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Unsymmetrical polysulfidation via designed
bilateral disulfurating reagents
Jiahui Xue1 & Xuefeng Jiang 1,2,3✉

Sulfur-sulfur motifs widely occur in vital function and drug design, which yearns for poly-

sulfide construction in an efficient manner. However, it is a great challenge to install desired

functional groups on both sides of sulfur-sulfur bonds at liberty. Herein, we designed a

mesocyclic bilateral disulfurating reagent for sequential assembly and modular installation of

polysulfides. Based on S-O bond dissociation energy imparity (mesocyclic compared to linear

imparity is at least 5.34 kcal mol−1 higher), diverse types of functional molecules can be

bridged via sulfur-sulfur bonds distinctly. With these stable reagents, excellent reactivities

with nucleophiles including C, N and S are comprehensively demonstrated, sequentially

installing on both sides of sulfur-sulfur motif with various substituents to afford six species of

unsymmetrical polysulfides including di-, tri- and even tetra-sulfides. Life-related molecules,

natural products and pharmaceuticals can be successively cross-linked with sulfur-sulfur

bond. Remarkably, the cyclization of tri- and tetra-peptides affords 15- and 18-membered

cyclic disulfide peptides with this reagent, respectively.
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Sulfur–sulfur bond has unique and significant roles in bio-
logical, pharmaceutical, and material fields. In organism,
tertiary structures of proteins are fixed and stabilized via the

linkage of sulfur–sulfur bridge among secondary structures,
contributing to the versatility of proteins with complex three-
dimensional structure (Fig. 1a)1,2. Polysulfides such as trisulfides
and tetrasulfides are primary H2S donors3, signaling of which
endogenous gasotransmitter occurs via persulfidation of cysteine
residues (RSH) to persulfides (RSSH) in proteins4 with the
reduction of glutathione5 (Fig. 1b). As a powerful linker,
sulfur–sulfur bridges cyclized peptide drugs with higher stability,
activity, and potency compared with corresponding linear ones
(Fig. 1c)6. Given the excellent metabolism of sulfur–sulfur bond
in organism, cutting-edge drug design strategies of antibody–drug
conjugates (ADCs)7–9 and small molecule-drug conjugates
(SMDCs)10–13 involved disulfur extensively, such as Mylotarg14

and Vintafolide15, in which sulfur–sulfur bond serves as a
reversible cross-linker. Cytotoxic drug molecule can be pro-
grammatically released relying on the reduction of glutathione
when delivered to the target cells (Fig. 1d)16. Furthermore,
polysulfides also possess high-capacity potential in cathode
materials for rechargeable lithium battery, among which out-
standing capacity of tetrasulfides are higher than that of trisulfides
(Fig. 1e)17–19.

Despite of the great significance of disulfur, the construction of
disulfide is not yet unhindered since of high reactivity from
sulfur–sulfur bond20–24. Though both nucleophilic25 and elec-
trophilic26 disulfurating reagents have been developed, free and
flexible installation on both sides of sulfur–sulfur motif is still an
insurmountable challenge. Based on our concept of mask effect27,
we envision that disulfurating reagents with bilateral masks will
cross-link two designated functional molecules with sulfur–sulfur
bond sequentially and modularly (Fig. 2a). Dialkoxydisulfide28,29

and diaminodisulfide30–32 have been investigated as sulfur
transfer reagents since 1970s. However, unsymmetrical poly-
sulfidation with disulfanyl motif has never been achieved owing
to the sharp contradiction raised by sequential and selective
cleavage of dual S-O(N) bonds. Based on preliminary calculation
of an assumed disulfurating process with molecular mechanics
method (MM2, Fig. 2b), energy released from the first S-O
cleavage is higher than the second due to the ring tension energy

(>5.34 kcal mol−1) when application of mesocyclic bilateral dis-
ulfide, enabling to differentiate S-O bond cleavage (for details, see
the Supplementary Figs. 7–9). Herein, we show a mesocyclic
bilateral disulfurating reagent for sequential assembly and mod-
ular installation of unsymmetric polysulfides.

Results
Syntheses of diaza-disulfides 3 and aza-trisulfides 4. With this
concept, a series of bilateral disulfurating reagents were synthe-
sized (Fig. 3a), whose structures were further confirmed through
X-ray analysis of 1f. In order to demonstrate the ladder-type
reactivities of reagents, aniline was used as a nucleophile under
the assistance of B(C6F5)3 as catalyst (Fig. 3b). As expected, linear
disulfurating reagents 1a and 1b resulted in poor selectivities
between two S-O/N bonds, bringing mixture when coupling with
aniline. Cyclic diaminodisulfide 1c refused to transfer disulfur
owing to week reactivity. Cyclic disulfane 1d and 1e failed to
generate mono-coupling product 2 owing to the decomposition
of starting material. Mono-aza-disulfide 2f was quantitatively
obtained when 10-membered disulfane 1f was employed as a
disulfurating reagent (for details, see the Supplementary Table 1).

Since the first S-O cleavage was controllably realized, another
nucleophile was subsequently subjected to aza-disulfide 2f under
the assistance of weak base lithium carbonate, affording
unsymmetrical diaza-disulfides 3 in Fig. 4. Diverse anilines
bearing electron-withdrawing and electron-donating functional
groups could be cross-linked with benzyl amines, straight-chain
alkylamines, diallylamine, pyridyl methylamine, tryptamine, and
even amino-acid esters at liberty (3a–3j). The unsymmetrical
diaza-disulfide structure of 3a was further confirmed through X-
ray analysis. Among them, compound 3d was afforded with a
yield of 55% with occurrence of the polymerization of vinyl group
accelerated by B(C6F5)333. The relative low efficiency of 3l, 3n,
and 3o with tryptophan motif resulted from a cyclic disulfide
intermediate generated from nucleophilic cyclization of 2-
position of indole (for details, see the Supplementary Fig. 2).
Amines with sensitive enamine structure, amino-acid esters and
antibiotic sulfamethazine underwent the connection smoothly
(3k–3m). Moreover, two different amino-acid esters could be
cross-linked through sulfur–sulfur bond straightforward (3n and
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3o). Notably, sulfamethazine and sulfamethoxazole could be
successfully linked with different peptides in good yields (3p and
3q), which displayed a great potential for the synthesis of SMDCs
drugs. Besides, the antibacterial sulfamethazine and cinacalcet, a
kind of calcimimetics, could be connected efficiently in good
yield (3r).

With this strategy, amines could be cross-linked with mercap-
tans via disulfur motif, affording aza-trisulfides 4 smoothly. Both
electron donor and acceptor substituted anilines were applied in
the connection compatibly (4a–4g). Weak nucleophilic thiophenol,
straight-chain dodecamercaptan, electron-rich furfuryl mercaptan,
electron-deficient 2-mercaptopyrimidine, and even cysteine could

be successfully introduced in this connection to afford aza-
trisulfides (4h–4m). Tryptamine, peptide, amines with sensitive
enamine structure, even sulfonamides like sulfamethazine,
sulfacetamide and sulfamethoxazole were cross-linked with
thiols by disulfur perfectly (4n–4s), which supplies an efficient
protocol for drug-linkage. Interestingly, we successfully synthe-
sized an aza-trisulfide with a long chain of thirty-four-atoms via
this method (4t). Tripeptides like H-Ala-Phe-Lys-OMe could
be cyclized to form 15-membered cyclic peptides 5a and
tetrapeptides like H-Ala-Phe-Trp-Lys-OMe could be cyclized to
form 18-membered cyclic peptides 5b under the standard
conditions (Fig. 5).
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Syntheses of aza-disulfides 6, trisulfides 7 and disulfides 8.
Furthermore, we established the cross-linkage between carbon
and nucleophiles with phenyl boric acid and bilateral dis-
ulfurating reagent 1f as coupling partner first (Fig. 6). With the
optimized conditions, mono-coupling was obtained in 84% yield
(for details see the Supplementary Table 2). Investigating on
nucleophiles, diverse aromatic rings were cross-linked with
amines, mercaptans, and electron-rich aromatics modularly,

affording aza-disulfides, trisulfides, and diaryl disulfides, respec-
tively. The arylboronic acids substituted with electron-
withdrawing and -donating functional groups afforded the
corresponding aza-disulfides readily (6a–6f, 7b–7g, and 8h).
Arylboronic acids derived from L-tyrosine and estrone were
compatible in the cross-linkage, affording a pathway to late-stage
modification of natural products (6g and 7h), though the slow
rate of transmetallation of boric acid with Cu[III] brought about
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insufficient efficiency in the first step. The scope of amine is quite
broad when it is served as a nucleophile. Anilines (6a and 6b),
aliphatic amines (6c–6e), amino-acid esters (6f and 6g), and
antibiotic sulfamethazine (6h) were all efficiently transformed to
the corresponding aza-disulfides in moderate yields. Trisulfides
could be easily obtained when mercaptans were applied in the
cross-coupling. Arylthiophenol like 2-mercaptopyrimidine pro-
vided diaryl trisulfide (7a). Other thiols even containing hydroxyl
(7b) and triethoxylsilyl ether (7h) could afforded trisulfides in
moderate yields. Sterically bulky aliphatic thiols, such as tert-
butylthiol and 1-adamantanethiol, showed great reactivity in this
reaction (7e and 7f). Furthermore, cysteine derivatives were
successfully converted to trisulfide derivatives (7d). Diaryl dis-
ulfides were generated when electron-rich aromatics were
accommodated under the standard conditions. (+)-δ-Toco-
pherol, a kind of vitamin E, could be disulfurated directly despite
of the presence of free hydroxyl group (8b) under nitrogen
atmosphere. Indole derivatives were excellent reactants even there
is a free amino group (8c). Heterocycles like thiophene could be
connected in the reaction as well (8g). The 2-position of N-
methyl pyrrole possesses sufficient reactivity in the reaction (8h).
The structure of 8f was further confirmed through X-ray analysis.

Synthesis of tetrasulfides 9. Unsymmetrical tetrasulfides was a
challenging subject in organic synthesis, but the connection
between two different mercaptans with 1d as a disulfurating
reagent afforded the desired tetrasulfides highly efficiently, owing
to large difference betwen two S-O bonds of eight-membered 1d
(9.53 kcal mol−1) (for details see the Supplementary Table 3). The
unsymmetrical tetrasulfide linkage was comprehensively investi-
gated in Fig. 7. Pyrimidine and pyrazine can be easily accomo-
dated under the standard conditions (9a–9c). The structure of 9a
was further confirmed through X-ray analysis as a linear tetra-
sulfide. Penicillamine and cysteine, two different amino acids,
were cross-linked with tetrasulfur fragment via this method (9d).
Cysteine (9e), tripeptide (9f), and even glucosinolate (9g) could
be cross-linked with 1-adamantanethiol, forming unsymmetrical
tetrasulfides. Sensitive thiols, which even contained hydroxyl
and triethoxylsilyl ether, could afforded tetrasulfides (9h).

Remarkably, volatile and low-polar allicin analog was modularly
provided when propanethiol and allyl mercaptan were used as
nucleophiles (9i).

Bilateral reagents 1d and 1f are odorless and stable solid stored
at −10 °C regardless of air and water. No decomposition was
observed even after 5 months, whereas they will deteriorate at
room temperature after 24 h. With these designed bilateral
reagents, we have established six different kinds of polysulfides,
most of which are quite stable under room temperature except
aza-trisulfides. They need to be stored in fridge (−10 °C) for long-
term preservation. Diaza-disulfides, aza-trisulfide, aza-disulfide,
and tetrasulfides are fragile to acidic conditions.

S2Cl2, a common disulfur structure, hardly achieves multiple
heteroatom hybrid connection on account of its fractious activity
and strong acidity. Taking synthesis of 9a as an example, the
selectivity of 9a to 9a-S5 is 2.5:1 when S2Cl2 was involved, much
lower than 15:1 afforded by our reagent 1d. Besides, there is a
huge gap between the efficiency afforded by S2Cl2 and 1d (8% vs
70%) (Fig. 8a). Di(1-phthalimidyl)disulfane (1b) reagent devel-
oped by Harpp30, which avoids the disadvantage of acidity with
S2Cl2, still remains less selective and efficient owing to the
nondistinctive S-N bonds. For instance, Harpp’s reagent gave a
mono-coupling product only in 30% and a bis-coupling
byproduct in 60% in the first step coupling with aniline.
Optimistically, quantitative yield of 2f could be obtained with
our reagent 1f (Fig. 8b).

Discussion
In summary, based on S-O bond dissociation energy nuance, a
series of mesocyclic bilateral disulfurating reagents were
designed for constructing six species of unsymmetrical poly-
sulfides. Disulfides, trisulfides and tetrasulfides can be accurately
achieved with amines, mercaptans, arylboronic acids, and
electron-rich aromatic molecules. A considerable range of sig-
nificant life-related molecules, such as sulfonamides, amino
acids, peptides, glucosinolate, vitamin E, and estrone could be
cross-linked at will with disulfur bridge to form varieties of
diverse functional molecules, which showcases great potential
for application of SMDCs and ADCs. Readily available linear
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peptide precursors can be tied up with disulfur fragment to form
unique cyclic peptides with a tetraheteroatomic motif. Drug
discovery with polysulfides is undergoing in our laboratory.

Methods
General procedure for syntheses of diaza-disulfides 3 and aza-trisulfides 4.
To a Schlenk tube were added amine (0.1 mmol, 1.0 equiv), B(C6F5)3 (0.5 mg, 1 mol
%),1f (29.0 mg, 0.105 mmol), and 1,4-dioxane (0.25 mL), the mixture was stirred at
r.t. for 4 h to obtain 2. After amine was consumed, another amine (0.12 mmol, 1.2
equiv) or thiol (0.11 mmol, 1.1 equiv) and Li2CO3 (7.4 mg, 0.1 mmol) were added
to the mixture. The mixture was stirred at r.t. for 8–24 h before it was concentrated
under vacuum. Purification by column chromatography afforded the desired
product 3 or 4.

General procedure for syntheses of aza-disulfides 6, trisulfides 7, and dis-
ulfides 8. To a Schlenk tube were added arylboronic acid (0.15 mmol, 1.5 equiv), 1f
(29 mg, 0.10 mmol), Cu(MeCN)4PF6 (3.7 mg, 10 mol%), 2,2′-bpy (3.1 mg, 20 mol
%), and redistilled CH2Cl2 (1 mL), the mixture was stirred at r.t. for 10 h under N2

atmosphere. After 1f was consumed, another nucleophile (0.12 mmol, 1.2 equiv)
was added to the mixture. The mixture was stirred at r.t. for 8 h under air before it
was concentrated under vacuum. Purification by column chromatography afforded
the desired product 6, 7, or 8.

General procedure for syntheses of tetrasulfides 9. To a solution of 1d (24.0
mg, 0.12 mmol) in MeOH (1mL) was added thiol (0.1 mmol, 1.0 equiv) in MeOH
(1mL) dropwise at −78 °C, then the mixture was stirred at −78 °C for 30 min
before MeOH was removed under vacuum. CH2Cl2 (1 mL), another thiol (0.11
mmol, 1.1 equiv) and B(C6F5)3 (0.5 mg, 0.001 mmol, 1 mol%) was added to the
mixture at r.t. for 4 h under air before it was concentrated under vacuum. Pur-
ification by column chromatography afforded the desired product 9.

Data availability
The X-ray crystallographic coordinates for the structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
number CCDC-1941481 (1f), 1941479 (3a), 1941480 (4d), 1941478 (8f), and 1941482
(9a). These data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with
this paper.
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