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Background
Parkinson’s disease (PD) is a key chronic, progressive neurological disorder. It often 
occurs in older people and impacts motor as well as non-motor activities of the patients 
[1]. People with PD (PwP) at mid- and advanced stages of the disease experience motor 
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complications such as troubling motor fluctuations [2]. Motor fluctuations are expe-
rienced as levodopa, the main PD medication, wears off between doses, and the PD 
symptoms reappear [3]. At this stage of the disease, an iterative therapeutic adjust-
ment is needed to manage the motor fluctuations through multiple clinical visits. As 
part of these visits, part III of the Unified Parkinson Disease Rating Scale (UPDRS III) 
is assessed by a neurologist to measure the severity of PD motor complications such as 
tremor and bradykinesia (i.e., slowness of voluntary movements) [4]. UPDRS-III score, 
besides history-taking and subject reports, is the main contributing factor to a success-
ful therapeutic adjustment. Wearable inertial sensors have the potential to capture com-
plex body movements related to PD symptoms, thus, they can be used to assess UPDRS 
III. The significance of continuous at-home assessment of UPDRS III is providing a tool 
for longitudinal monitoring of daily motor fluctuations [5] and managing PD medica-
tions [6]. It will limit the need for in-person clinical examinations of PwP and reduce 
exposure to risk of infection from infectious agents such as COVID-19 [7].

To assess UPDRS III, PwP are required to perform several tasks, such as sitting at rest, 
finger and toe-tapping, hand movement, gait, and arising from a chair. A home-based 
system for continuous and unobtrusive PD severity assessment using wearable sensors 
has to score UPDRS III without requiring the patients’ active engagement. However, 
we cannot achieve such a system without addressing two main limitations in the exist-
ing work. First, work in this area has been mostly focused on estimating the severity of 
each of the PD symptoms separately, instead of the total UPDRS-III score. For exam-
ple, Griffiths et  al. [8] and Sama et  al. [9] estimate bradykinesia severity and then use 
the estimated value as the UPDRS-III score. Similarly, Pan et al. [10] and Dia et al. [11] 
estimate tremor severity instead of UPDRS III directly. Pulliam and colleagues estimate 
tremor [12] and bradykinesia subscore [13]. Second, existing methods to estimate the 
UPDRS-III score are obtrusive as they require subjects’ active engagement to perform 
some specific tasks to elicit PD symptoms. For example, Giubert et al. [14] require sit-to-
stand task to estimate UPDRS III. Rodriguez et al. [15] and Zhao et al. [16] propose an 
algorithm to estimated UPDRS III based on gait. Parisi et al. [17] require the patients to 
perform the UPDRS-III tasks of gait, leg agility, and sit to stand. In another work [18], an 
approach is developed to estimate mobile PD score (mPDS) that measures PD severity 
using a smartphone application as subjects perform five specific tasks (gait, balance, fin-
ger tapping, reaction time, and voice). However, the work of Pissadaki et al. [19] shows 
that complex body movements during ADL mostly can be decomposed into movement 
primitives performed during the UPDRS-III clinical exams. We, therefore, hypothe-
size that effective machine-learning algorithms can estimate the UPDRS-III total score 
unobtrusively during ADL without the limitations of the current approaches.

Most of the methods in the papers mentioned above are based on hand-crafted fea-
tures and traditional machine learning. However, recent work based on deep learning 
has shown to outperform the traditional methods in assessing different aspects of PD 
disease. For example, Hammerla and colleagues show that a sequence of Restricted 
Boltzmann Machines provides a better generalization than the traditional machine-
learning methods used for PD medication state detection [20]. Zhao et al. compare the 
performance of Short-Term Memory (LSTM), Convolutional Neural Network (CNN), 
and dual-channel deep model with traditional methods and show a high performance 
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using the LSTM networks for PD severity estimation [16]. Artificial Neural Network has 
been shown to outperform the traditional methods for classifying PD severity [21] or 
estimating UPDRS III [22]. In a recent work, we also show that LSTM provides promis-
ing results for detecting PD motor fluctuations during a variety of daily living activities 
[23]. Hence, in the present work, we take advantage of deep learning for data-driven fea-
ture extraction from raw signals and learning temporal patterns.

Our objective in this paper is to develop a novel algorithm based on deep learning to 
continuously estimate UPDRS III from the complex ADL movements collected during 
the subjects’ free body movements. Our algorithm is based on the ensemble of three 
deep models. One is an LSTM network with hand-crafted features trained using transfer 
learning with an activity recognition dataset. The other two models are based on data-
driven features from raw signals and their time–frequency representations. We also 
proposed a two-stage training method to address challenges of training deep-learning 
models with limited data. For comparison purposes, we also implemented a traditional 
model based on Gradient Tree Boosting in this paper.

Results
The developed algorithm for estimating UPDRS III is based on free movement gyro-
scope data collected from the most affected wrist and ankle using wearable sensors. We 
ensured the deep models were diverse and achieve better performance by training them 
on hand-crafted features that represent experts’ knowledge about the presentations of 
PD symptoms on body movements and data-driven features extracted from raw signals 
and their time–frequency representations. One deep-learning model was a dual-channel 
LSTM used with hand-crafted features. This proposed structure was based on our pre-
liminary work indicating that a dual-channel LSTM network outperforms a single-chan-
nel LSTM for estimating UPDRS-III score [24]. The other two models were used with 
raw signals: a 1D CNN-LSTM network for raw signals and a 2D CNN-LSTM network 
for the time–frequency representation of the raw signals. We utilized transfer learning 
for the hand-crafted LSTM network to cope with the limited amount of data and pro-
posed a novel two-stage training for the data-driven networks.

For our evaluation purposes, we used a dataset of 24 PwP as they performed a variety 
of ADL in a clinical setting. Fifteen of the subjects completed four rounds of ADL inter-
mittently with a 1-h gap for about 4 h, and the other nine subjects performed ADL con-
tinuously for about 2 h. UPDRS III was performed before each round for the 15 subjects 
and at the beginning and end of the other subjects’ experiments. First, we evaluated the 
performance of each deep-learning model for estimating UPDRS III separately. We also 
compared their performance against traditional machine learning based on Gradient 
Tree Boosting. Next, we evaluated the performance of the ensemble of different combi-
nations of deep-learning models.

The proposed models generated a UPDRS-III score for each round of ADL that was 
about 4 min for 15 subjects and 10 min for the other nine subjects. For the ensemble 
algorithm, the estimated UPDRS-III scores using the individual models were averaged. 
All the training and testing steps were performed in subject-based, leave-one-out cross-
validation (LOOCV). In each of the 24 cross-validation iterations, the data of one sub-
ject were used for testing, and the data of the other subjects were used for training. In 
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addition, an inner split was applied to the training data to select a random 20% for vali-
dation. Pearson correlation ( ρ ) and Mean Absolute Error (MAE) were used to evaluate 
the developed network. A high correlation ρ and low MAE indicate a close estimation of 
UPDRS III when compared to the gold-standard scores.

Table  1 reports the performance of each of the individual deep models in compari-
son with Gradient Tree Boosting and the performance of the ensemble of two or three 
deep models. Among the single models, CNN-LSTM using raw signals had the high-
est ρ of 0.70 (p < 0.001) . Gradient Tree Boosting resulted in the least ρ and MAE per-
formance. Note that transfer learning improved the performance of the model with the 
hand-crafted features from ρ of 0.62 to 0.67 and MAE of 7.50–6.85. Ensemble of the 
two deep-learning models improved the single models’ performance by increasing ρ and 
reducing MAE. The best performance was achieved by the ensemble of the three deep 
models with ρ = 0.79 (p < 0.001) and MAE = 5.95.

The estimated total UPDRS-III scores using the three deep models’ ensemble vs. the 
gold-standard total UPDRS-III scores is shown in Fig. 1. Figure 2 shows the ensemble 
model estimations of UPDRS III over time vs. the gold-standard UPDRS III for four PwP. 
The examples shown in A and B are from PwP with steady improvement in PD symp-
toms after medication intake. The two examples in C and D are for PwP who experi-
enced reappearance of their symptoms before their next medication intake (i.e., motor 
fluctuations). In all the cases, the algorithm follows the change in UPDRS III with a good 
correlation. Additional file 1: Figure S1 and S2 show the ensemble model estimations of 
UPDRS III over time vs. the gold-standard UPDRS-III scores for all the 24 PwP.

As shown in Fig. 3a, a reduction in the gold-standard UPDRS-III score is expected up 
to 1 h after the medication intake. We investigated whether the estimated scores from 
the ensemble model show similar behavior in the UPDRS III scores as the medication 
kicks in. The results are shown in Fig. 3b. Both the gold-standard and estimated UPDRS-
III scores indicate a significant difference after patients take their PD medications as 

Table 1  The LOOCV testing correlation ( ρ ) and MAE of the proposed deep models and Gradient 
Tree Boosting are reported for single models and the ensemble of two or three models of the deep 
models

The correlation was significant for all models (i.e., p < 0.001)

Method ρ MAE

Single Gradient Tree Boosting 0.61 7.85

Dual-channel LSTM, hand-crafted features 0.62 7.50

Dual-channel LSTM, hand-crafted features, with transfer learning 0.67 6.85
1D CNN-LSTM for raw signals 0.70 6.93

2D CNN-LSTM for time–frequency data 0.67 7.11

Ensemble Dual-channel LSTM, hand-crafted features, with transfer learning
1D CNN-LSTM for raw signals

0.77 6.04

Dual-channel LSTM, hand-crafted features, with transfer learning
2D CNN-LSTM for time–frequency data

0.76 5.99

1D CNN-LSTM for raw signals
2D CNN-LSTM for time–frequency data

0.74 6.54

Dual-channel LSTM, hand-crafted features, with transfer learning
1D CNN-LSTM for raw signals
2D CNN-LSTM for time–frequency data

0.79 5.95
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Fig. 1  The estimated total UPDRS-III scores using the ensemble of the three deep models vs. the 
gold-standard total UPDRS-III scores
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Fig. 2  The ensemble model estimations of UPDRS III over time vs. the gold-standard UPDRS III for four PwP. a 
and b PwP who experienced an improvement in their PD symptoms. c A patient who experienced the return 
of PD symptoms before taking the next dose of medication. d A similar behavior; however, it also shows a 
reduction in the symptoms after receiving the second dose. Note that the data used for UPDRS-III estimation 
were from either before or after the UPDRS-III assessment. As a result, the estimated and gold-standard 
time points do not coincide. Patient A performed only two UPDRS III assessment. The red arrow indicates 
medication intake
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confirmed by a paired t-test with p < 0.001 . In addition, Additional file  1: Figure S3 
shows the box-plots of the total UPDRS-III scores from the single models before and 
1 h after taking the PD medications. The estimated UPDRS-III scores from all models 
indicate a significant difference after patients take their PD medications as confirmed by 
a paired t-test with p < 0.01.

Discussions
Unobtrusive estimation of UPDRS III

We hypothesized that advanced machine-learning algorithms could estimate UPDRS III 
from patients’ free body movements as collected using two wearable sensors placed on 
the upper and lower extremities. Our analysis indicated such a possibility with a high 
correlation of ρ = 0.79 (p < 0.001) and low MAE = 5.95 when using an ensemble of 
three deep-learning models. Most of the existing work for UPDRS III estimation requires 
PwP’s active engagement to perform the specific tasks used in the UPDRS-III procedure 
[15, 17, 18, 25]. Unlike these approaches, our algorithm could estimate UPDRS III as the 
patients performed a variety of ADL without the need for performing constrained tasks. 
As a result, our system has the potential to be translated into unobtrusive home-based 
monitoring for continuous assessments of UPDRS III. It can track changes in motor 
fluctuations due to the medication wearing-off effect, as shown in Fig. 2, and tracking 
the response to medication, as shown in Fig. 3.

Another interesting observation from our analysis is our algorithm’s ability to estimate 
UPDRS III scores despite the following challenges. First, the UPDRS-III score is meas-
ured by assessing the face/head, neck and all four extremities, but our system is based on 
only two sensors placed on the wrist and ankle of the most affected side of the body. Sec-
ond, total UPDRS III includes items representing symptoms measures such as rigidity, 
speech, and facial expression that cannot be captured by wearable motion sensors. How-
ever, our ensemble model captured the dependencies between these items [26, 27] and 
achieved a high correlation. However, these challenges impacted the estimation MAE, 
and thus our model was only comparable to the minimal clinically important difference 
in UPDRS III.
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Fig. 3  The total UPDRS-III scores before and 1 h after taking the PD medications from gold-standard 
measurements (a) and the ensemble model estimations (b). Both the gold-standard and estimated UPDRS-III 
scores show a significant drop after PD medication intake (p < 0.001)
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Comparison to related work

A review of the methods proposed for estimating the severity of PD is shown in 
Table  2. Comparing our algorithm to task-dependent approaches (i.e., obtrusive 
methods) [15, 17, 18, 25] indicates that our method provides comparable perfor-
mance with the advantage of not constraining PwP’s activities. For example, it has 
a better correlation than Ref. [15] with -0.56, equal or slightly lower than Refs. [17, 
25] and lower than Ref. [18] with 0.88. However, it is worth mentioning that the work 
in Ref. [18] is based on performing a series of tasks using a smartphone application, 
while ours is solely based on movement data patterns.

Comparing our algorithm to unobtrusive methods [8, 13, 28] shows that our model 
outperforms Ref. [8] with 0.64 even though they only estimated bradykinesia. Our 
algorithm performs slightly lower than Refs. [13, 28]. Our careful analysis of the work 
in Ref. [13] indicates that the results reported by Pulliam et al. [13] were not based 
on LOOCV. The authors instead developed multiple linear regression models to esti-
mate tremor, bradykinesia, and dyskinesia, and then designed a radar chart reporting 
the severity and duration of these symptoms. The correlation between the radar chart 
area and UPDRS III was 0.81 when the models fit all the data. The authors did not 
report their algorithm’s performance on a held-out set or in a cross-validation fash-
ion; thus, their model’s generalizability is not comparable to ours. Another limitation 
of Pulliam’s work et  al. [13] is the challenge involved with interpreting the range of 
the estimated area to the clinically meaningful range used for the UPDRS III as their 
estimated range is different from the clinically meaningful range of the UPDRS III. 
Other limitations are that they included dyskinesia severity for estimating UPDRS III. 
However, dyskinesia is a side effect of taking levodopa and not a PD symptom and is 
not included in the UPDRS-III assessments. Abrami et  al. [28] developed an unsu-
pervised algorithm based on clustering and Markov-Chain. They applied a multi-
dimensional scaling algorithm to estimate each subject’s daily UPDRS-III score as the 
sum of tremor, bradykinesia, and gait items for each day. They reported a high ρ2 of 
0.64 in clinic, but a significantly lower ρ2 of about 0.43 at home. Our algorithm per-
formed better ( ρ2 = 0.58) than their method at home ( ρ2 = 0.43) but slightly lower 
in clinic ( ρ2 = 0.64). However, their estimation does not include UPDRS-III items 
such as rigidity, voice, and facial expressions. Their method also performed better 
when patients performed more tasks, which was the case in the clinic, where they 
performed more than nine scripted tasks. At home, people performed fewer tasks in 
a short time, which could be the reason for the lower performance at home. In addi-
tion, there is no information about the ability of their method for hourly estimation of 
UPDRS III.

The advantage of deep learning

The dual-channel LSTM developed in our preliminary work [24] provides only slightly 
higher performance than Gradient Tree Boosting with a 0.62 correlation vs. 0.61. 
However, transfer learning from the activity recognition dataset improves perfor-
mance by providing a 10% higher correlation and 13% lower MAE when compared to 
Gradient Tree Boosting. This behavior indicates that temporal dependencies captured 
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by the first two LSTM layers using hand-crafted features extracted from healthy sub-
jects are beneficial to UPDRS-III estimation.

Another observation is that both the 1D and 2D CNN-LSTM networks outperform 
Gradient Tree with 0.70 and 0.67 correlation, respectively with greater than 10% increase 
in correlation, and 6.93 and 7.11 MAE, respectively, with a decrease of greater than 9% in 
MAE. These networks achieve comparable performance to the dual-channel LSTM with 
hand-crafted features, which means CNN could extract relevant data-driven features.

Table 2  Proposed methods in the literature for estimating the severity of PD represented by UPDRS III

Reference PwP Sensors
location

Method Unobtrusive Estimated
metric

Gold-
standard
label

Validation
Method

r MAE

Griffiths et al.  
[8]

25 Wrist Statistical 
approach

Yes Bradykin‑
esia

score

UPDRS III Held-out
testing set

0.64 18

Parisi et al.  
[17]

34 Chest, 
left and 
right 
thighs

Multiple 
k-Nearest

Neighbors 
models to 
estimate 
LA, S2S

and G.

No
(task-depend‑

ent)

Sum of leg
agility, sit-

to- stand 
and gait 
items of 
UPDRS III

Sum of leg 
agility, 
sit-to- 
stand 
and gait 
items of 
UPDRS 
III

LOOCV 0.79 -

Rodriguez-
Molinero 
et al.

 [15]

75 Waist Linear regres‑
sion

No
(task-depend‑

ent)

Gait item of
UPDRS III

UPDRS III Held-out
testing set

-0.56 -

Pulliam et al.  
[13]

13 Wrist and 
ankle

Multiple 
linear 
regression 
models to 
estimate 
tremor, 
bradykin‑
esia and 
dyskinesia

Yes Radar chart
of PD 

tremor,
bradykin‑

esia and
dyskinesia

UPDRS III - 0.81 -

Zhan et al. 
[18]

152 Smart‑
phone

Rank-based 
framework 
for disease 
severity 
score [30]

No
(task-depend‑

ent)

Mobile PD 
score

UPDRS III Held-out
testing set

0.88 -

Abrami et al.  
[28]

60 Both wrists Cluster‑
ing and 
Markov-
Chain

Yes Multi-
dimen‑
sional 
scale

Sum of 
tremor, 
brad‑
ykinesia 
and gait 
items of 
UPDRS 
III

Held-out 
testing 
set

r2 = 0.64
in clinic
r2 = 0.43
at home

Butt et al.  
[25]

64 Wrist, 
fingers, 
and 
foot

Adaptive 
neuro- 
fuzzy 
inference 
system

No
(task-depend‑

ent)

UPDRS III UPDRS III Tenfold
cross
validation

0.81 -

The devel‑
oped 
approach 
in this 
study

24 Wrist and 
ankle

Ensemble of 
dual- Chan‑
nel LSTM, 
CNN-LSTM 
using raw 
signals and 
CNN-LSTM 
using spec‑
trogram

Yes UPDRS III UPDRS III LOOCV 0.79 5.95
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We also observe that the ensemble of the models based on hand-crafted and data-
driven features improves the performance. The ensemble of multiple models is known to 
improve the regression results if the models solve different aspects of the given problem 
[29]. Hence, we can conclude that the trained deep models are diverse and learn dif-
ferent views of the motion signals (i.e., hand-crafted features, data-driven features from 
raw signals and from the time–frequency data), and therefore, are necessary for success-
ful UPDRS-III estimation.

Limitations and future work

Our algorithm provides overall high performance for UPDRS-III estimation using 
patients’ free body movement data. However, we notice that the model underestimates 
high UPDRS-scores, as shown in Fig. 1. This is because of the imbalanced data distribu-
tion as there are only nine rounds of ADL with the UPDRS III score of higher than 40, 
and only one is above 50 (see Fig. 4b). Parisi et al. [17] reported a similar limitation due 
to the imbalance distribution of their training data toward the mean score of UPDRS 
III. Collecting more data in a home setting with a uniform data distribution is expected 
to improve our algorithm’s performance further and consists of the main aspect of our 
future work.

Conclusions
We developed a novel algorithm to provide a continuous and unobtrusive estimation of 
the UPDRS-III score using free-body motion data recorded from two wearable sensors. 
The novelty aspect our proposed approach is combining both expert knowledge in the 
field by extracting hand-crafted features with data-driven knowledge using deep learn-
ing to extract features from raw temporal and time–frequency signals. To the best of 
our knowledge, we proposed the first ensemble algorithm based on three deep models 
to provide a continuous and unobtrusive estimation of the UPDRS-III score using free-
body motion data recorded from two wearable sensors. In addition, we utilized trans-
fer learning from an activity recognition dataset for the model using the hand-crafted 
features and a two-stage training for the models dealing with the raw data. The models 
were evaluated and compared using the sensor data of 24 PD subjects. Subject-based, 
LOOCV demonstrated that the three deep models’ ensemble provided a high correla-
tion of ρ = 0.79 (p < 0.0001) and a low MAE of 5.95, indicating that each model learns 
different aspects of the PD motor complications from the movement data. We compared 
our algorithm with the existing work in the literature and discussed the different advan-
tages of our developed algorithm as providing relatively high performance while provid-
ing an unobtrusive estimation of UPDRS III from ADL; direct estimation of UPDRS III 
instead of estimating the symptoms such as tremor or bradykinesia and then deliver-
ing it as the estimated of the UPDRS III; estimation of total UPDRS III without remov-
ing any of the items such as rigidity or facial expression; and estimation of the clinically 
known range of UPDRS III instead of providing a new metric, which requires interpre-
tation. Our future work includes evaluation of more training data collected from an at-
home setting to further increase the performance of our algorithm.
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Methods
In this section, we first describe the PD dataset [13, 31] that was used for evaluating the 
developed models. We also provide a brief description of the Physical Activity Moni-
toring Dataset (PAMAP2) [32] that was used for transfer learning of the deep model 
with hand-crafted features. Next, we describe signal segmentation and extraction of the 
hand-crafted features. Finally, we describe the proposed deep models.

Datasets

Collection of PD Data

A protocol was designed to record motion data of 24 PwP with idiopathic PD as they 
performed a variety of ADL [13, 31]. A summary of patient characteristics is shown in 
Table 3. The age average was 58.9 years, and the age range was between 42 and 77 years. 
Fourteen of the PWP were female and ten were male. The average of the disease duration 
was 9.9 years, and the range was between 4 and 17 years. The UPDRS-III average was 
29.7 before taking PD medications and 17.3 1 h after taking PD medications. The insti-
tutional review board approved the study, and all patients provided written informed 
consent.

Two wearable sensors (Great Lakes NeuroTechnologies Inc., Cleveland, OH) con-
sisting of triaxial gyroscope and accelerometer were mounted on the most affected 
wrist and ankle to collect the motion data at a sampling rate of 64 Hz. The participants 
stopped their PD medication the night before the experiment and started the experi-
ments in their medication OFF states. Fifteen of the subjects performed various ADL in 
four rounds spanned for 4 h. The ADL were cutting food, unpacking groceries, groom-
ing, resting, drinking, walking, and dressing. The time of each activity trial ranges 
between 15 and 60 s, and each round was about 2–4 min. The subjects were asked to 
perform the ADL at self-pace, and no training was provided. After the first round, the 
subjects resumed their routine PD medications. 20 trials of activities were missing due 
to unsuccessful data collection. In addition, two subjects performed three rounds since 
they started the experiment in their medication ON states. The total duration of each 
round for all the 15 subjects is shown in Fig. 4a.

The other nine subjects cycled through multiple stations (such as laundry room, enter-
tainment station, snack, and desk work) in a home-like setting while engaging in uncon-
strained activities. Next, the subjects resumed their routine PD medications. Later, when 
the medicine kicked in (as confirmed by a neurologist), the subjects repeated the same 
ADL or cycled through the stations in their medication ON states. For these nine sub-
jects, the recording was continuous for about 2 h. Later, rounds of 10 min were seg-
mented close to UPDRS-III assessments as shown in Fig. 4a.

Table 3  Subject demographics. LEDD stands for Levodopa Equivalent Daily Dose. Values are 
presented as number or mean ± standard deviation

Number of subjects 24 UPDRS III before medication 29.7±12.3

Age (y) 58.9±9.3 UPDRS III after medication 17.3±8.4

Sex (M, F) 14,10 LEDD (mg) 1251±468

Disease duration (y) 9.9±3.7
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Concurrently, the clinical examinations were performed by a neurologist to measure 
and record the subjects’ UPDRS-III scores. Four rounds of UPDRS-III assessment were 
performed for 15 subjects at the beginning of every hour of the experiment. Two rounds 
of UPDRS-III assessment were performed at the beginning and end of the experiment 
for the other nine participants. In each assessment, 27 signs of PD were scored on a 0–4 
scale for different body parts and both sides; thus, the range of UPDRS III was 0–108, 
the sum of scores from the 27 signs.

Physical activity monitoring dataset

PAMAP2 is a public dataset of motion signals recorded using two wearable sensors while 
nine healthy subjects performed various ADL. The subjects were 27.22 ± 3.31 years old, 
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with eight males and one female. The wearable sensors contained triaxial gyroscopes 
and accelerometers with a 100 Hz sampling rate and were mounted on the dominant 
side’s arm and ankle. The recorded ADL included 12 protocol activities such as lying, sit-
ting, standing, walking, watching TV, and working on a computer. We used this dataset 
for transfer learning of the deep-learning models. The reason for selecting this dataset 
was the availability of the gyroscope signals and the similarity in the sensor placement 
locations with our PD dataset.

Data preprocessing

For both datasets, we used only angular velocity signals generated from the gyroscopes. 
We found experimentally that the gyroscope sensor performs better than accelerometer 
sensors in estimating UPDRS III, which is in agreement with the finding of Dia et al. [11]. 
In addition, using one sensor type decreased the computation power and time required 
to train and test the models because of the reduction in data dimensionality. The energy 
consumption of gyroscopes is higher than that of accelerometers, which can constrain 
the long-term recording [33]. However, the availability of devices with long battery life 
can avoid this issue. The collected signals were filtered to eliminate low and high-fre-
quency noises using a bandpass FIR filter with a 3 dB cutoff frequency (0.5–15 Hz).

For the PD dataset, we excluded the data recorded during the UPDRS-III examina-
tion from our analysis to ensure that the developed model will not benefit from the 
UPDRS III-specific tasks that elicit PD symptoms. Next, 2–4 rounds of data with a maxi-
mum duration of 10 min (i.e., maximum NS samples) were selected from each subject’s 
recordings. Fig. 4a demonstrates the number and duration of rounds as well as the cor-
responding UPDRS-III score for all the subjects. A total of 91 rounds ( NR ) were selected 
to form the set D = {(X (r), y(r))}

NR
r  (X (r) ∈ R

N
(r)
S ×6 , y(r) ∈ R) where X (r) denotes the 

motion time-series data in round r with N (r)
S  as the number of samples in this round, 

and y(r) denotes the UPDRS-III score for round r. The set was used to train and test 
the developed algorithm using LOOCV. The distribution of these rounds based on the 
assessed UPDRS III is shown in Fig. 4b. Similarly for PAMAP2 dataset, 1-min rounds of 
data were selected from each subject’s recordings after down-sampling the signals to 64 
Hz. Each round included one activity. A total of 455 rounds were selected to form the set 
D for PAMAP2 dataset.

Segmentation

The PD symptoms have both short- and long-term representations on the body move-
ments. Therefore, there is a need for features extracted from both short and long-term 
duration of the motion signals [34, 35]. Hence, we used 5-s windows to segment the sig-
nals for short-term features, and 1-min windows for long-term features. The segmenta-
tion process is shown in Fig. 5a.

Feature extraction

We extracted NSF = 26 short- and NLF = 32 long-term features from each segment of the 
data. First, 39 short-term features were extracted from the three (x, y, z) axes’ signals of 
the wrist and 39 from the ankle sensor (i.e., segmented X). The short-term features were 
selected to capture high-frequency symptoms such as tremor. They consisted of 4–6 Hz 
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signal power (3 features = x3), percentage power of frequencies > 4 Hz (x3), 0.5–15 Hz 
signal power (x3), amplitude and lag of the first auto-correlation peak (x6), number and 
sum of auto-correlation peaks (x6), spectral entropy (x3), dominant and secondary fre-
quencies and their powers (x12), cross-correlation (x3) between x and y, x and z and y 
and z axes. The details of these features were provided in our previous work [36]. This 
step provided a total of 78 features from the three axes of the wrist and ankle sensors. 
Next, the features were averaged across the three axes to get NSF = 26. To conclude, a 
feature vector (  �fv ∈ R

NSF ) was extracted from each 5-s window and provided a set of 
DS = {(S(r), y(r))}

NR
r  (S(r) ∈ R

N
(r)
Ws×NSF , y(r) ∈ R) where S(r) = [�fv1

�fv2...
�fv
N

(r)
Ws
] , and N (r)

Ws 

was the number of 5-s windows in round r.
Similarly, 48 long-term features were extracted from the three (x, y, z) axes’ signals of the 

wrist and 48 from the ankle sensor (i.e., segmented X). The long-term features were selected 
to capture low-frequency symptoms such as bradykinesia. These features were average jerk 
(x3), velocity peak-to-peak (x3), 1–4 Hz signal power (x3), 0.5–15 Hz signal power (x3), 
Shannon entropy (x3), standard deviation (x3), number and sum of auto-correlation peaks 
(x6), Gini index (x3), sample entropy (x3), mean (x3), skewness (x3), kurtosis (x3), spectral 
entropy (x3), dominant frequency and its power [36] (x6). Next, the features were averaged 
across each axes to get NSF = 32. To conclude, a feature vector ( �fv ∈ R

NLF ) was extracted 
from each 1-min window and provided a set of DL = {(L(r), y(r))}

NR
r  (L(r) ∈ R

N
(r)
Wl×NLF , 

y(r) ∈ R) , where L(r) = [�fv1
�fv2...

�fv
N

(r)
Wl
] , and N (r)

Wl was the number of 1-min windows in 

round r.

Regression models for UPDRS‑III estimation

In our preliminary work, we explored two different architectures based on a single-chan-
nel and dual-channel LSTM of hand-crafted features and showed that the latter provides 
superior performance [24]. In this section, we first describe an extension to that model 
by applying transfer learning using PAMAP2 dataset. Next, we develop a new 1D and 2D 
CNN-LSTM models using raw motion signals and their time–frequency representations, 
respectively. The proposed ensemble model is described next. Lastly, Gradient Tree Boost-
ing is described as a traditional machine learning method for comparison purposes.

Dual‑channel LSTM network with transfer learning

LSTM is a special type of Recurrent Neural Networks to overcome the vanishing gradient 
problem when training using gradient descent with backpropagation through time. LSTM 
can efficiently learn the temporal dependencies and has been successfully used in applica-
tions involving signals with temporal memory. In this work, LSTM architecture proposed 
by [37] is used.

LSTM unit consists of input gate (i), input modulation gate (g), forget gate (f), output gate 
(o), and memory cell ( ct at time step t). Before applying the operations in these gates, cur-
rent feature vector ( �fv

(r)

t  ) at time t in round r is linearly transformed using the following 
equation:

(1)�x
(r)
t = Wfx

�fv
(r)

t + bfx
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where �x(r)t ∈ R
NH , NH is the number of hidden states and Wfx and �bfx are the weight 

matrix and bias vector, respectively. The operations in these gates are performed on �x(r)t  
using NH hidden states ( ht−1 ∈ R

NH ) and internal states ( ct−1 ∈ R
NH ) from the previous 

time step as defined below:

(2)it =σ

(

Wxi�x
(r)
t +Whiht−1 + bi

)
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where Wab is a weight matrix ( a = {x, h} and b = {i, g , f , o} ), and σ and φ are the logis-
tic sigmoid and tanh activation functions, respectively. The output ( ̂y(r) ) in many-to-one 
LSTM network is calculated based on ht of the last LSTM layer and last �x(r) in round r 
using the following linear transformation:

After segmentation and feature extraction (refer to segmentation and feature extraction 
sections), there were only one long-term feature vector for each 1-min window while 
there are 12 short-term feature vectors. Therefore, we developed a dual-channel LSTM 
network to combine the two sets of feature vectors as a strategy to appropriately handle 
the differences in the number of the short-term feature vectors ( S(r) = [�fv1

�fv2...
�fv
N

(r)
Ws
] ) 

and long-term feature vectors ( L(r) = [�fv1
�fv2...

�fv
N

(r)
Wl
] ). This method was based on build-

ing a separate LSTM channel on the short-term and long-term sets ( DS and DL , respec-
tively) and then integrating the outcome of the two channels into one UPDRS-III score 
estimation using a fully connected layer. The feature vectors in both sets were linearly 
transformed using a fully connected layer to have a depth of NH hidden states in both 
channels (Eq. 1). The transformed feature vectors �x(r) were then passed to a many-to-one 
LSTM network in both channels as shown in Fig. 5a. The hidden states ht from the last 
feature vector in both channels were then concatenated to create a fusion feature that 
was passed through a fully connected layer to estimate UPDRS III (Eq. 8).

Transfer learning: Due to the limited number of data rounds in the PD dataset used 
to train the LSTM network, we applied transfer learning to improve the LSTM per-
formance. The LSTM network’s weights to estimate UPDRS III were not randomly 
initialized; instead, they were transferred from an LSTM network trained to perform 
activity classification. Next, only the last layer of the LSTM network and the fully con-
nected layers were fine-tuned for estimating UPDRS III. PAMAP2 dataset was used to 
train the LSTM network for activity classification initially. Note that transfer learning 
could only be used in the case of the hand-crafted features. Although the sensors in PD 
and PAMAP2 were placed on the same extremity, the axes’ orientations and the place-
ment on the same extremity were different. Therefore, the learned deep model’s weights 
on PAMAP2 were not transferable to the PD dataset when the raw signals were used. 

(3)gt =φ

(

Wxg �x
(r)
t +Whght−1 + bg

)

(4)ft =σ

(

Wxf �x
(r)
t +Whf ht−1 + bf

)

(5)ot =σ

(

Wxo�x
(r)
t +Whoht−1 + b0

)

(6)ct =ft ct−1 + itgt

(7)ht =otφ(ct)

(8)ŷ(r) = Whyht + by
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However, extracting features and averaging them across axes eliminated the effect of 
having different sensors’ orientation in the PAMAP2 dataset and PD dataset.

1D CNN‑LSTM network

We used CNN as a data-driven feature extraction method to explore raw signals. We 
fed the feature maps of CNN into an LSTM network to model the feature maps’ tem-
poral dependencies and estimate UPDRS III. Our proposed 1D CNN-LSTM is shown 
in Fig.  5b. It consisted of three convolutional blocks. The first block consisted of two 
convolutional layers with 32 filters with a width of 8, followed by a max-pooling layer. 
The second block had the same structure but deeper with 64 filters. The third block had 
one convolutional filter and a global average pooling layer representing the bottleneck 
to extract short-term, data-driven features. These features were feed to a many-to-one 
LSTM network followed by two fully connected layers (96 nodes and one output node) 
to estimate UPDRS III. Increasing the number of convolutional layers was done by 
repeating Conv Block-2 multiple times.

Training a good-performing CNN-LSTM model on a relatively limited number of 
training rounds could be challenging. We applied data augmentation by allowing for a 
random start for each round of ADL and a 0.5-dropout layer to overcome this challenge. 
Besides, we proposed a novel two-stage training. In the first stage, a CNN network with 
a fully connected layer was trained on 5-s windows to estimate UPDRS III while extract-
ing short-term features. The best CNN’s weights selected based on validation data were 
saved. In the second stage, the fully connected layer of the pre-trained CNN was dis-
carded since they are not extracting new features. Next, the extracted features using the 
CNN model (i.e., from the global averaging layer) were fed to the LSTM network to esti-
mate UPDRS III for each ADL round.

2D CNN‑LSTM network

Many PD symptoms have spectral features such as tremor that manifest in 4–6 Hz and 
bradykinesia in low frequencies. Therefore, the CNN network can learn new temporal 
and spectral features if trained on the time–frequency representations of the raw signals. 
For this purpose, we generated spectrograms by applying a short-time Fourier transform 
on the 1-min windows and then taking the magnitude. We used a 5-s Kaiser window 
with 90% overlaps. The spectrograms of the windows from each axes were stacked to 
construct a time × frequency × axes tensor and were fed to a 2D CNN-LSTM network 
as shown in Fig. 5c. The 2D CNN-LSTM consisted of three convolutional blocks. The 
first block was two convolutional layers with 32 filters of width five by five, followed by a 
max-pooling layer. The rest of the architecture of the 2D CNN-LSTM was similar to 1D 
CNN-LSTM described before except for using filters of size 5 × 5. In addition, the same 
two-stage training strategy described before was used to address the limiting training 
data.

The Ensemble Model

We explored the accuracy of UPDRS III estimation by considering the ensemble of the 
three models we developed. As shown in Fig. 5d, the ensemble of the previous models 
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was performed by averaging the UPDRS-III scores from each model to get one estima-
tion for each round of ADL.

Gradient Tree Boosting

Gradient Tree Boosting is a traditional machine-learning method used in practice for 
solving regression problems [38]. It is based on ensemble of Nt weak regression trees 
( {fi}Nt

i=1
 ) to estimate the output ŷ or the UPDRS-III score as follows:

where fi( �fvt) = w
q( �fvt )

 is the space of regression tree i with L leaves, q( �fvt) is the struc-

ture of the tree that maps �fvt to an index represents the corresponding tree leaf, and 
w ∈ R

L is the leaf weights. Learning the regression trees is performed using additive 
training strategy by learning one tree at each iteration that optimize the objective func-
tion which includes the first and second gradient statistics on the loss function.

The short- and long-term feature vectors (refer to the feature extraction section) were 
combined into one feature vector and were fed into the Gradient Tree Boosting model. 
For every 5-s segment in a 1-min interval, the long-term feature vectors �fv were repeated 
and concatenated with the corresponding short-term feature vectors �fv to form a matrix 
of NWs feature vectors with ( NSF + NLF ) number of features ( SL(r) ∈ R

N
(r)
Ws×(NSF+NLF ) ). 

The combined set DTB = {(SL(r), y(r))}
NR
r  was used to train and test the model. To esti-

mate the average ŷ(r) (i. e. UPDRS III) of round r during testing, the model first estimate 
ŷ for each of the feature vectors in SL(r) , and then they were averaged to get the average 
ŷ(r) (i. e. UPDRS III) for that round.

Implementation

The UPDRS-III estimation methods were evaluated and compared using the data of 24 
PD subjects described in the dataset section using LOOCV. In addition, an inner split 
was applied on the training data to select a random 20% for validation. The mean and 
standard deviation of the training data in each cross-validation iteration were calculated 
and used to normalize the entire data. The developed dual-channel LSTM and CNN-
LSTM networks were implemented in TensorFlow [39]. In each cross-validation itera-
tion, the networks were trained for 200 epochs using Adam optimizer [40]. During the 
training, the depth of the CNN and LSTM networks and filter sizes were optimized by 
selecting the best performing model on the validation data (i.e. maximum validation ρ ) 
then evaluating them on the held-out test data. The depth of the CNNs was increased by 
repeating Conv Block-2 up to four times. The LSTM hyper-parameters space (number of 
layers: 1–3 and number of hidden states: 16–224) were searched. Mini-batches of size 2 
and learning rate of 1e-3 were used during the training. In each mini-batch, the signals 
of all the rounds were repeated to have a length equal to the longest round. In addition, 
before feeding the hand-crafted or data-driven features of each round to the network 
in each epoch, a random start point was initialized and data prior to the start point was 
excluded. This augmentation approach was applied to prevent the LSTM network from 
memorizing the training sequence.

(9)ŷ
(

�fvt

)

=

Nt
∑

i=1

fi

(

�fvt

)



Page 18 of 20Hssayeni et al. BioMed Eng OnLine           (2021) 20:32 

The Gradient Tree Boosting algorithm was implemented using XGboost library [38]. 
The learning rate was 0.1. A grid search was applied to find the optimal number of 
regression trees in the range of 10–200 with a step of 20. The tree depth was in the range 
of 3–10 with a step of 2. The percentage of used-features per tree was in the range of 
10–50% with a step of 10%.
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