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The DNA-binding interfaces of the androgen (AR) and glucocorticoid (GR) receptors are virtually identical, yet these tran-
scription factors share only about a third of their genomic binding sites and regulate similarly distinct sets of target genes.
To address this paradox, we determined the intrinsic specificities of the AR and GR DNA-binding domains using a refined
version of SELEX-seq. We developed an algorithm, SelexGLM, that quantifies binding specificity over a large (31-bp) binding
site by iteratively fitting a feature-based generalized linear model to SELEX probe counts. This analysis revealed that the
DNA-binding preferences of AR and GR homodimers differ significantly, both within and outside the 15-bp core binding
site. The relative preference between the two factors can be tuned over a wide range by changing the DNA sequence, with
AR more sensitive to sequence changes than GR. The specificity of AR extends to the regions flanking the core 15-bp site,
where isothermal calorimetry measurements reveal that affinity is augmented by enthalpy-driven readout of poly(A) se-
quences associated with narrowed minor groove width. We conclude that the increased specificity of AR is correlated
with more enthalpy-driven binding than GR. The binding models help explain differences in AR and GR genomic binding
and provide a biophysical rationale for how promiscuous binding by GR allows functional substitution for AR in some cas-

tration-resistant prostate cancers.
[Supplemental material is available for this article.]

Gene expression programs are precisely regulated by transcription
factors (TFs), a class of DNA-binding proteins that orchestrate the
activity of the RNA polymerase II and chromatin-modifying com-
plexes. The DNA-binding domains (DBDs) of TFs fall into families
consisting of dozens or even hundreds of members (Weirauch et al.
2014), leading to similar DNA sequence preferences among family
members. Nonetheless, subtle quantitative differences in DNA-
binding specificity between related TFs are associated with large
qualitative differences in the sets of target genes they control
(Maerkl and Quake 2007). To understand gene regulation and reg-
ulatory networks, it is therefore essential not only to accurately
quantify these differences in DNA recognition but also to deter-
mine the structural and physical basis of that specificity. The for-
mer can be done using comprehensive, unbiased experimental
and computational methods; the latter requires more focused
mechanistic analyses.

The intrinsic DNA-binding specificities for hundreds of TFs
have been profiled using a number of different high-throughput as-
says. These include (universal) protein binding microarrays (PBMs)
(Berger and Bulyk 2009), bacterial one-hybrid (B1H) (Meng et al.
2005), and (solution-based) high-throughput SELEX (HT-SELEX)
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(Zhao et al. 2009; Jolma et al. 2010, 2013). These methods have
generated rich data sets that have been exploited to define DNA-
binding ‘motifs’ for all major TF families and capture differences
in DNA sequence preference within these families. DNA-binding
specificities can be represented in the form of a position weight ma-
trix (Stormo 2000) or a position-specific affinity matrix (PSAM)
(Foat et al. 2006), which in turn can be visualized as an information
content logo (Schneider et al. 1985) or energy/atfinity logo (Foat
et al. 2006). The motifs are available through databases such as
JASPAR (Mathelier et al. 2015), UniPROBE (Orenstein and Shamir
2014; Hume et al. 2015), and Cis-BP (Weirauch et al. 2014).
Sequences outside the core motif can also contribute to DNA-
binding specificity. In particular, flanking A and T homopolymers
can cause increased affinity (Jolma et al. 2013; Levo et al. 2015).
This can be due to a narrowing of the minor groove, which attracts
positively charged basic residues (Rohs et al. 2009b), but in other
cases, the mechanism is unclear (Dror et al. 2015). Flanking se-
quences are also increasingly being recognized as a vehicle for di-
versified binding preference among paralogous TFs (Fisher and
Goding 1992; Maerkl and Quake 2007; Zhou and O’Shea 2011;
Slattery et al. 2014). For example, Cbflp and Tye7p, members of
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the basic helix-loop-helix (bHLH) family in Saccharomyces cerevi-
siae, recognize similar E-box core sequences (CANNTG), but dis-
tinct flanking preferences became apparent when binding was
assayed over a larger footprint using custom-designed genomic
context PBMs (gcPBMs) (Gordan et al. 2013). Similar effects of
flanking sequences on specificity have been observed among ETS
proteins using PBMs (Wei et al. 2010). Moreover, SELEX-seq tech-
nology has been used to show that Hox proteins read out the spac-
er sequences between half-sites in distinct ways when binding as
heterodimers with the cofactor Exd (Slattery et al. 2011; Abe
et al. 2015).

The importance of being able to understand functional differ-
ences between close TF paralogs is brought into sharp relief by cas-
tration-resistant prostate cancer (CRPC). Prostate cancer is driven
by androgen signaling through regulation of gene expression by
the androgen receptor (AR; AR) (Watson et al. 2015). Blocking of
androgen synthesis and inhibition of ligand binding to AR have
both been effective treatments. Unfortunately, CRPC eventually
arises due to alternative production of androgens or activation of
AR (Feldman and Feldman 2001). In some cases, CRPC is accompa-
nied by increased expression of the glucocorticoid receptor (GR;
NR3C1), which then functionally substitutes for AR by activating
a subset of the AR transcriptional program that drives cancer pro-
gression (Arora et al. 2013). Despite this overlap, chromatin immu-
noprecipitation followed by sequencing (ChIP-seq) in LNCaP-1F§,
a cell line model of CRPC, has shown that AR and GR share only
about a third of their genomic binding sites (Sahu et al. 2013,
2014). Although cofactors such as the TF FoxA1 help distinguish
between AR and GR binding (Sahu et al. 2013; Belikov et al.
2016), these two factors still bind distinct loci in their absence, sug-
gesting an intrinsic ability to distinguish sequences that are not re-
flected in previous measurements of their in vitro specificities (He
etal. 2012; Jolmaetal. 2013; Jin et al. 2014; Pihlajamaa et al. 2014).

It is not clear how AR and GR, both members of the steroid
hormone receptor (SHR) family, are directed to different genomic
loci. Existing ChIP-seq and HT-SELEX (Nelson et al. 1999; Jolma
et al. 2013; Sahu et al. 2013; Yang et al. 2017) have been unable
to detect consistent differences in how AR and GR distinguish se-
quences within or outside a 15-bp core motif composed of inverted
hexameric half-sites separated by a 3-bp spacer: RGAACANN
NTGTTCY. Crystallographic evidence indicates that AR and GR
each bind DNA as head-to-head dimers, with the two monomer
subunits each occupying a half-site and dimerizing over the spacer
(Shaffer et al. 2004; Meijsing et al. 2009; Watson et al. 2013). Our
detailed analysis of AR- and GR-DNA crystal structures indicates
that they present identical amino acids at the DNA-binding inter-
face (Supplemental Fig. S1). Conserved residues make specific con-
tacts in the major groove at positions 2, 4, and 5 (Supplemental Fig.
S2; Luisi et al. 1991; Arbuckle and Luisi 1995), accounting for most
of the binding energy, although other noncontacted base pairs
within the half-site have also been shown to affect GR affinity
(La Baer and Yamamoto 1994). Additional energy is derived from
backbone contacts along the 3-bp spacer, which are sensitive to
minor groove width in GR (Meijsing et al. 2009; Watson et al.
2013). Contacts made with DNA sequences flanking the core motif
further contribute to GR affinity (Meijsing et al. 2009). In this
work, we test whether, despite their conservation, AR and GR
use this shared DNA-binding interface differently to distinguish se-
quences within and flanking the core 15-bp motif.

Motif discovery in DNA sequences has a long history that in-
cludes the Gibbs sampler (Thompson 2003), the MEME algorithm
(Bailey and Elkan 1994; Ma et al. 2014), and the application of a

profile/hidden Markov model (HMM)-based method to SELEX
data (Roulet et al. 2002). These traditional ‘probabilistic’ algo-
rithms were designed to detect and characterize base preference
patterns in sets of unaligned DNA sequences. There is in principle
no limit to the size of the motifs that can be discovered.
Unfortunately, the algorithms in this class were not designed,
and are not suitable, for building accurate quantitative models
from high-throughput functional genomics data (Bussemaker
etal. 2007; Ruan and Stormo 2017). For instance, the penalty asso-
ciated with base substitutions away from the optimal sequence in
the models these algorithms produce strongly depends on the cri-
terion that was used to define the set of ‘bound’ sequences. This isa
fundamental problem, as DNA-binding specificity is a quantitative
property of the TF protein, whose estimate should not depend on
how a training set of DNA sequences was defined. Furthermore, al-
though the log-likelihood scores produced by probabilistic motif
discovery algorithms are often used as a surrogate for true binding
free-energy differences (Berg and Hippel 1987), they are at best de-
fined up to an overall scaling factor. This is also problematic,
because it leaves the fold-change in affinity that is associated
with base substitutions ill defined. Finally, a recent algorithm
based on deep learning (Alipanahi et al. 2015) performed well on
a classification task but was not trained in a way that was designed
to make quantitative predictions.

In view of the above concerns, it is desirable that an algorithm
for inferring an accurate binding model from HT-SELEX data has
its foundation in a biophysical description of the protein-DNA in-
teraction in the context of the SELEX assay (Djordjevic et al. 2003;
Zhao et al. 2009; Djordjevic 2010; Atherton et al. 2012; Ruan and
Stormo 2017). In practice, however, estimating binding model co-
efficients from SELEX data remains a challenging numerical prob-
lem. To make the binding model inference problem tractable,
existing biophysically inspired algorithms use approximations
and rely on prior sequence-based alignment of the sequences
(Djordjevic and Sengupta 2006; Stormo and Zhao 2010). Some
other approaches to SELEX analysis start by tabulating the relative
enrichment between rounds for all oligomers of a given length
(Jolma et al. 2010, 2013; Slattery et al. 2011; Riley et al. 2014).
These methods also yield imperfect estimates of relative binding
affinities because they do not explicitly consider where the TF pre-
fers to bind within each DNA probe.

The recently published BEESEM algorithm (Ruan et al. 2017)
addresses binding position preference within the probe explicitly
within the context of a biophysical model of SELEX. However,
the numerical procedure BEESEM uses to estimate binding model
parameters is based on minimization of the least-squares error be-
tween observed and expected values across all of a round-to-round
enrichment metric that weighs k-mer occurrences according to the
relative probability with which the TF binds each position with a
particular probe (Ruan et al. 2017). As such, BEESEM still relies
on enumeration of all k-mers, which in practice limits its applica-
tion to a motif width of 12 bp. Thus, to the best of our knowledge,
no published algorithm currently exists that is both (1) based on a
biophysical (as opposed to a probabilistic) approach and therefore
has the potential of yielding accurate estimates of binding free en-
ergies and (2) capable of modeling binding specificity over a large
enough footprint to accommodate the flanks of the AR or GR bind-
ing site outside the 15-bp core.

The SelexGLM algorithm that we introduce in this work and
use to analyze the SELEX-seq data for AR and GR builds on the ex-
isting idea of using a biophysical model to identify the preferred
position where the protein binds within each probe (Atherton
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et al. 2012; Ruan and Stormo 2017). However, SelexGLM differs
from these in that it ignores probes whose selection is not
dominated by a single binding site within them. In addition,
SelexGLM uses a generalized model based on the Poisson distribu-
tion to estimate the binding free-energy coefficients, which allows
us to perform fits even at very low probe counts. These features lift
the practical restriction on footprint size that other biophysically
motivated algorithms are (implicitly) limited by. Here we show
how this enables us to uncover and carefully characterize intrinsic
differences in DNA-binding specificity between AR and GR.

Results

AR interacts with DNA over a larger footprint than GR

To determine the intrinsic specificity of AR and GR at high resolu-
tion, we performed SELEX-seq (Slattery etal. 2011; Riley et al. 2014)
for homodimers of the DBD of each factor (Fig. 1A; Supplemental
Fig. S1C). Although SELEX-seq (and lower throughput predeces-
sors) have been developed over the years (Djordjevic 2010;
Ogawa and Biggin 2011), increased sequencing and computational
power have allowed some refinements. Purified proteins were incu-
bated with a pool of DNA molecules, each containing a larger (23-

bp) random region than typical, flanked by Illumina adapters and
tagged at one end with Cy3. Electrophoretic mobility shift assays
(EMSAs) were used to separate dimer-bound DNA sequences over
eight rounds of affinity-based selection (Fig. 1A; Supplemental
Fig. S3). After each round, the concentration of the isolated DNA
was quantified by qPCR and then in parallel amplified for reselec-
tion and packaged into a sequencing library by adding Illumina
flow cell adapters. Each library was then sequenced to a depth of
about 107 reads. Preliminary analysis of the SELEX-seq data re-
vealed unexpected differences between AR and GR. Following a
previous study (Slattery et al. 2011), we estimated affinities as nor-
malized oligomer enrichments, using the R/Bioconductor package
SELEX (Riley et al. 2014). Biases in the initial round zero (RO) pool
were estimated using a fifth-order Markov model, after which we
computed the information gain between the initial (RO) and final
round (R8) to estimate binding site size. For GR, the information
gain peaks at 15 bp (Fig. 1C), consistent with the previously defined
core motif. However, for AR, information content continues to in-
crease beyond 15 bp (Fig. 1D), indicating a sensitivity to base iden-
tity over a larger binding site. One concern was that sequences
would be overselected after eight rounds. Due to the diversity of
the pool and lack of a strict consensus sequence for both AR and
GR, very few 23-mers sequences are observed more than once in

the sequenced libraries (Fig. 1E). This in-

dicates not only that the libraries were
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about a third of their significantly en-
riched 15-mers (Fig. 1F; Supplemental
Fig. S4A,B), with substantially different
preferences among those common 15-
mers (Fig. 1G) and confirmed specificity
for AR over a larger footprint, of at least
21 bp (Supplemental Fig. S4C), than GR
(Supplemental Fig. S4D). Quantitative
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EMSAs supported the rank order of these
sequences in terms of their enrichment
in the SELEX-seq experiment (Supple-
mental Fig. S4E,F).

Quantifying DNA-binding specificity
using feature-based modeling
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To overcome the limitations of existing
algorithms that prevented us from infer-
ring an accurate binding model from
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Figure 1. SELEX-seq reveals differences in AR- and GR-DBD (DNA-binding domain) DNA-binding spe-
cificity. (A) SELEX-seq. A 70-bp dsDNA library with 23-bp randomized region was incubated with the
DBD of AR or GR and separated into monomer and dimer species by EMSA. Dimer-bound DNA was re-
covered, quantified by qPCR, amplified as the library for the next round, and repeated for eight rounds.
Each round of library, including the initial dsDNA library, was sequenced. (B) EMSA gel showing the en-
richment of dimer-bound sequences after each round of selection for GR-DBD. The intensity of the shift-
ed band plateaus after round 7. A high-affinity palindromic sequence served as a control to locate the
dimer band. (*) An artifact during the synthesis of control sequence but not observed in the SELEX library.
(C,D) Information gain, or Kullback-Leibler divergence, from RO to R8, as a function of oligonucleotide
length. (E) Boxplot showing the multiplicity of unique 23-mers in each of the last three rounds of
SELEX-seq selection for AR and GR. Even for the most highly selected library (AR R8) fewer than 10%
of all reads have 10 copies or more, indicating that the libraries are not overselected. (F) Venn diagram
showing the overlap of sequences for AR- and GR-DBD with at least 100 sequencing counts. (G)
Scatterplot of sequences that were commonly bound (yellow from F) by AR- and GR-DBD.

our SELEX-seq data for AR and GR over
their entire (>20 bp) footprint, we devel-
oped SelexGLM, a flexible modeling strat-
egy based on Poisson regression that
allows us to estimate binding free-energy
contributions throughout the protein-
DNA interface directly from the SELEX-
seq read counts (Fig. 2). We use a standard
equilibrium thermodynamics descrip-
tion of protein-DNA interaction that
was previously used to analyze PBM data
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Figure 2. SelexGLM shows differences in DNA recognition between AR and GR throughout their binding sites. (4-D) Energy logos for AR-DBD (top) and
GR-DBD (bottom), obtained by fitting biophysical models for protein-DNA interaction to the SELEX read counts using an iterative generalized linear mod-
eling approach based on Poisson regression, implemented as SelexGLM. Highly similar logos were obtained using two separate rounds of data. See
Supplemental Figure S5 for logos generated using round 4 to 8 data. (E) Cumulative distribution functions for the contribution of half-site (squares), spacer
(triangles), and flanking (circles) sequences on AR-DBD (red) and GR-DBD (blue) binding energy. (F) Validation of the contribution of flanking A tracts and
spacer to AR- and GR-DBD binding performed by quantitative electrophoretic mobility shift assay (EMSA). Loss of flanking A tracts is more detrimental to
AR- than GR-DBD (one vs. two), whereas changing spacer can have detrimental effects on the binding of both (one vs. three). Error bars, SEM based on at
least three repeats of each experiment. (*) P-value <0.05, (**) P-value <0.01, two-sided t-test.

(Foat et al. 2006; Zhao and Stormo 2011; Gordan et al. 2013; Riley
etal. 2015). The relative binding free energy for sequence S is mod-
eled as a sum of parameters AAG, associated with the DNA sequence
features ¢ € ®(S) that characterize the difference between S and a
reference sequence S, (typically the highest-affinity sequence):

AG(Swer) = Y AAGy.
PED(S)

AG(S) —

In this study, we restricted ourselves to single-nucleotide fea-
tures (e.g., ¢ = C3, denoting the presence of a C at position 3 within
the binding site window). Our modeling assumptions imply that
the combined effect of multiple mutations within the binding
site is additive in terms of binding free energy or multiplicative
in terms of relative affinity.

The model parameters are found through an iterative fitting
process that starts from an initial estimate, or seed. To generate
this seed, we construct a relative enrichment table using a foot-
print large enough to capture the binding site core but not so large
that counts get too low. We chose a seed length of 15 bp for both
AR and GR, but the final model is only weakly dependent on this
choice and can have a much larger footprint (31 bp in our case; see
below). The negative logarithm of the relative enrichment of each
mutated 15-mers is used as an initial estimate of AAG,/RT for each
feature.

Once seeded, the model is refined by alternating between two
steps. In the first step, we determine the highest-affinity binding
site within each unique observed SELEX probe in the data (“affin-
ity-based alignment”). This allows us to construct a design matrix
X defining each DNA feature (in this case each base pair) relative to
the optimal binding window in each probe; only probes whose
rate of selection is dominated by a single binding site offset are in-
cluded (see Methods). In the second step, the design matrix is used
to fit a generalized linear model (GLM) to the read counts, leading

to a re-estimated set of free-energy coefficients:

log(Ay) = log(p)) + Bo + ) _ ByXis-
¢

Here A; is the expected value of the read count y for probe i:
yi ~ Poisson(a;).

Each model coefficient B, is used as a re-estimate of AAG,/RT,
which are then used to update the design matrix, and the process
repeats. Convergence is reached once the position of the optimal
binding window no longer changes for any of the probes in the
data set after re-estimation of the free-energy coefficients.

Earlier rounds of selection are sufficient for SelexGLM analysis

We originally performed SELEX-seq over eight rounds of selection
in order to obtain linear enrichment of sequences appropriate for
oligomer enrichment based analysis. The most enriched 21-mer
for AR (AAAAGAACACGATGTACTTTT) is contained in approxi-
mately 4000 reads out of the ~107 that make up the RS library.
Most suboptimal sequences of the same length will not be present
in the library as their expected count decreases exponentially with
the number of rounds. This, however, is not a problem for
SelexGLM, which uses Poisson regression techniques to deal with
low read counts. When we analyzed each round of selection sepa-
rately using SelexGLM, we found that, although R8 provided
the highest-resolution model without over selection (Fig. 1E;
Supplemental Fig. S5A-]), high-quality models could also be gener-
ated from earlier rounds of selection (Supplemental Fig. S5A-]).
However, the accuracy of the models increased in the later rounds,
particularly when it comes to distinguishing the base-pair substitu-
tions with the most deleterious effect on binding (Supplemental
Figs. S5, S6). Thus, we used models generated from R8 for both pro-
teins in all subsequent analyses.
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AR is distinguished from GR by a preference for poly(A)
sequences outside the 15-bp core

We used SelexGLM to build recognition models as PSAMs for AR
and GR with a 31-bp footprint, significantly larger than the 15-
bp binding site core and even the 23-bp variable region of the
SELEX probes. SelexGLM 1is capable of fitting such wide models
because it considers offsets within the probe that partially cover
the fixed sequences upstream of and downstream from the vari-
able region. The corresponding energy logos for these PSAMs con-
firm the previously modeled 15-bp size of the GR binding site (Fig.
2B,D), but reveal AR’s preference for poly(A) sequences flanking
the 15-bp core (Fig. 2A,C) and surprising differences within the
3-bp central spacer (Fig. 2E; more evident in Supplemental Fig.
S4C,G,H). For AR, replacing the best flanking sequence (AAAA)
with the worst (TCGC) on one side leads to a 1.6-fold reduction
in affinity (or 2.6-fold when both flanks are replaced) (Fig. 2E).
Validation by qEMSA confirmed that spacer sequence affects the
affinity of both AR and GR but that flanking sequences affect
only AR (Fig. 2F). The observed change for AR (AAG=0.60+0.05
kcal/mol) was larger than predicted (AAG = 0.26 kcal/mol), perhaps
because our model ignores dependencies between nucleotide posi-
tions within the binding site.

Further differences in AR and GR specificity are encoded
throughout the 15-bp core

Though the ARand GRbinding models are similar at first glance, de-
tailed analysis of the PSAMs highlights AR’s sensitivity to changes
from the consensus sequence in the central 15-bp core region (Fig.

3A). Based on these differences, we tested sequences that favor AR
(Fig. 3B; Supplemental Table S1, Shape-1 and Shape-2) and GRbind-
ing (Fig. 3B; Supplemental Table S1, Shape-4) and verified that the
two proteins can differentiate between DNA sequences over an or-
der of magnitude in affinity (Fig. 3B; Supplemental Fig. S7D). As
the two proteins have identical base-reading chemistry at the
DNA-binding interface, we examined whether their sequence pref-
erences could be explained in terms of DNA shape readout. Indeed,
the shape preferences of AR and GR contrast sharply: The AR bene-
fits from a narrowed minor groove in the flanking regions (Fig. 3C),
whereas the GR prefers binding to sites with widened minor grooves
within the half-sites (Fig. 3D). To validate this finding, we tested a
sequence with a half-site predicted to have a narrow minor groove
(TTTTAT) (Zhouetal. 2013), and found that GRbound significantly
worse than AR (Fig. 3B, Supplemental Fig. S7D, Shape-3). Similarly,
we tested a site predicted to have a wide minor groove (GGGACA)
(Fig. 3B; Supplemental Fig. S7D, Shape-4) and found a preference
for GR. More dramatic examples of sequences predicted to have dis-
parate GR and AR affinities are plentiful in the low-affinity range
(Kp = SuM); however, measurements in thisrange are near thenon-
specific binding limit and have not been reliable. In addition to dif-
ferences in core preference, the nearly inverted minor groove
preferences in the flanks for AR and the half-site for GR suggest
the two proteins have different recognition modes.

The thermodynamics of binding reflect the specificity
of AR and GR

To understand the thermodynamic basis of the differing AR and
GR binding modes, we measured the effect of varying flanking
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Figure 3. Difference in DNA shape readout between AR and GR. (A) Difference in AAG/RT values between AR and GR at each nucleotide position, nor-
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and spacer sequences using isothermal titration calorimetry
(ITC). Our ITC data allowed us to accurately quantify the affinity
(and thus AG) of bound sequences and the contribution of indi-
vidual sequence features to the enthalpy (AH) and entropy (AS) of
binding (Buurma and Haq 2007). Although it was immediately
apparent from the heat of binding (Fig. 4A) that AR and GR rec-
ognize the same DNA sequences differently, the Kps of AR and
GR for DNA (Fig. 4B) were consistent with the PSAMs derived
from the SELEX data (Supplemental Fig. S7C), including AR pref-
erence for poly(A) flanks. Overall, for the sequences tested, AR
binding is more enthalpically driven (low AH) and GR binding
more entropically driven (high TAS) (Fig. 4C,D). This is consistent
with previous findings; TF families engaged in direct readout via
the major groove are more enthalpically driven, whereas those
engaged in readout via the minor groove or backbone contacts
are more entropically driven by solvent exclusion (Privalov
et al. 2007, 2011). Our data also identify an exception to this ge-
neral pattern: AR’s recognition of the poly(A) stretches in the mi-
nor groove is driven not entropically but rather enthalpically.
This observation contributes to our understanding of specificity:
Enthalpic contributions to binding are not solely the result of hy-
drogen bonds with individual base pairs or backbone phosphates
but can also result from interaction with a DNA feature; the nar-
rowed minor groove (Fig. 3).

B spacer TTT

Promiscuous GR specificity predicts ability to bind
at genomic AR loci

We next asked whether the SelexGLM models can explain why GR
is able to functionally substitute for AR despite having nonoverlap-
ping binding sites in models of CRPC.

Tothis end, we analyzed ChIP-seq data from LNCaP-1F5, acell
line model of prostate cancer engineered to overexpress GR and en-
able genomic mapping of both AR and GR binding under similar
cellular conditions (Sahu et al. 2013, 2014). As a positive control,
we confirmed that the SelexGLM models can differentiate ChIP-
seq peaks from adjacent regions (area under ROC-curve 0.78 and
0.83 for AR and GR, respectively) (Fig. 5A). Further, we observed a
significant quantitative relationship between predicted affinity
and degree of genomic occupancy (Fig. 5B), with ChIP-seq peaks
in the top decile for in vitro affinity being significantly higher
than those in the bottom decile (1.4-fold, P=7.4x107%,
Wilcoxon rank-sum test, for AR; 1.6-fold, P=2.8 x 1078, for GR).
To test whether the difference in intrinsic binding specificity be-
tween AR and GR discovered using SELEX-seq was reflected in the
genomic occupancy patterns probed using ChlIP-seq, we let our
AR and GR PSAMs compete in a multiple linear regression model.
As expected, when analyzing the variation in GR peak height in
this manner, we found that the regression coefficient for GR affin-

ity was significantly larger than that for
AR (P<107°, t-test) (Fig. 5C) and that
the latter did not deviate significantly

CGG from zero (P=0.97). However, when ana-
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ITC analysis reveals distinct DNA-binding thermodynamics between AR- and GR-DBD. (A)
The raw heat titration signals (top) and normalized heat of injection profiles (bottom) of AR- and GR-
DBD bound to a given DNA sequence. Standard errors are estimated by NITPIC (Brautigam et al.
2016). (B) The Kp of AR-DBD and GR-DBD for four sets of sequences fit from the ITC data. AR-DBD affinity
is increased with flanking As and an optimal spacer, whereas GR is insensitive. (C) Enthalpy, AH, is calcu-
lated from the heat of binding for each DNA sequence. Flanking sequences decrease AH for AR-DBD, en-
hancing affinity. Smaller indicates a greater contribution to affinity. (D) Entropy, AS, is calculated from the
Kp (thus AG) and AH. GR-DBD affinity is more entropically driven. Larger indicates a greater contribution
to affinity. (*) P-value <0.05, (**) P-value <0.01, (***) P-value <0.001, (****) P-value <0.0001, two-sided
t-test. Error bars, SD represent the standard deviation from at least three experiments.

both the AR and GR coefficients were
nonzero (P<107° and P<1077, respec-
tively) and did not significantly differ
from each other (P=0.16), indicating
that both AR and GR have the ability to
bind well at AR loci.

Discussion

In this study, we developed and validated
a strategy for inferring biophysical mod-
els of DNA-binding specificity of TFs
from SELEX data. The computational
method and software that we developed,
SelexGLM, was instrumental for obtain-
ing accurate estimates of the binding
free-energy changes associated with any
possible base substitutions in the DNA li-
gand over a footprint large enough to
capture the flanking specificity outside
the 15-bp core that we observed for AR.
Experimentally, we designed a library to
accommodate the footprint of AR and
GR defined by crystal structures
(Meijsing et al. 2009), isolated dimer-
bound DNA from a mixed population
by EMSA, and performed qPCR between
rounds of enrichment to avoid PCR arti-
facts that add noise to measurements.
These refinements revealed that, despite
their similarities, AR and GR have differ-
ences in sequence specificity both within
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Figure 5. Differences of intrinsic specificity between AR- and GR-DBD are reflected in the respective cellular genomic binding profiles. (A) Ability of the AR
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sequence space representing the top 10% highest affinity sites) (C) Multiple linear regression coefficients in models that use AR (red) and GR (blue) PSAM
scores to predict AR (left) and GR (right) ChIP-seq peak enrichments. P-Values were calculated using t-tests.

and outside the core 15-bp sequence that can be genetically tuned
over a significant range, even in the absence of any cofactors.

HT-SELEX assays were previously performed on similar pro-
tein fragments (Jolma et al. 2013; Yang et al. 2017), and the result-
ing libraries were recently sequenced more deeply and then
reanalyzed (Yang et al. 2017). Supplemental Figure S8 shows ener-
gy logos for binding models we inferred from these data using
SelexGLM. A weak preference for poly(A) flanks outside the 15-bp
core can be observed (Supplemental Fig. S8C), but it is not consis-
tent between the three versions of the AR protein that was used,
and the difference between AR and GR is not apparent. Yang
et al. (2017) explicitly addressed the role of DNA shape readout,
but their models for AR and GR (Supplemental Fig. S8E-G) did
not cover the full footprint for either protein; therefore, no previ-
ous shape analysis for the flanking regions has been reported for
AR or GR.

The intrinsic specificity, thermodynamics of binding, and ge-
nomic localization indicate that GR is more promiscuous than AR,
allowing it to accommodate a wider range of sequences. These
binding properties are consistent with the behavior of GR in
some CRPCs. Anti-androgen therapy can result in de-repressed
GR expression, increasing the amount of GR in the cell (Arora
et al. 2013; Watson et al. 2015), which in the presence of endoge-
nous or administered glucocorticoids results in an increase in the
active concentration of GR in the nucleus. Our data are consistent
with the idea that the more relaxed specificity provided by entro-
py-driven binding allows the excess GR to bind related sequences
with reasonable affinity, including those previously bound by AR
(Fig. 5C), enabling regulation of AR-driven genes aberrantly by GR
(Arora et al. 2013). Thus, the biophysical properties of GR provide a
rationale for how it can effectively substitute for AR in the context
of CRPC.

The differences between AR and GR that our analysis uncov-
ered were surprising, because structural analysis showed that all
known AR and GR DNA contacts, and all amino acids within 6A
of the DNA, are identical. However, the integration of SELEX anal-
ysis and thermodynamic quantification of binding energies using
ITC make it clear that AR and GR use these amino acids differently.
Having comprehensively measured the specificity of AR and GR
using all DNA ligands, it is clear that GR derives more entropic en-
ergy for the same DNA than AR. Because the majority of entropic

energy is derived from solvent and ion exclusion from an interface
and because the protein and DNA surfaces at the interface are iden-
tical in composition, we expected this contribution to be similar
for AR and GR. However, the differences between GR and AR sug-
gest an increase in conformational entropy within GR (Fig. 4D;
Frederick et al. 2007), which would allow it to accommodate
more diverse DNA sequences and shapes but decrease its specific-
ity. AR, conversely, does not derive as much binding energy
from entropy, suggesting that precise positioning of hydrogen
bonding in the half-sites is more important. AR also derives
enthalpic energy from the recognition of narrowed minor grooves
created by poly(A) flanking sequences. Our results provide a ther-
modynamic basis for that discrimination. Our ITC data directly
show that the increased negative electrostatic focusing (Rohs
et al. 2009a) associated with a narrowed minor groove (Yoon
et al. 1988) in the presence of interactions with basic residues
(Supplemental Figs. S1, S2) drives an increase in affinity through
enthalpy. These differences in the thermodynamics of recogni-
tion must be mediated by nonconserved amino acids within the
fold of the protein, indicating a difference in how the interface is
scaffolded. This phenomenon has also been observed in recent
studies of the C2H2 Zinc finger family of TFs (Hughes 2011;
Persikov et al. 2015) and indicates that both the residues displayed
and how they are configured are critical to distinguishing how TF
family members recognize different DNA sequences. It also sug-
gests that, much as in the case of RUNX1 (Yan et al. 2004) and
ETS1 (Pufall et al. 2005), the conformational entropy of GR may
provide an opportunity for regulation that could direct it away
from AR sites.

To analyze SELEX-seq data over a large enough footprint
within an accurate biophysical modeling framework, we devel-
oped an algorithm named SelexGLM. In a self-consistent proce-
dure, SelexGLM alternates between an “affinity-based alignment”
step, which identifies the dominant binding site within each se-
quenced DNA ligand, and a GLM fitting step, which estimates
the binding free-energy change associated with each possible
base substitution in the DNA-binding site, until convergence is
reached. The Poisson statistics that underlie the GLM fits allow
us to obtain precise estimates of the free-energy parameters even
when individual unique DNA have very few counts, since each
possible base substitution or “feature” can occur in many different
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contexts. By using a modest sequencing depth of ~10” reads per
round, we were able to achieve precise, validated models over a
footprint of 31 bp that would accommodate many other TF
complexes.

SelexGLM also opens new avenues for studying the modula-
tion of TF function. TF binding and activity are regulated by
post-translational modifications (Pufall et al. 2005), cofactor bind-
ing (Chodankar et al. 2014), and combinatorial control through
interaction with other TFs on DNA. The accurate modeling of
binding specificity over an essentially unlimited footprint size by
our method enables measurement of specificity for larger, heterol-
ogous complexes on DNA and the effect of sequence on their occu-
pancy. Further, SelexGLM allows us to quantify relatively modest
effects on specificity distributed over the entire footprint, which
evolution may exploit to fine-tune expression levels in a flexible
manner and which may be altered by phosphorylation of the TF
or cofactor binding (Kumar and Calhoun 2008; Chodankar et al.
2014). Thus, our approach may enable us to begin to understand
to what extent signal-dependent changes in expression are due
to altered TF specificity.

Methods

Expression and purification of GR/ AR-DBD

DNA sequences encoding the DBDs of human GR (GRo: 418-506)
and AR (AR-B: 557-647) were cloned into an N-terminal hise-
tagged vector (pET28a, Novagen). Vectors were transformed into
BL21DE3 Gold Escherichia coli (Agilent) cells and grown to an
ODgoo of between 0.2 and 0.4. The temperature was reduced to
27°C, and 10 pM of ZnCl, was added to the culture. Expression
of recombinant protein was induced with 0.5 mM IPTG for 4 h
when ODggo reaches 0.6 to 1. Cells were then spun down at
6000g for 15 min and then resuspended in Ni** column loading
buffer (25 mM TrisHCl at pH 7.5, 500 mM NacCl, 15 mM imidazole,
1 mM DTT, 1 mM PMSEF), snap frozen, and stored at —80°C until
purification. Cell suspensions were lysed with an EmulsiFlex C3
homogenizer running at 15,000 psi. After three passes or more
through the EmilsiFlex, soluble protein was isolated by ultracentri-
fugation at 40,000 rpm using a Beckman Ti-75 rotor for 1 h at 4°C
and then collecting the supernatant. The supernatant was loaded
onto nickel affinity column (GE Healthcare Life Sciences) pre-
equilibrated with 25 mM TrisHCI (pH 7.5), 500 mM NacCl, and
15 mM imidazole. Unbound protein was washed off the column
with equilibration buffer, followed by a low imidazole bump (25
mM TrisHCI at pH 7.5, 500 mM NaCl, 30 mM imidazole) to re-
move nonspecifically bound protein. A linear gradient of imidaz-
ole from 30 to 350 mM was used to elute DBD. Fractions
containing DBDs were pooled and dialyzed overnight at 4°C in
20 mM TrisHCI (pH7.5), 50 mM NacCl, 2.5 mM CaCl,, and 1 mM
DTT. Thrombin was used to cleave the hise-tag during the dialysis.
Dialyzed protein was ultracentrifuged (40,000 rpm, 1 h, 4°C) and
loaded onto a cation exchange column (HiTrap SP HP, GE
Healthcare Life Sciences) pre-eliqulibrated with 20 mM TrisHCl
(pH 7.5), 50 mM NacCl, and 1 mM DTT. The DBD was eluted in a
linear gradient of NaCl from 50 to 350 mM over 20 CVs.
Fractions containing DBD were pooled, concentrated (Amicon
Ultra - 3K, Millipore), and filtered (Ultrafree-CL), and monomers
were isolated by gel filtration (16/600 Superdex 200 PG, GE
LifeSciences) in 20 mM HEPES (pH 7.7), 100 mM NaCl, 1 mM
DTT. DBDs were collected and dialyzed against storage buffer (20
mM HEPES at pH 7.7, 100 mM NacCl, 1 mM DTT, 50% glycerol)
and quantified (280 nm, €= 5095M~'cm™! for both AR- and GR-
DBDs).

SELEX library design and synthesis

We designed our SELEX library to contain a 23-bp random region
flanked by primer binding regions conforming to the Illumina
TruSeq small RNA format for a total of 70 bp. The library was or-
dered in 1 mmol format from IDT as single strand with handmix
option over the randomized region. The complementary strand
was synthesized by Klenow extention using 5'-CyS5 labeled TSSR1
primer (Supplemental Table S1) on a PCR machine. Briefly, a reac-
tion containing 2.5 pM ssDNA library, 5 uM 5’-Cy5-TSSR1, 150 uM
dNTPs in NEB buffer 2 was incubated at 94°C for 3 min and then
gradually cooled down to 37°C over 45 min. Six units of Klenow
were added to every 25 pL of reaction, incubated at 37°C for 60
min, 72°C for 20 min, and gradually cooled down to 10°C over
45 min. dsDNA was purified using a MinElute PCR column
(Qiagen) and quantified by absorbance at 260 nm.

SELEX-seq

Selection

We wished to achieve an average 1x coverage for all possible
23-mers. To this end, SELEX was carried out in a 120-uL binding
reaction containing 0.63 uM purified DBD and 1 uM DNA library.
At this size, there are ~7.2 x 10'®* DNA molecules in the reaction,
representing ~1.02x coverage of all possible 23-mers (7.03 x
10'%). Binding was carried out in a buffer that approximates the
salt and crowding of the nucleus for 1 h at 4°C (20 mM TrisHCI
at pH 8.0, 150 mM KClI, 5% glycerol, 1 mM EDTA, 5 mM MgCl,,
40 ng/uL Poly(dIdC) [Sigma: P4925], 200 ng/uL BSA, 1 mM DTT,
200 mg/mL Ficoll PM400 [Sigma: F4375]). The reaction was then
run out in multiple wells of a 10% native polyacrylamide gel
(19:1 acrylamide/bis-acrylamide) in 0.5x TB containing 150 uM
MgCl, (89 mM Tris-boric acid, 150 uM MgCl, at pH 8.3) at 4°C.
In order to ensure that SHR-DBD:DNA complexes were trapped,
the sample was loaded while running at 200 V to minimize the dis-
sociation before entering the gel. DBD:DNA complexes were visu-
alized using CyS fluorescence (GE ImageQuant LAS4010), isolated
by excision, and bound DNA isolated by electroelution (Novagen
D-tube dialyzer, 3.5 kDa) into a native PAGE running buffer as de-
scribed above. Resulting DNA sequences were then purified using
Qiagen MinElute PCR clean-up, eluted (10 mM TrisHCI at pH 8.0)
to a final volume of 180 pL, and amplified to generate next round
of library as described below. Because of the relatively low affinity
of the SHRs for DNA, we were unable to shift enough DNA using a
limiting amount of protein (<1:5) to allow PCR generation of pools
for subsequent rounds without generating high-molecular-weight
artifacts. We therefore incubated the library with a high protein:
DNA ratio (0.63 uM:1 pM) to select all potential binding sequences
in early rounds. Please note that this protein:DNA ratio requires
more rounds of selection to begin linear enrichment of sequences.
Since submission of this paper, we have begun using a 1:10 pro-
tein:DNA ratio. It is critical to perform a size-selection (8% 1x TG
gel) from the recovered bound DNA to remove the high-molecu-
lar-weight DNA that comigrates with complexes prior to reampli-
fication. Together with controlled amplification cycle by qPCR
(see below), this improved SELEX protocol is artifact-free, saves a
few rounds of selection, and is less saturated at early rounds.
Typically, four to five rounds of selection are sufficient for factors
with long binding footprints (~25-30 bp).

Library regeneration

To generate enough DNA to perform each round of SELEX and se-
quencing library prep, the recovered DNA had to be carefully am-
plified. As these libraries were susceptible to amplification artifacts
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caused by overamplification (different type of artifact than those
comigrating with the complex), the optimal number of PCR cycles
was first determined by qPCR. Briefly, 1 uL of recovered dsDNA was
analyzed in 50 pL gPCR reaction (0.5 pM TSSRO primer
[Supplemental Table S1], 0.5 uM unlabeled TSSR1 primer, 200
M dNTPs, 0.1x SYBR green [Invitrogen: S-7563], 0.5 unit of
Phusion polymerase in 1x NEB Phusion HF buffer). The amplifica-
tion curve was then analyzed to determine the maximal number
of rounds within the linear amplification range (typically less
than 16 PCR cycles, depending on the amount of the template).
Subsequently, 170 pL recovered library was divided into 85 reac-
tions at 100 pL and amplified with the determined cycle numbers
(with 5-CyS-TSSR1). The amplification reactions were then
combined, purified, concentrated (Qiagen MinElute), and eluted
with 45 pL EB. The resulting libraries were then quantified
and mixed into a new binding reaction as described above.
Additional agarose gel electrophoresis is required to remove poly
(dIdC) if it is present in the recovered dsDNA, as the poly(dIdC) in-
terfered with PCR.

Library sequencing

To sequence the resulting libraries on the Illumina HiSeq platform,
additional adapter sequences were added by limited-cycle PCR.
Briefly, 400 ng of each SELEX library was amplified using the 5’
adapter primer (TSSR2) (Supplemental Table S1) and the 3" adapter
and barcoding primer (TSSR-RPIX) (Supplemental Table S1) in a 1-
mL PCR reaction (300 uM dNTPs, 0.8 uM TSSR2, 0.8 uM TSSR-
RPIX, 10 U Phusion polymerase in 1x Phusion HF buffer) for two
cycles. The added 71 bp allowed separation of the sequencing li-
brary from the adapter-less library on a 16% 0.5x TBE native poly-
acrylamide gel (19:1 acrylamide/bis-acrylamide) run at 200 V. The
141-bp band was excised and the DNA recovered by electroelution
as described above. The purity and concentration of the library was
determined by bioanalyzer (High-sensitivity dsDNA chip,
Agilent). Multiple sequencing libraries with compatible barcodes
were pooled in equimolar concentrations and sequenced on a
HiSeq2000 with 10 million reads per library, using single-end,
50-bp sequencing mode.

Motif discovery

Raw sequencing data processing

The sequenced libraries were processed using the R package SELEX
(R Core Team 2016; http://bioconductor.org/packages/SELEX). We
required sequencing reads to match the sequence TGGAA at posi-
tions 24-28. The package was also used to construct Markov mod-
els of RO and compute the information gain (KL divergence) after
affinity-based selection.

Model-based analysis (SelexGLM)

To avoid bias in our estimates, we split the reads into two equal-
sized random subsets. One half was used to define the “universe”
of unique variable regions (which we refer to as “probes”). Read
counts across this universe were defined based on the other half
of the reads, and a count of zero was registered for probes that
were only seen in the first half. A Markov model of order 5 was con-
structed from the RO probes using the selex.mm() function from
the SELEX package, and an affinity table for k = 15 was constructed
using selex.affinities(). An initial PSAM was constructed from the
relative affinity of all 15 x 3 single-base mutations of the optimal
15-mer, expanded to the desired size by adding eight neutral col-
umns on each side, and used as a seed. The subsequent iterative

procedure alternated between two steps. First, the current PSAM
was used to find the position/direction of highest affinity on either
strand, the optimal “view” on the probe. If that optimal affinity
was >95% of the sum over all positions (including the top posi-
tion), the probe was used in the analysis; otherwise, it was ignored.
The set of optimal positions in each of the accepted probes was
used to define a design matrix containing the base identity at
each position relative to the start of the optimal view. By using
the probe counts as independent variables, the logarithm of the
expected probe frequency in RO according to the Markov model
as offset, and a logarithmic link function, a fit was performed using
the glm() function. The regression coefficients were interpreted as
free-energy differences AAG. All our analyses were implemented in
the form of an R software package, deposited in Bioconductor (R
Core Team 2016; https://www.bioconductor.org/). All computa-
tional figure panels in this paper were produced fully automatical-
ly from the raw sequencing data using R scripts that use the SELEX
and SelexGLM packages.

ITC

ITC was performed using a Microcal VP-ITC (GE) at 25°C. Protein
and DNA samples were dialyzed into binding buffer (20 mM
HEPES-KOH at pH 7.7, 250 mM KCl, and 0.5 mM TCEP) at 4°C
for 36-48 h before use. DNA samples were loaded into the syringe
and titrated into the protein in the reaction cell. Each ITC experi-
ment consisted of an initial 2 pL injection, followed by 20 x 14.3
pL injections, with 240 sec between injections. For AR-DBD, 50
M DNA and 10 pM protein sample were used. For GR-DBD, 100
uM DNA and 20 pM protein sample were used to increase signal.
The raw isotherm was analyzed using NITPIC (Brautigam et al.
2016), followed by fitting to a one-site binding model in
SEDPHAT (Brautigam et al. 2016). The mean and standard devia-
tion of thermodynamic parameters were calculated based on at
least three experimental replicates.

ChIP-seq data analysis

Raw reads for AR (GSM759657 and GSM759658), GR
(GSM759669), and IgG control (GSM759671) data from ChIP-
seq experiments using LNCaP-1F5 cells were downloaded from
Gene Expression Omnibus and aligned to the hg19 assembly using
Bowtie 2 (Langmead and Salzberg 2012) with settings “--sensitive
--score-min L,-1.5,-0.3.” Peaks were called using MACS2 (Zhang et
al. 2008; https://github.com/taoliu/MACS) width default settings,
and the “fold enrichment” (column 7) was used to quantify peak
strength. The narrowPeak bed-file was filtered to retain one entry
per unique peak interval, and the intervals was standardized to
cover 200 bp. The PSAM score was then calculated for each offset
and orientation of the peak, and the largest value was recorded.

Statistical analysis

Figure 1

To minimize the influence of sequencing count on the calculation
of relative enrichment, we only used 15-mers with 100 or more
counts in both the R7 and R8 libraries. We consider the sequencing
count of each k-mer as a random variable of Poisson distribution,
where the k-mer count (n) is the best estimation of the mean (A).
Therefore, the variance is approximated by the k-mer count,
with an absolute error of Sqrt (n). A sequencing count of 100 or
more therefore restricts the absolute error no more than 10% of
the mean (A).
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Figures 2F, 3B, 4, Supplemental Figures S4, S7

To compare DNA-binding affinities of GR and AR for different se-
quence by EMSA or ITC, we performed at least three independent
experiments under the same conditions. The variance of measured
affinity is assumed to be normally distributed, and the t-test and P-
values are appropriate.

Data access

The raw SELEX-seq reads from this study have been submitted to
the Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/
sra) (Leinonen et al. 2011) under accession number SRP101815.
SelexGLM has been deposited in R/Bioconductor (https://www.
bioconductor.org/). Scripts for running SelexGLM on our data
sets and HT-SELEX data are included as Supplemental data.
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