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Abstract
We present a complexity-based approach for the analysis of fMRI time series, in which sam-

ple entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this

hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it

changes through experimental paradigms. We calculate the complexity of sequential fMRI

data for each voxel in two distinct experimental paradigms and use a nonparametric statisti-

cal strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between

them. The results are compared with the well known general linear model based Statistical

Parametric Mapping package (SPM12), where a decided difference has been observed.

This is because SampEn method detects brain complexity changes in two experiments of

different conditions and the data-driven method SampEn evaluates just the complexity of

specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to

different meanings, and the neutral-blank design produces higher predictability than threat-

neutral. Complexity information can be considered as a complementary method to the exist-

ing fMRI analysis strategies, and it may help improving the understanding of human brain

functions from a different perspective.

Introduction
fMRI refers to the MRI-based detection of hemodynamic changes associated with neural activity.
The goal of fMRI data analysis is to search for relevant information of the neural activation sites
as well as their relationship, which are induced by the experiment. Generally, fMRI activation
detection techniques can be classified as model-driven approaches that perform statistical valida-
tion of prior hypotheses, and data-driven methods that mainly extract temporally/spatially fea-
tures in the data, such as decorrelation [1], independence [2] and similarity [3].

Nevertheless, while one surveys fMRI signals, a detail must not be ignored that these signals,
like many other physiological time series, commonly exhibit extremely inhomogeneous and
non-stationary fluctuations in an irregular and complex manner [4, 5]. We hypothesize that
these complexity/regularity could be modulated in pertinent cognitive tasks, and they may
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change through experimental paradigms. Thus, direct assessment of the fMRI signal complex-
ity and regularity may offer certain physiological insights for brain research [6].

The historical development of mathematics to quantify complexity and regularity has cen-
tered around various types of entropy measures [7–10]. Entropy in this context is defined as a
measure of uncertainty of information in a statistical description of a system, with greater
entropy often associated with more randomness and less system order. In general, a huge num-
ber of data would be demanded to achieve convergence in entropy algorithms. Approximate
entropy (ApEn) and sample entropy (SampEn) belong to a recently developed family of
parameters and statistics for quantifying system complexity and regularity, and possess the sig-
nificant property that they can be applied to a relatively small amount of serial data, even no
more than 72 points [11–13], to assess system regularity and to distinguish abnormal from nor-
mal data, where classical moment statistics approaches fail to show meaningful differences.
Since most fMRI data are recorded for 100 or so temporal volumes, ApEn and especially Sam-
pEn are thus especially attractive for fMRI time series complexity assessment [14, 15]. Particu-
larly, linear correlation analysis of BOLD signal in time/frequency domain dissects underlying
functional connectivity activity but is very sensitive to missing data points [16, 17]. However
SmapEn little affected by loss of the data, the practical limit that we might encounter [18]. This
robust feature has the potential to accommodate unpredictable errors in the image acquisition
or transmission (e.g. loss of the data). The decrease of entropy represents reduced variability in
BOLD signal that might reflect dysfunction of autonomic nervous system. Sampan may find
use as a general estimate of the health of the brain. Regardless of the underlying mechanism, it
is important in clinical medicine, as SampEn can be considered a candidate measure for evalu-
ating brain functions.

In this paper, SampEn, which provides a mathematical quantification of regularity, was
applied to voxel-based analysis of fMRI sequences from two block design dataset. Subsequently,
a non-parametric statistical strategy was used to draw inference related to different paradigms.
The statistical results of complexity and regularity of the population were compared with a typi-
cal GLMmethod, SPM12(http://www.fil.ion.ucl.ac.uk/spm) [19, 20]. Our methodology may
give more comprehensive description of the dynamical process embedded in the fMRI data, and
should be a valuable complementary approach to the existing analysis methods.

Methodology

Experiment Setup and Data Preprocessing
Subjects and Image Acquisition. It is worth mentioning that the fMRI experiment was

performed with the approval of the Health Science Research Ethics Committee of China Jiliang
University, and the participants provided written informed consent before beginning the
experiment. Nine healthy subjects (seven male, mean age 32) were included in this study. Par-
ticipants underwent scanning while listening passively to (i): emotionally neutral word alter-
nating with no word as the control condition (neutral-blank), and (ii): threat-related words
alternating with emotionally neutral word as the experimental condition (threat-neutral). Each
word was presented in pseudorandom order in 16s blocks of 12 words of the same type. Eight
alternating blocks of neutral words were presented for about 256s.

Computer produced stimuli were presented through sound attenuating earphones to the
subject who had his eyes closed. Participant was instructed on the tasks prior to scanning and
was provided with a brief practice period.

Functional images were acquired on a 1.5-Tesla scanner (Marconi EDGE ECLIPSE) using a
standard fMRI gradient echo echo-planar imaging (EPI) protocol (TE, 40ms; TR, 2500ms; flip
angle, 90°; NEX, 1; FOV, 24cm; resolution, 64 × 64 matrix). Sixteen contiguous 6-mm-thick,
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0.5-mm-intervals were acquired to provide a coverage of the entire brain. Scanning was syn-
chronized with the onset of the first stimulate so that 8 images were acquired during each 16s
trail with a total of 128 images per run (8 trails per run).

An additional baseline block (16 images, 32s) was added to the beginning of the run to
allow the MR signal to reach equilibrium and familiar scan noise for the subject, and was dis-
carded from further analysis.

Data Preprocessing. SPM12 was used for the fMRI data preprocessing [21]. Each image
volume was realigned to the first volume. The resultant image volumes were spatially smoothed
with a 6-mm FWHMGaussian kernel to decrease spatial noise, and spatially normalized into
the standard MNI atlas space.

Measurement of Complexity: ApEn and SampEn
ApEn can be used to measure the complexity and regularity of time series dynamics [11, 22]. It
is a biased statistic due to counting self-matches to avoid the occurrence of ln(0), that is, the
expected value of ApEn(m, r, N) is asymptotically equal to the parameter, which is estimated as
the number of data N increases [23, 24].

This implies that a certain number of data points is needed to achieve reasonably precise
estimates. For some biological signals such as fMRI, however, this requirement is difficult to
satisfy since typically only 100 or so imaging volumes are recorded. To rid of this bias, sample
entropy was introduced as a modification of the ApEn [12]. Considering time series {x(1), x(2),
. . ., x(N)}, for the embedding dimensionalitym, the embedding vector u(i) in the reconstructed
phase space Rm is u(i) = [x(i), x(i + 1), � � �, x(i +m − 1)]. Next, define for each i, 1� i� N −m,

Am
i ðrÞ ¼

1

N �m� 1

XN�m

j¼1

j 6¼i

Yðr � jjuðiÞ � uðjÞjj1Þ ð1Þ

where Θ is the discontinuous step Heaviside function

YðxÞ ¼
0; for x < 0

1; for x � 0

(
ð2Þ

Here, r specifies a tolerance which is usually expressed as a fraction of the standard deviation
(SD) of the data set, and ||.||1 is the maximum absolute column sum of matrix norms [25]:

jjujj1 ¼ max
j

Xp

i¼1

juijj; for p� q matrix: ð3Þ

In particular, jjuðiÞjj1 ¼ max
j
jxðjÞj for row vector, u(i) = [x(i), x(i + 1), � � �, x(i +m − 1)]. Simi-

larly, in the reconstructed phase space Rmþ1, we define

Bm
i ðrÞ ¼

1

N �m� 1

XN�m

j¼1

j6¼i

Yðr � jjuðiÞ � uðjÞjj1Þ ð4Þ

It is worthwhile to note that Am
i ðrÞ and Bm

i ðrÞ have exactly the same form of definition, but are
defined in different space. With the definitions of

AmðrÞ ¼ 1

N �m

XN�m

i¼1

Am
i ðrÞ; BmðrÞ ¼ 1

N �m

XN�m

i¼1

Bm
i ðrÞ ð5Þ
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we can now define the sample entropy as

SampEnðm; r;NÞ ¼ ln½AmðrÞ=BmðrÞ� ð6Þ

The basic idea of SampEn algorithm is illustrated with a 45 point series in Fig 1. Form = 2,
considering template vector u(10) = [x(10), x(11)], the tolerance regions (shown as green
bands in Fig 1) with width 2r can be drawn around each element of vector u(10) [e.g. x(10) and
x(11)]. For any vector u(j) = [x(j), x(j + 1)], when x(j) and x(j + 1) falls into corresponding tol-
erance regions, then vector u(j) is counted. As shown in Fig 1, there are two vectors u(20) and
u(35) fulfilling the requirement, e.g. A2

10ðrÞ ¼ 1
21
, Then, we can get A2(r) by means of ergodic

u(j). With the same approach, we can get B2(r). Finally, SampEn can be derived from Eq 6.
SampEn is precisely the negative natural logarithm of an estimate of the conditional proba-

bility (CP) that runs of patterns that close (within r) form contiguous observations remain
close (within the same tolerance width r) on next incremental comparisons, and is a useful tool
to investigate the dynamics of time series. SampEn assigns a nonnegative number to a time
series, with larger values corresponding to greater apparent serial randomness or irregularity
and smaller values corresponding to more recognizable features in the data sequence. It is also
worthwhile to point out, mathematically similar to ApEn, that the two input parameters,m
and r, must be specified to compute SampEn.

Optimal Selection ofm and r
Mathematically similar to ApEn, SampEn is a family of parameters and statistics for quantify-
ing system regularity and complexity [26]. Two input parameters,m and r, must be specified to
compute SampEn value, that is, for a specified system, SampEn comparisons must have fixed
m and r, due to variations of the significant dependence on differentm and r.

Thus, we first must determine parametersm and r values that can capture essential feature
of the fMRI dataset structure, and keep the statistical bias of SampEn at an acceptable level. We
define B to be the number of matches of lengthm, and A to be the number of matches of length
m + 1, so CP = A/B, SampEn(m, r, N) can be expressed as −ln(A/B). The variance of CP can be
estimated as [18]:

s2
CP ¼

CPð1� CPÞ
B

þ 1

B2
½KA � KBðCPÞ2� ð7Þ

Fig 1. Illustration of SampEn algorithm with the embedding dimensionm = 2. The colored bands show
the tolerance regions r. (a) Green arrow denotes template vector u(10) = [x(10), x(11)]. (b) Only vectors u(20)
= [x(20), x(21)], u(35) = [x(35), x(36)] (red arrow) falling into these bands were counted to match the template
vector: u(10) = [x(10), x(11)].

doi:10.1371/journal.pone.0152418.g001
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where KA and KB are the number of pairs of matching templates of lengthm + 1 andm that
overlap, respectively. Thus, the standard deviation of SampEn can be estimated by σCP/CP.

Recently, it has been noticed that ApEn(m, r, N) appears to have asymptotic chi-square dis-
tribution for large sets of uniformly distributed discrete data [27], and several additional works
have pointed out that ApEn(m, r, N) appears asymptotically normal for several simulated
weak-dependence processes and electroencephalogram (EEG) time series [28, 29]. However,
analytic proofs, even numerical computation, of the distribution of SampEn(m, r, N) are very
difficult to achieve due to the very small number of data points for fMRI time series. Following
the spirit of a previous study [18], we consider SampEn as an approximately normal distribu-
tion, and thus the 95% confidence intervals (CI) for SampEn calculation can be defined as −log
(CP) ± 1.96(σCP/CP), that is, P(−1.96σCP � ξ(CP)� 1.96σCP) = 0.95.

Fig 2 shows a color map of the median value of relative error of SampEn for 900 randomly
selected intracerebral voxels, with records of length 128, from 9 subjects in resting state. The rel-
ative error of SampEn ranges from 0, a deep blue, to 1, a deep red, and is black where no matches
of lengthm are found. Furthermore, based on some theoretical analysis and clinical application,
it has been suggested that form = 1 and 2 [30–32], values of r between 0.1 to 0.25 SD of the u(i)
data can produce good statistical validity and system identification [33]. Following this criteria,
we have selectedm and r to minimize the estimated relative error. Thus, we selectedm = 1 and
r = 0.20 to analyze the fMRI dataset, in which the median value of relative error of SampEn for
all selected data point is 0.0744, and the 95% CI of the estimate is*15% of its value.

Once the optimalm and r are selected, we quantify system complexity for each intracerebral
voxel using the SampEn measure.

TheWilcoxon Signed Rank Test
The traditional parametric statistics are usually restricted to the assumption that the underlying
populations are normally distributed. Since the distribution of SampEn(m, r, N) remains
unclear on real fMRI processes [14], we have applied nonparametric statistical strategy instead
[34]. Requiring only minimal assumptions for validity, nonparametric tests provides a flexible
and intuitive paradigm for the statistical analysis of data from functional neuroimaging experi-
ments [35]. In particular, we are interested in searching over the whole brain for significant
shift in location due to the application of the different experimental paradigms, and we have
used the Wilcoxon signed rank test [36].

Fig 2. A visual guide to optimal selection of window length (m) and tolerance (r) parameters for
SampEn estimation of fMRI time series of length 128. (a) the median value of relative error of SampEn is
shown in pseudocolor. (b) their changes withm and r is shown as a color ribbon map.

doi:10.1371/journal.pone.0152418.g002
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Suppose that we have obtained in total 2n observations X1, ���, Xn (neutral-blank) and Y1, ���,
Yn (threat-neutral) for n subjects in two conditions. Let Zi = Yi − Xi and take as our model

Zi ¼ yþ ei; i ¼ 1; � � �; n; ð8Þ
where the ei is unobservable random variables and mutually independent, and θ is the
unknown treatment effect. To test the hypothesis

H0 : y ¼ 0; ð9Þ
form the absolute difference |Z1|, ���, |Zn|. Let Ri denote the rank of |Zi| in the joint ranking from
least to greatest of |Z1|, ���, |Zn|. Forming the n products R1 ψ1, ���, Rn ψn, where ψi, i = 1, ���, n,
defined as indicator variables, is Heaviside function, and set

Tþ ¼
Xn

i¼1

Rici: ð10Þ

The product Ri ψi is known as the positive signed rank of Zi. It takes on the value zero if Zi is
negative and is equal to the rank of |Zi| when Zi is positive. The statistic T

+ is the sum of the pos-
itive signed ranks.

Suppose that the test is made at the 4% level of significance, that is, α = 0.04. A two-sided
test ofH0 versus the alternative θ 6¼ 0 is,

reject H0 if Tþ � tða2; nÞ or Tþ � nðnþ 1Þ
2

� tða1; nÞ;

accept H0 if
nðnþ 1Þ

2
� tða1; nÞ < Tþ < tða2; nÞ;

ð11Þ

where α = α1 + α2 = 0.02 + 0.02 = 0.04.

Here, the critical value at the α = 0.04 level is t(0.02, 9) = 40 for θ> 0 and 9ð10Þ
2

�
tð0:02; 9Þ ¼ 45� 40 ¼ 5 for θ< 0.

Results and Discussion
In Fig 3(a), we present a threshold statistic T+ map (p< 0.04) from complexity analysis during
processing of neutral-blank and threat-neutral. For comparative purposes, Fig 3(b) also shows
the detection results from SPM12 during processing of neutral-blank (hot orange) and threat-
neutral (winter blue) on the same slices. As expected, one can find that the complexity-based
result is very different from that from the most commonly used SPM12. Two factor may con-
tribute these differences. First, conventional SPMmethod mainly evaluates the regional hemo-
dynamic changes in response to different task activation (listening neutral word to blank, or
listening threat-related word to listening neutral word) in a single experiment, while SampEn
method detects brain complexity changes in two experiments of different conditions. Further-
more, SPM is a model-driven method, which requires that the temporal dynamics of the activa-
tion response be consistent to a priori expectant hemodynamic response, while the data-driven
method SampEn evaluates just the complexity of specific sequential fMRI data.

In addition, it should also be emphasized that the activation region overall comes from θ<
0, that is, there are higher SampEn values in neutral-blank condition than in threat-neutral. In
fact, even at 25% level of significance, a rather loose significance level, we cannot find the θ> 0
activation. SampEn is a regularity statistic that quantifies the unpredictability of fluctuations in
a time series. A larger SampEn value corresponds to greater apparent process randomness or
serial irregularity, and a smaller value corresponds to more instances of recognizable features
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or patterns in the data. To some extent, we can take the brain as a input/output system in
which the output signal is the result of the convolution of the input signal with an impulse
response (hemodynamic response). The time course of the block design is a square-wave, and
neutral-blank paradigm has a higher pink-to-pink value than threat-neutral. Thus, the neutral-
blank block design produces higher predictability than threat-neutral. But, it is somewhat puz-
zling that these predictable changes related to the experimental paradigm take place at the
whole brain. We believe that changed SampEn values imply changed hemodynamic response
invoked by experimentally controlled stimuli, but the character of SampEn needs to be further
investigated to substantiate such claim.

In conclusion, this study presents a complexity approach based on SampEn analysis. It
could be considered as a valuable complementary method to present classical fMRI analysis,
and it could help improving the understanding of human brain functions.
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