analyte were included in the extraction 
batches as the quality assurance and control to ensure appropriate analytical processes. No contaminations were 
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detected in the blank samples. The average matrix-spike recovery (relative standard deviation, in 3 different days) 
was 101% (2.0%) for cotinine, 90% (4.5%) for trans-3′-hydroxycotinine, 91.4% (1.0%) for anabasine, 99.0% (3.3%) 
for anatabine, 104% (5.2%) for NNK.

Data processing and analysis.  Population-normalised mass loads (mg/day/1000 people) of the target 
chemicals were necessary to compare data among locations. This was obtained through two main steps: (a) mul-
tiplying the measured concentration with the daily wastewater volume to obtain daily mass loads (mg/day) and 
then (b) normalised it to the catchment population size. The calculation was computed using Monte Carlo simu-
lations considering the uncertainty (standard error %) associated with chemical analysis (10%), sampling (10%), 
flow measurement (20%) and population (15%), as following the practice discussed in the field of wastewater 
analysis55–58. Normal distribution (mean, square of standard error) was set for these uncertainty components in 
the stimulation. Correlations between chemicals were tested with Spearmen rank analysis. Mann-Whitney test 
was used to assess the significant difference in chemical levels between locations as well as between weekdays 
and weekends. Generalised linear models were used to predict NNK levels from measured concentrations of 
anatabine and anabasine. Prior to modelling, data was log-transformed to accommodate for lack of normal-
ity and heteroscedasticity. Different functions were tested, in particular polynomials functions (degree 1 to 10) 
as well as square root polynomials. The performance of the tested models was assessed using leave-one-out 
cross-validation. The best model was selected based on the smallest MSE. Monte Carlo simulations, statistical 
tests and generalised linear models were computed using R software.

Availability of Materials and Data
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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