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Using the DiCoT framework for
integrated multimodal analysis
in mixed-reality training
environments
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Eduardo Davalos and Naveeduddin Mohammed

Open Ended Learning Environments, Department of Computer Science, Institute for Software

Integrated Systems, Vanderbilt University, Nashville, TN, United States

Simulation-based training (SBT) programs are commonly employed by

organizations to train individuals and teams for e�ective workplace cognitive

and psychomotor skills in a broad range of applications. Distributed cognition

has become a popular cognitive framework for the design and evaluation of

these SBT environments, with structured methodologies such as Distributed

Cognition for Teamwork (DiCoT) used for analysis. However, the analysis

and evaluations generated by such distributed cognition frameworks require

extensive domain-knowledge and manual coding and interpretation, and the

analysis is primarily qualitative. In this work, we propose and develop the

application of multimodal learning analysis techniques to SBT scenarios. Using

these analysis methods, we can use the rich multimodal data collected in

SBT environments to generate more automated interpretations of trainee

performance that supplement and extend traditional DiCoT analysis. To

demonstrate the use of these methods, we present a case study of nurses

training in a mixed-reality manikin-based (MRMB) training environment. We

show how the combined analysis of the video, speech, and eye-tracking

data collected as the nurses train in the MRMB environment supports and

enhances traditional qualitative DiCoT analysis. By applying such quantitative

data-driven analysis methods, we can better analyze trainee activities online

in SBT and MRMB environments. With continued development, these analysis

methods could be used to provide targeted feedback to learners, a detailed

review of training performance to the instructors, and data-driven evidence

for improving the environment to simulation designers.

KEYWORDS

distributed cognition, learning analytics (LA), multimodal data, simulation based

training (SBT), mixed reality (MR), DiCoT, human performance, multimodal learning

analytics (MMLA)
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1. Introduction

Modern workplaces require workers to develop and execute

a complex combination of cognitive, metacognitive, and

psychomotor skills to achieve effective performance. With

advanced technologies that have now become widely available,

faster and more effective skill development can be achieved by

designing effective training protocols that provide learners with

multiple opportunities to train along with formative feedback to

support continual improvement with clear pathways to achieve

proficiency in their tasks. Simulation-based training (SBT)

has become a popular paradigm to implement these training

protocols. These environments provide safe and repeatable

spaces for learners to practice and develop their workplace

skills, and combined with adequate debrief and feedback

they can support training in multiple domains (Ravert, 2002;

Gegenfurtner et al., 2014).

When SBT scenarios require collaboration and feedback

among multiple agents (real and virtual), it is common to

interpret the training scenarios and trainee performance using

theories of distributed cognition (Hollan et al., 2000; Hutchins,

2000). Furthermore, many SBT environments incorporate

physical movement and embodiment, teamwork behaviors, and

domain-specific tools to aid the workers, which match with the

core tenets of distributed cognition (Kaplan et al., 2021). This

is especially the case for SBT environments that are enhanced

using mixed-reality tools, in domains such as emergency

response, collaborative and embodied learning, and healthcare

(Rosen et al., 2008; Mirchi et al., 2020; Rokhsaritalemi et al.,

2020). Techniques such as Distributed Cognition for Teamwork

(DiCoT) have been successfully applied to analyze SBT, both

for the purposes of simulation design and learner feedback

(Hazlehurst et al., 2008; Rybing et al., 2016, 2017). Traditionally,

analysis of distributed cognition with these frameworks relies

heavily on human observations by researchers and domain

experts to provide a descriptive analysis of performance in the

learning and training scenarios.

In parallel, other learning domains, such as K-12 classrooms,

have seen a transformation in personalized learning through

data-driven learner modeling and multimodal learning

analytics (Hoppe, 2017; Ochoa et al., 2017). In these learning

environments, data from student interactions are logged and

analyzed to produce insights into the learners’ cognitive,

metacognitive, and affective processes, and the impact these

processes have on their learning outcomes. While learning

analytics has been employed to analyze learner performance in

some simulation-based training domains as well, for example, in

Biswas et al. (2019), Kim et al. (2018), and Martinez-Maldonado

et al. (2020a), these applications are less common and often

rely on cognitive theories derived from traditional learning

frameworks. For learning and training in mixed reality-based

simulation environments that involve multiple agents and

combination of physical and virtual spaces, more advanced

cognitive theories, such as distributed cognition, better match

the affordances provided by the environments.

Motivated by this gap, in this paper we develop a framework

to apply a mixed quantitative + qualitative approach that

combines multimodal data analysis in the context of distributed

cognition to analyze learner behavior and performance in

SBT environments. In particular, our studies focus on a

mixed-reality manikin-based (MRMB) environment for training

nurses to work with patients in hospital rooms. MRMB-based

simulation training provides realistic and high-fidelity scenarios

for nurses to train in. They have proven to be quite effective in

helping nurses develop and achieve proficiency in psychomotor,

cognitive, and social skills as they interact with patients and

equipment, make diagnoses, and provide interventions to

alleviate their patient’s problems (Hegland et al., 2017).

As a demonstration of our framework for tracking and

analyzing trainee behaviors and performance, we ran a

small study with nursing students in this MRMB training

environment. We have developed and applied our mixed

quantitative + qualitative methods approach to analyze the

data collected with video, audio, and eye tracking sensors. Our

computational architecture processes the raw multimodal data

streams and analyzes this data framed using the constraints and

insights derived from a qualitative analysis using the DiCoT

distributed cognition approach. The results are mapped to a

combined qualitative-quantitative representation of the nurses’

problem solving behaviors and performance, with the help of

our cognitive task model. With continued development and

refinement, results from our analysis methods can be provided

to learners as formative feedback and to instructors to help them

guide more detailed discussions during simulation debriefing.

The analysis presented in this paper supports an

investigation of two primary research questions:

1. How can multimodal learning analysis be used to support a

comprehensive analysis of distributed cognition in MRMB

simulation training environments?

2. How does temporal alignment and analysis of multiple data

modalities help us gain a deeper understanding of trainees’

actions in the context of the tasks they are performing in an

MRMB environment?

The rest of this paper is organized as follows. Section

2 presents previous work on SBT, the Distributed Cognition

framework, and an overview of multimodal data analysis

approaches applied to studying learner behaviors. Section 3

discusses our theoretical framing of the training scenarios and

analysis by combining cognitive task modeling, distributed

cognition through the DiCoT methodology, and multimodal

data analytics. Section 4 provides details of the methods we have

adopted in our study; first an overview of the MRMB-based

Nurse Training scenario, a Cognitive Task Analysis approach
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to interpreting and analyzing nurses’ actions in the training

environment and mapping them to higher level cognitive

behaviors, our adaptation of the DiCoT framework to study

nurse performance and behaviors in the training scenarios, and

a complete computational architecture to derive performance

analysis from data collected in the SBT environment. Section 5

presents details of the analyzes of the nurses’ performance and

behaviors in the case-studyMRMB-based training environment.

This is followed by a discussion of the results obtained for two

the scenarios and their broader implications in Section 6. Last,

Section 7 provides the conclusions of the paper, limitations with

the current approach, and directions for future work.

2. Background and related work

In this section, we briefly review past work in SBT,

distributed cognition, and multimodal analytics applied to

analyzing learners’ training performance and behaviors.

2.1. Simulation-based training

Simulation-based environments offer many attractive

properties for training applications; they provide controllable

and repeatable environments in which learners and trainees can

safely practice complex cognitive and psychomotor skills in rich

and dynamic scenario representations. Thus, it is not surprising

that simulation-based training has been widely adopted for a

variety of domains, and many studies have shown them to be

effective for both training and assessment (Ravert, 2002; Maran

and Glavin, 2003; Daniels and Auguste, 2013; Rybing, 2018).

In medical domains, SBT has been used since the 1950s when

the first commercial medical training manikin was released.

The manikin-based approach combined with computer-based

simulations continues to be widely utilized and studied today

(Cooper and Taqueti, 2008; Hazlehurst et al., 2008; Pimmer

et al., 2013; Rybing et al., 2017). For example, Rybing et al. (2017)

studied the use of simulation-based training for nurses in mass

causality events; Kunst et al. (2016) studied the use of manikin

simulation for mental health nursing; and Johnson et al. (2014)

found that mankin-based education was more effective than

web-based education for advanced practice nursing students.

For further information, see Cooper and Taqueti (2008) which

reviewed the history and development of manikin-based clinical

education, Al-Ghareeb and Cooper (2016) which reviews the

current state of manikin-based clinical education along with

its barriers and enablers, and Gegenfurtner et al. (2014) which

reviewed the larger context of digital simulation-based training.

In addition, the integration of simulation environments

with advanced computing resources has led to further advances

in the field. Computer-based simulations allow for automated

collection of trainee activity data, which can then be used to

evaluate their performance, and for debriefing and after-action

reviews (Ravert, 2002; Sawyer and Deering, 2013). In medical

domains, a lot of the computer-based simulation training relies

on high fidelity manikins that trainees can realistically interact

with to practice their clinical and teamwork skills (Al-Ghareeb

and Cooper, 2016). This creates mixed-reality environments,

where trainees act in a physical space, which includes real

equipment that interfaces with a digital simulation. The digital

simulation controls the patient manikin’s vital signs and overall

health manifestations. In addition, the digital simulation can

take into account trainees actions in the environment and on

the manikin, and adapt the manikin’s vital signs and responses

to these actions.

The overall goal of SBT is to help learners to develop a set

of skills that are transferable, meaning the skills acquired in the

simulation can be utilized in other simulation settings and in

real-world situations. In particular, one of the primary goals for

medical SBT is to help trainees develop skills that transfer from

the simulation environments to actual medical settings with real

patients. Application validity measures capture how well SBT

environments accomplish this transfer for a sufficiently large

population of trainees (Feinstein and Cannon, 2002).

Prior work has shown that providing formative feedback

during debrief after the simulation improves both the

application validity of the simulation, as well as the competence

and self-efficacy of the learners (Gegenfurtner et al., 2014). It is

important to note that the formative feedback provided must be

discussion and explanation focused, and not purely evaluative

in order to preserve the psychological safety of the training

environment (Kang and Min, 2019). While similar simulation

environments are also used for learner assessment (Cook et al.,

2014), our focus in this paper is on simulation-based training,

where learners must feel safe to practice and not fear that

mistakes will have long-term negative consequences (Kang and

Min, 2019; Park and Kim, 2021). Taking this into account, our

work focuses on building analysis methods designed to provide

feedback that will guide and support discussion and learning

during debrief. Our analysis methods are based on multimodal

data generated by the mixed-reality environment grounded in

the theory and practice of distributed cognition.

2.2. Distributed cognition

Traditionally, cognition is studied with the individual as

the basic unit of analysis. In essence, this classical view of

cognition views the brain of an individual as a processing

unit, which takes input from the outside world, manipulates

this information, and produces some output, often in the

form of body functions, such as movement and speech (Clark,

1997). However, this view of an individual mind as the basic

unit of cognition ignores the complex relationship between

the mind, the body, and the larger environment. The ability
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to leverage movement, tools, technology, collective wisdom,

and social structures allows humans to achieve far more than

an isolated individual mind alone can, but the traditional

view of cognition marginalizes these embodied, cultural, and

environmental components (Geertz, 1973; Hazlehurst et al.,

2008).

These limitations with classical cognition led some cognitive

scientists, such as Clark, Hutchins, Cole, and others in

the late twentieth century to begin developing alternative

systems of examining cognition (Hutchins, 1995; Clark, 1997;

Cole, 1998). One such alternative approach is Distributed

Cognition, developed by Hutchins and colleagues (Hutchins,

1991, 1995, 2000, 2006). Distributed cognition (DCog) extends

the boundaries of classical cognition from the mind of an

individual in isolation into a collective that includes the

individual’s mind, body, other people, and the environment

in which the cognition is taking place. Instead of the unit

of cognitive analysis being the individual mind, distributed

cognition treats the entire activity system as the unit of analysis,

with the goal of understanding cognition at this system level

(Hazlehurst et al., 2008; Rybing, 2018).

Hutchins argues that cognition occurs across at least three

different modalities (Hutchins, 2000). First, cognition can be

distributed across members of a social group. This can be seen as

individuals coming together to solve a problem and contribute

to a common goal. Second, cognition can be distributed between

internal and external structures. This is most evident in the use

of tools, where individuals offload some cognitive processing to

a material or environmental object, but can also have some less

apparent manifestations, such as the layout of a physical space

affecting cognition. Third, cognition can be distributed across

time, with the nature and outcomes of earlier events affecting

the nature of later events (Hutchins, 2000).

Distributed cognition is particularly relevant in analyzing

training performance and behaviors in mixed-reality,

simulation-based training. Mixed-reality SBT environments

manifest many of the characteristics of these three distributed

modalities. SBT inherently contains social structures and roles

over which cognition is distributed. When multiple learners

train simultaneously in the environment, the social distribution

and interactions can be studied explicitly, with the learners

collaborating and sharing the cognitive load and decision

making processes in the task. Even in SBT cases with only one

learner, there is a social distribution between the learner and

the instructor, with information traveling and transforming

between the instructor and student as they interact. SBT also

contains instances of cognition distributed between internal

and external structures. In mixed-reality scenarios, there is a

distribution between the learners’ minds, the physical space they

inhabit, and the digital space with accompanying interfaces that

are controlled by the simulation. In addition, many training

domains require learners to learn and operate domain-specific

tools, which also represent artifacts of distributed cognition.

Finally, SBT is necessarily temporal, as learners practice skills

that change (improve or degrade) over time. Thus, previous

practice and previous actions will affect the ways in which

learners approach current cognitive tasks.

Other studies which focus on nursing simulation-based

training have also adopted distributed cognition for their

analysis. Rybing et al. (2017) use distributed cognition to

analyze nursing students training on amass causality simulation;

Pimmer et al. (2013) contrast various cognitive theories used in

clinical learning to highlight advantages of distributed cognition;

and (Hazlehurst et al., 2008) discuss the use of distributed

cognition as a framework for medical informatics. Because

of this overlap between the distributed cognition framework

and the modeling and interpretation of learner behavior in

simulation based training in general, and in medical and nurse

training in particular, we ground our analysis methods using

Distributed Cognition as a theoretical framework.

2.3. The DiCoT analysis framework

Despite the advantages of distributed cognition as a

cognitive framework, application of the framework requires

specific methodologies that are not outlined in the original

work. Several structured qualitative analysis methodologies

have been developed for analyzing distributed cognition in

different domains and scenarios. For example, Wright et al.

(2000) proposed the Resource Model to study human computer

interaction in a team framework, Galliers et al. (2007) proposed

the Determining Information Flow Breakdown (DIB) model to

study organizational learning in response to adverse events

in medical settings, and Stanton (2014) proposed the Event

Analysis of Systemic Teamwork (EAST) framework that employs

three network models (i.e., task, social and information) to

analyze the interactions between the sound room and control

room in a submarine. Following the wide adoption of distributed

cognition models and their success in analyzing trainee

behaviors in the medical training domain (e.g., Hazlehurst et al.,

2008; Pimmer et al., 2013; Rybing et al., 2017), we adopt the

Distributed Cognition for Teamwork (DiCoT) model proposed

by Blandford and Furniss (2006).

DiCoT is a qualitative analysis framework designed to

analyze distributed cognition by breaking down a cognitive

system into five independent themes: (1) information flow,

(2) artifact and environment, (3) physical layout, (4) social

interactions, and (5) temporal evolution (Blandford and Furniss,

2006). The information flow model focuses on how information

propagates and transforms through the system. The artifact

theme follows how tools can be used to aid the cognition

of the system. The physical layout theme examines the way

in which objects and people are arranged in a space and

how that arrangement affects cognition. The social model

focuses on the relationships between people in the cognitive
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FIGURE 1

Illustration of the interactions between each of the five DiCoT

themes and how they work together to construct the entire

cognitive system.

system and the individual’s differing knowledge, skills, and

abilities. Finally, the temporal evolution model focuses on

how the system changes over time. Each of the five DiCoT

themes contributed components to our understanding the

overall cognitive processes and psychomotor skills that trainees

employed in the environment, but the themes are also highly

interconnected. Figure 1 illustrates how the themes manifest

within a cognitive system and the various ways in which

the different themes interact with one another. For example,

social roles mediate how information flows between different

individuals; physical layout mediates how information flows

between individuals and the environment; and temporal

evolution describes and mediates how these processes change

over time. By analyzing each of the themes individually and how

each theme interacts with the others, we can fully understand

the distributed cognition processes and psychomotor skills being

enacted in the system.

In order to analyze each of the themes and their interactions,

the DiCoT methodology defines several principles that describe

the ways in which each component of the system contributes

to the overall cognitive process. For example, principle 10:

Information Hubs, describes that certain artifacts in the system

are central focuses where different channels of informationmeet.

This principle is primarily related to the information flow and

artifacts and environment themes. By analyzing the different

artifacts in a distributed cognitive system and how they are

referenced for information, we can determine which artifacts

represent information hubs and how the design of those hubs

influences the overall cognition of the system. Each of the 18

principles is analyzed in a similar way, but relate to other

components of the system. All eighteen DiCoT principles are

summarized in Table 1. By analyzing the distributed cognition

system and identifying the manifestations of each of these 18

principles within the system, we can understand how each of the

5 DiCoT themes work together to construct the overall cognition

of the system. We discuss our qualitative analysis of the nurse

training simulation using DiCoT framework in Section 4.3.

2.4. Multimodal learning analysis

Learner modeling based on student performance and

behavior has been the cornerstone for adapting and

personalizing computer-based learning environments to

individual learner needs. More recently, data-driven approaches

to learner modeling based on learning analytics and machine

learning methods have become popular for capturing and

analyzing learner behaviors in complex instructional and

training domains (Hoppe, 2017). With the development of

these data-driven learning analytics techniques gives rise to

the question: What forms of data need to be collected to enable

meaningful analysis in specific learning scenarios? In traditional

computer based learning environments, typical data collection

includes interactions with the system that can be logged.

Analysis of the logged data paints a reasonable picture of the

learners’ activities in the context of the tasks they are performing

in the environment (Hoppe, 2017; Ochoa et al., 2017).

However, more recent work has begun to point out the

potential limitations of these traditional methods. By only using

logged data that is easy to collect, we may miss out on important

context and interpretation that the information sources may

provide. Therefore, we may require additional sensors to collect

such data (Ochoa et al., 2017). In other words, to aviod the so-

called streetlight effect (Freedman, 2010), researchers have begun

to consider alternative and more complex data sources, such as

physical movement, gestures, and posture captured with video;

dialogue captured using microphones; stress levels captured

with biometric sensors; and gaze and attention collected using

eye tracking devices. Data collected using these modalities

become especially important when the learning or training task

requires operations in physical or mixed-reality spaces, and

when learners work in groups to accomplish overall goals.

Combining all of the modalities of operation (e.g., activities,

communication, affective states, stress levels, and gaze) can

lead to analyzes that provide a more complete picture of

the cognitive, psychomotor, and metacognitive processes of

the learners (Blikstein and Worsley, 2016). The focus on

collection, processing, and analysis of this quantity and variety

of data has been the basis for new research and analyzes in

the field of multimodal learning analytics (MMLA) (Blikstein,

2013; Blikstein and Worsley, 2016; Worsley and Martinez-

Maldonado, 2018). These new MMLA methods have also

been applied to simulation-based training environments. For
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TABLE 1 The 18 principles of DiCoT analysis, summarized from

Blandford and Furniss (2006).

Principle name Description

1. Space and cognition The role space and spatial layout play in

supporting cognition

2. Perceptual principle Spatial representations support cognition more

than non-spatial representations, as long as there

is a clear mapping between the space and that

which the space represents

3. Naturalness principle Cognition is aided when the form of a

representation matches the properties of what it

represents

4. Subtle bodily supports Individuals often use their body to support

cognitive processes

5. Situation awareness People need to be informed of and understand

what has previously happened, what is currently

going on, and what is planned

6. Horizon of

observation

The information that can be seen or heard by a

person; closely related to and influencing situation

awareness

7. Arrangement of

equipment

The layout of equipment affects what information

people have access to, and thus their ability to

process it

8. Information

movement

Information moves around a system in a number

of ways, which all have unique functional

consequences

9. Information

transformation

Information can be represented in many forms,

and often must transform between these forms

when moving and when being processed

10. Information hubs A central focus or source where different channels

of information meet and are processed together

11. Buffering If incoming information interferes with ongoing

activities, buffering allows the information to be

held until an appropriate time where it will not

interfere

12. Communication

bandwidth

Different modalities of communication often carry

different amounts of information. For example,

face-to-face communication offers more

information than computer-mediated

communication

13. Informal

communication

Not all communication is formal, and sometimes

informal communication can carry very important

information that is not otherwise passed

14. Behavioral trigger

factors

Groups of people can operate together without an

overall plan by individually responding

appropriately to certain local trigger factors

15. Mediating artifacts People often bring artifacts into coordination to

support completion of a task

(Continued)

TABLE 1 Continued

Principle name Description

16. Creating scaffolding People often simplify their cognitive tasks by

utilizing their environment

17. Representation-Goal

Parity

When an artifact is used to represent the system’s

goal, representations closer to the goal of the user

are more powerful

18. Coordination of

Resources

Different information structures can be

coordinated to aid in cognition

example, Martinez-Maldonado et al. (2020b) examined how to

design actionable learning analytics for manikin-based nurse

training; Di Mitri et al. (2019) designed MMLA methods for

detecting mistakes during CPR training; and López et al. (2021)

studied collaborative behaviors in serious tabletop games using

MMLA methods.

In our own previous work, we have applied MMLAmethods

to analyze teamwork behaviors in simulation-based training

environments, including those that incorporate mixed-reality

components (Biswas et al., 2019; Vatral et al., 2021, 2022).

Our analyzes of learner performance and behaviors have been

based on cognitive task analysis, which is a set of methods

commonly used to describe and decompose complex problem-

solving domains into their core cognitive proficiencies (Clark

and Estes, 1996; Schraagen et al., 2000; Zachary et al., 2000).

These cognitive components describe multiple parameters that

include goal setting, planning, decision making, declarative and

procedure knowledge and execution, and situational awareness

(Militello and Hutton, 1998). The models and insights generated

from the task analysis are often critical in the design and

development of training systems for these complex domains.

2.5. Cognitive task analysis

Cognitive Task Analysis typically draws from multiple

sources. This includes a review of relevant literature, interviews

with domain experts, and observing and interpreting training

activities in the mixed reality simulation environment in terms

of their conceptual and procedural components. From this

analysis, one can build a comprehensive task-subtask hierarchy

that links high-level tasks and subtasks down to specific

observable skills and activities performed by trainees (Biswas

et al., 2019; Vatral et al., 2021). The hierarchy is designed

to support the inference of complex cognitive concepts by

analyzing observable behaviors and data. Cognitive processes

related to task execution are located at the highest level of

the task hierarchy, and each deepening level representing more
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concrete and observable manifestations of these concepts within

the task domain.

By analyzing the observable multimodal data at the lowest

levels of the hierarchy and propagating the results up to higher

levels, we can generate inferences about cognitive activities and

competencies of trainees. In this way, insights generated from

cognitive task analysis combine top-down model-driven and

bottom-up data-driven approaches. In previous work, we have

applied cognitive task analysis methods to demonstrate how

teamwork in mixed-reality SBTs can be evaluated using MMLA

(Vatral et al., 2022). In this paper, we extend this work and

further ground the MMLA analyzes methods in distributed

cognition, as described in the next section.

3. Theoretical framework

Our goal in this work is to present a framework for

combining the benefits and insights from qualitative analysis

of distributed cognition through the DiCoT methodology

and quantitative analysis through data-driven multimodal

analytics. Analysis using qualitative methods (Cognitive Task

Analysis, DiCoT) provides domain semantics to inform how

the quantitative analysis (MMLA) is performed, and in turn,

results of the quantitative analysis provide new insights into the

domain and the learner behaviors that inform a richer qualitative

analysis. We believe that by presenting an integrated qualitative

and quantitative analysis that inform and shape one another,

the strengths of each method can be amplified, thus providing

for a deeper insights than each method individually and

better feedback to learners, instructors, simulation designers,

and researchers.

Our overall theoretical framework, illustrated in Figure 2,

breaks down this cyclic combined qualitative and quantitative

analysis approach into threemajor components: DiCoT analysis,

multimodal analytics, and the cognitive task model. The

cognitive task model provides the cornerstone of the overall

framework. For our MRMB simulation environment, we frame

the task model around the set of primary tasks that define

the training or learning domain. These concepts represent the

mapping of the task domain into the overarching cognitive

processes, psychomotor skills, affective states, and collaborative

processes that are relevant to the task domain. For example,

learning and training domains typically include high level

cognitive processes such as information acquisition, problem

solving, solution construction, solution testing, and evaluation.

These processes, in a broad sense, remain invariant across

multiple domains and training scenarios. However, their

interpretation and execution may differ depending on the

training scenario and the domain under consideration.

Next, we construct the hierarchical structure by breaking

down the highest level cognitive, psychomotor, affective, and

collaboration concepts into their more domain specific sub-

components and sub-tasks using a progressive elaboration

process. The primary reason for creating the different levels of

abstraction is to ensure that variations of training scenarios,

though they may differ in their lower-level task definitions and

sub-divisions, map onto relevant higher level processes and help

define proficiency measures in the task domain.

In more detail, primary tasks are decomposed into sub-

tasks; sub-tasks are further decomposed into more fine-grained

sub-tasks; and so on until we reach a set of basic task units

that cannot be meaningfully decomposed further. We call this

basic unit an action. Each sub-task represents a constituent

requirement that is sequenced and completed to accomplish

the higher-level tasks in the layer above them. Moving toward

the lower levels of the hierarchy, the sub-tasks become more

and more domain-specific, and at the lowest levels map

onto observable actions and behaviors. For example, consider

information-acquisition as the highest-level cognitive task. In

order to acquire information, we may visit a library, search the

internet, ask a friend, and so on. The specific sub-tasks included

within the task model are limited by the domain being analyzed.

By limiting each level to sub-tasks specific to the given domain,

we follow a top-down approach to modeling and produce a task

space model of the domain.

While the modeling of the domain is approached top-down,

the interpretation of the learner actions and behaviors uses the

model in a bottom-up manner, interpreting the multimodal

data collected from the environment into lower level activities

and behaviors. We employ a variety of multimodal analysis

techniques to link from observable data back to the interpreted

actions performed by the learners. This is illustrated by the

arrow linking multimodal analytics (green) to the cognitive

task model (blue) in Figure 2. The specific analytics and

algorithmic methods utilized depend on the domain being

analyzed and the specific sensors that are available. For example,

if microphones are available, we can apply natural language

processing algorithms to convert the audio signals to semantic

information on the topic of the conversation. Similarly, if we

collect video data, then computer vision techniques can be used

to understand movement actions within the simulation space.

The design of these analytics and algorithmic methods within a

specific domain are informed by the qualitative DiCoT analysis,

as illustrated by the arrow linking distributed cognition (yellow)

to multimodal analytics (green) in Figure 2. By analyzing the

training environment using the DiCoT methodology, we can

determine important components of the task domain that

inform the categories and classes for the algorithmic models.

For example, in our nursing domain, the DiCoT analysis

revealed that there are four meaningful semantic areas in the

simulation space: left of the bed, right of the bed, foot of the

bed, and outside the room (see Section 4.3.1). Thus, we can

adopt this result from the qualitative analysis into the design

of the quantitative algorithmic methods by using the video data
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FIGURE 2

The overall theoretical framework to combine qualitative DiCoT analysis with quantitative multimodal analytics for understanding learner

behaviors in simulation-based training.

to determine when the nurses move between each of these four

semantic regions (see Section 4.4.1). As a second example, in

our nursing domain, the DiCoT analysis revealed the various

artifacts that are semantically important to information flow (see

Section 4.3.2). We can adopt this result by using the eye-tracking

gaze data and mapping the raw x-y gaze position data onto

instances where the nurse is looking at each of the semantically

important artifacts identified by the DiCoT analysis (see Section

4.4.4). In this way, we use the results of DiCoT analysis to create

algorithmicmodels that convert raw data (e.g., video, audio, etc.)

into action- and behavior-level interpretations.

Once we convert from the raw data to the action- and

behavior-level interpretations, they are mapped onto a common

timeline. As a next step, we can develop algorithms to interpret

temporal sequences of actions and behaviors, and roll them

up into upper sub-task levels. Some actions only contribute

to a single sub-task, but others may link to multiple sub-

tasks. These multiple hierarchical links in the task model add

expressivity to our task models, but may make the analysis

process more challenging because multiple inferences may

have to be made on similar action sequences using additional

context information.

We systematize this interpretation process by once again

introducing results from the qualitative DiCoT analysis of the

task environment, as illustrated by the arrow linking distributed

cognition (yellow) to the cognitive task model (blue) in Figure 2.

Results from the DiCoT analysis can provide semantic context

to the interpretation of learner actions within the environment,

and map them onto the sub-tasks to which the individual

action may contribute. For example, when analyzing a group

of participants in a restaurant, collected sensor data, such as

video analysis or accelerometers, may indicate that a specific

participant was performing the action of cutting with a knife.

This action may contribute to at least two potential disjoint

sub-tasks of interest: eating food or cooking food. However,

based on a previous DiCoT analysis of the environment, we

know that the physical layout of the restaurant strongly mediates

the interpretation of these two sub-tasks; cooking activities

occur in the kitchen, while eating activities occur primarily

in the dining room. By adding this semantic context derived

from the physical layout theme of the DiCoT analysis, we

know that we can simply look at the participant’s position in

the restaurant to disambiguate this knife cutting action. As

an extension, if we captured participant dialog and additional

video around the cutting event, we may use information flow

DiCoT theme to analyze the motivations for this action within a

given sub-task, for example, to deduce that one participant was

dividing his portion of food to share with another as part of the

eating process.

While this restaurant scenario analysis represents a

simplistic example, it demonstrates the second way in which

DiCoT is important for adding semantic context to our

computational analysis. First, DiCoT informs the design of

algorithms and models to convert raw data to action-level

interpretations. Second, DiCoT provides context-specific

disambiguation when mapping lower-level action and sub-tasks

onto high-level tasks and sub-tasks. By iterative analysis, we can

propagate learners’ activities up to the highest-levels of the task
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model to understand their cognitive, psychomotor, affective,

and collaborative behaviors.

By presenting the learners and instructors with quantitative

metrics and qualitative descriptions of learner activities at

multiple levels of the task model hierarchy, we can provide a

basis for further discussion at different levels of detail during

simulation debrief, while also tracking progress and changes in

learner behavior over time. In addition, the results generated

from this computational analysis also provide additional insights

back into semantic models of the domain and inform a richer

qualitative (DiCoT) analysis and task model construction. This

idea is illustrated by the cyclic link from the cognitive task model

(blue) to distributed cognition (yellow) in Figure 2. For example,

analysis of the data might reveal certain learner behaviors

that are not well accounted for in the current DiCoT analysis

and task models. By presenting this result back to researchers,

these analysis models can be refined and updated to contain

a more complete understanding of the task environment and

learner behaviors. This creates the loop back in our framework.

Qualitative DiCoT and task analysis methods provide domain

semantics and systematic methods for interpreting collected

learner data, and the analysis of collected learner data reveals

new insights that can be used to refine the DiCoT and task

models. In the next section, we apply our task modeling

framework combined with the DiCoT and multimodal analyzes

to our MRMB nurse training case-study.

4. Methods

In this section, we demonstrate application of our theoretical

framework to a small case study of nurses training in an

MRMB environment. We begin with a complete description of

the case study, including description of the affordances of the

simulation environment and all of the data that was collected

for the analysis. After this, we show how each of the three

components of our theoretical framework apply to interpreting

and analyzing nurses’ activities and behaviors in this domain.

First, we explain the construction and structure of the complete

cognitive task model, from the high-level abstract cognitive

tasks down to specific actions and observable data. Second,

we describe a DiCoT analysis of the training environment,

explaining each of the five themes in depth. Finally, we present

a computational architecture, based on multimodal analysis,

which tracks the raw multimodal data collected from the

training environment through the cognitive task model to

generate inferences, analytics, and performance metrics that

describe the nurses’ training behaviors within the context of the

distributed cognition system.

Following the description of each component of the

theoretical framework applied to the case study, we demonstrate

the processes of following the collected data through the

framework to generate inferences about nurse behaviors.

4.1. Case study-MRMB nurse training

The approach presented in this paper is supported by a

case study that analyzes student nurses training in an MRMB

environment. The training took place in a simulated hospital

room, which was equipped with standard medical equipment

and monitors for information display and communication of

the providers orders. The patient was represented by a high-

fidelity manikin that was exhibiting distress symptoms and

a deteriorating health state. The simulated hospital room is

displayed in Figure 3. All of the participating students were

undergraduate (BSN) level nursing students in their first

year and prior to the study had completed one semester of

coursework, which included some simulations similar to those

studied in this work. The simulations we study in this paper

were part of the students’ normal coursework requirements, and

no changes to the content of the simulations were made by

the researchers.

In more detail, the patient manikin is a SimMan 3G

advanced patient simulator from Laerdal Healthcare that

supports hands-on deliberate practice, development of decision-

making skills, and improved communication and teamwork

among learners (Laerdal Medical, 2022b). Prior to beginning the

training, the basic scenario and simulation is pre-programmed

using the Laerdal Learning Application (LLEAP) (Laerdal

Medical, 2022a). This allows the instructors and simulation

designers to set the initial state (vital signs, physical presentation,

eye and chest movements, etc.) of the manikin, as well as a

preset timeline of cue-action associations to change the state

of the manikin as time progresses and the scenario evolves.

For example, the timeline might be programmed to make the

manikin’s heart rate rise steadily if a nurse does not begin to

administer proper medication within 10 min of the start of the

training episode.

In addition to these presets created prior to training, an

instructor in a control room can modify the patient state in real-

time by interacting through the LLEAP software. The instructors

watch the simulation from behind a one-way glass partition,

allowing them to observe the nurses’ activities, conversations,

and interventions. Then, based on the nurses’ specific actions (or

lack of actions), the instructor makes real-time modifications to

the simulation on the LLEAP software. The instructor can also

talk as the patient through a microphone in the control room,

which can be heard through speakers on the manikin. In the

current study, which represented an early training exercise in

the nursing curriculum, the instructor was closely involved in

the progression of the simulation and manikin.

Three groups of eight nursing students participated in

the study over 2 days, taking turns playing their assigned

roles in each scenario. The primary participant in each

instance of the simulation was a nurse performing a routine

assessment on a hospital patient, and discovering a condition

that required immediate attention and additional interventions.
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FIGURE 3

Layout of the simulated hospital room from three viewpoints: the head camera (top-left), foot camera (bottom-left), and an abstract map

representation (right).

After diagnosing the patient’s condition and performing any

relevant immediate stabilization, the nurse was required

to call the patient’s assigned medical provider to confirm

an intervention that would alleviate the patient’s newly

discovered condition.

Students in the group who were not actively participating in

a given run of the scenario watched from a live camera feed in

a separate debriefing room. After each scenario was completed,

the instructors and the participants joined the full group in the

debriefing room, and the instructor guided a discussion-based

debriefing of the simulation. Each instance of the simulation

took between 5 and 20 min, and parameters of the patient’s

condition were changed between each run to ensure the next set

of students did not come into the scenario with full knowledge

of the condition and the required intervention.

All students who participated in the study provided their

informed consent. With this consent, we collected data using

multiple sensors: (1) video data from two overhead cameras

that captured the physical movement and activities of all agents

in the room (nurses, providers, and the manikin); (2) audio

data also from the camera videos that captured the nurse’s

dialog with the patient and the provider; (3) the simulation log

files that tracked all of the patient’s vital signs and data from

the sensors on the manikin. In addition, a few students, who

provided a second informed consent on collecting eye tracking

data, wore eye tracking glasses that allowed us to record their

gaze as they worked through the simulated scenario. The study

was approved by the Vanderbilt University Institutional Review

Board (IRB).

In this paper, we chose two of the recorded scenarios for

our case study, in both of which the primary participant wore

the eye tracking glasses. In the first scenario (S1), the fictitious

patient, Patrice Davis, is receiving an infusion of blood after a

bowel resection surgery the night prior. The patient called the

nurse stating that she is not feeling well. The goal for this training

scenario is for the nurse to assess the patient and diagnose

that the wrong blood type is being administered to the patient.

The intervention requires the nurse to stop the current infusion

and call the provider to discuss further treatment. The primary

participant in S1 was a 23 year old female nursing student.

In the second scenario (S2), the same fictitious patient,

sometime later in the day, again calls the nurse complaining of

pain in the right leg, stating that yesterday “it wasn’t bothering

me that much but today the pain is worse.” The goal of this

training exercise is for the nurse to assess the patient and

diagnose a potential deep-vein thrombosis (blood clot) in her
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right leg. The intervention requires the nurse to call the provider

for updated treatment orders and to schedule medical imaging

for the patient. The primary participant in S2 was a 24 year old

female nursing student.

4.2. Cognitive task analysis for learner
behaviors

Using the cognitive task analysis methods previously

described, we generated a comprehensive task hierarchy for the

nurse training domain. This hierarchy is illustrated in Figure 4.

At the highest level of the task model, the overall task breaks

down into three primary subtasks: (1) Information gathering, (2)

Assessment, and (3) Intervention.

Information gathering represents the processes nurses apply

to retrieve new information and monitor ongoing concepts.

This process can be further characterized as either general or

diagnostic. In general information gathering, nurses collect non-

specific patient and situational information that they use to

generate an overall mental model of the patient state. The

information collected in this phase is largely standardized for

each patient; for example, vital signs are often collected to

give a broad overview of patient health. The mental model

generated during this phase then leads the nurse to the

diagnostic information gathering phase, where the nurse collects

more pointed and specific information in service of diagnosing

a specific issue with the patient. For example, if dialogue

during the general information gathering phase reveals that

the patient is experiencing leg pain, then the nurse might

follow-up with a physical examination of the leg during the

diagnostic phase in order to gather more specific information

about the issue.

Assessment represents the processes used to synthesize

gathered information in order to construct and evaluate specific

solutions and interventions. In addition, we further decompose

assessment into intervention construction and intervention

evaluation. During construction, nurses synthesize and combine

the information gathered from the environment to generate an

intervention that represents a plan of action(s). By drawing on

their prior knowledge of patient health and clinical procedures,

and their current mental model of this specific patient

established from the gathered information, nurses differentially

construct a plan for how to help the patient.

During evaluation, similar processes are applied to

synthesize information, but this time with a further emphasis

placed on monitoring the progress of patient health over time.

Temporally, the evaluation phase typically takes place after

the nurse has already intervened in some way, and serves as a

method to verify that progress toward the intervention goals is

being achieved. The evaluation results in one of two possibilities

depending on whether progress is made: either continue the

intervention further or stop the intervention and re-assess to

establish a new plan.

Intervention represents the actions and processes that nurses

take in service of a specific goal related to patient health.

These interventions are characterized as either stabilization or

treatment procedures. During stabilization, the goal of the nurse

is to fix any immediate threats to patient health. For example,

in scenario S1 of our case study, the nurse typically turns

off the infusion of blood, so that no further harm comes to

the patient because of the incorrect blood type infusion. This

action does not actually solve the underlying problem, i.e.,

the patient requires a different blood type infusion, but rather

represents mitigation of an immediate threat before treatment

of the underlying problem can begin. As a second example,

if a patient were to stop breathing, the nurse would typically

start resuscitation procedures. Here again, these resuscitation

procedures do not fix the underlying cause of the patient’s

condition, but rather stabilizes the patient back to a point where

they are not in immediate danger so that treatment of the

underlying condition can begin.

In the treatment phase of intervention, the nurses’ actions

are in service of fixing underlying health issues that could cause

danger to the patient’s health in the future. For example, a nurse

might start administration of chemotherapy drugs for a cancer

patient. In this case, the medication is not designed to help

immediate symptoms, but is rather part of a longer term plan to

fix the underlying condition and put the cancer into remission.

During the treatment phase, nurses will either start/continue

an existing treatment order if they are aware of the patient’s

condition and a provider has prescribed the treatment. If the

nurse finds a new condition in the patient, they will contact a

provider to follow-up and get a new treatment order.

4.3. DiCoT analysis

As discussed, the DiCoT framework with its five themes:

(1) physical layout, (2) artifacts and environment, (3) social

structures, (4) information flow, and (5) temporal evolution;

provides a qualitative framework for analyzing learner activities

in the training environment. Results from this qualitative

analysis then provides the basis for analyzing the multimodal

data and inferring nurse activity and behavior information with

supporting context. Figure 5 illustrates this idea in context. In

this example, the nurse distributes her cognition across all five

of the themes:

1. Physical layout by her position on the left and right sides of

the bed;

2. artifacts and environment by her physical interactions with

the available instrumentation and patient manikin;

3. Social roles by her verbal communication with the

patient manikin;
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FIGURE 4

Cognitive task model for the nursing simulation domain.

FIGURE 5

Example of the distributed cognition in the context of nurse training across the physical layout, artifacts, and social themes.

4. Information flow by her referencing of the patient chart

monitor; and

5. Temporal evolution by following the sequence of her actions

in the environment over time.

Using the five themes and 18 principles (see Table 1), we

performed a DiCoT analysis of our nurse training simulation

scenarios. We discuss our analysis for each the five themes in

greater detail next. Similar to the analysis in Rybing et al. (2016),

references to the specific principles are listed parenthetically as

they relate to the description of each theme. For example, (P1)

refers to Principle 1, i.e., Space and Cognition.

4.3.1. Physical layout theme

The complete layout of the room from three viewpoints

can be seen in Figure 3. For the remainder of the paper, when

discussing physical positions we will describe the positions in

reference to the map view shown on the right-hand side of this

figure. For example, left of the bed describes the area on the left-

hand side of the map containing the patient chart and personal

effects tray, while foot of the bed describes the area at the top of

the map containing the equipment cart and the doorway.

The overall physical layout covered in the simulation

environmentmimics the layout of a typical hospital room, where

the trained nurses apply their learned skills on real patients (P3,
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P17). In the center of the room along the back wall is the patient

bed, where the manikin is placed. To the right of the bed is a

computer monitor that displays the vital signs of the patient as

graphs (P2, P7). The default graphs and other vital displays are

large enough so that the nurse can see them from any position

in the room (P5, P6, P7), but the nurse can physically interact

with the monitor to test certain vital signs and to get more

information when she is on the right side of the bed (P1, P5,

P6, P7). To the left of the bed is a second computer monitor

that displays the patient’s chart. The information on this chart

is displayed in smaller text font, so the nurse has to be close

to the screen to read information and needs to scroll on the

screen to view all of the information. In other words, the nurse

must move to the left side of the bed to access this chart (P1,

P5, P6, P7). Past the foot of the bed, the room opens into a

larger area that contains a cart of medical supplies that may

be needed to perform clinical procedures (e.g., gloves, masks,

needles, tubing, etc.) (P7). Finally, outside of the room is a

medication dispensary; the nurses must leave the room and

walk to the dispensary to retrieve needed patient medications

(P5, P6, P7).

Given the physical arrangement of the room, we divided

the physical space of the simulation into four regions that

nurses may move between: (1) left of the bed, (2) right of

the bed, (3) foot of the bed, and (4) outside the room. As

discussed, each of these regions has available equipment and

information that the nurses can use to accomplish their goals.

Therefore, they may have to move between the regions to

achieve specific goals. At the right side of the bed, nurses

can perform clinical procedures, such as taking vital signs or

interacting with other stationary equipment (e.g., IV pump,

oxygen unit). These clinical procedures are components of the

information gathering or intervention tasks in the cognitive

task model.

At the left side of the bed, nurses can primarily perform

information gathering tasks, such as looking at the patient chart

or using the phone in the room to call medical providers.

However, when on the left side of the bed, nurses may

also cross-reference information from the vitals monitor that

is on the right side of the bed (P1). This sort of cross-

referencing is often accompanied by subtle body movements,

for example, deictic gestures that involve pointing at the

screen (P4).

The foot of the bed acts as a transition area for high-level

cognitive tasks and lower-level sub-tasks. The training nurses

enter the room through this area, establish their current goals,

their observation (P6) and their situational awareness (P7) in

relation the patient in the room. The nurses pass through

this region when moving from the left side of the bed to the

right (and vice-versa), while gathering information and making

decisions on what clinical procedures to perform (P1). They

often pick up equipment from the cart along the way (P7).

Nurses also have to pass through the foot of the bed to visit the

medication cart, or otherwise exit the room. When doing so, the

foot of the bed provides a final moment of situation awareness

before their horizon of observation shifts and they are no longer

directly viewing the room (P6, P7).

4.3.2. Artifacts and environment theme

Within the simulation environment, the actors, in particular

the nurses, utilize a variety of artifacts to support their training

activities that are outlined in our task model. The first set of

artifacts comes primarily in the form of medical equipment;

some of them appear in Figure 3, and several have been

discussed in previous sections of this paper. This equipment is

designed to mimic the look and feel of a real hospital room,

serving the primary goal of the simulation to gain transferable

skills (P17), while also providing an interface into the patient

data and a means for conducting procedures on the patient.

Therefore, the medical equipment serve primarily as mediating

artifacts (P15), which transform measurements, such as the vital

signs of the patient into textual and graphical information that

can be interpreted by the nurses (P9, P15).

Another important artifact in the simulation is the script,

which is a set of guidelines set by the instructor about the

unfolding of events in the scenario. The script outlines the initial

conditions (e.g., the patient’s condition, expected vitals at start),

as well as a set of behavioral triggers (P14) for how the scenario

should evolve given the potential actions (or lack of actions)

performed by the nurse. For example, the script might specify

that if the nurse does not begin infusingmedication within 3min

after the scenario begins, the patient’s blood pressure will drop.

These scripts’ trigger factors mediate the temporal evolution of

the simulation (P15, see Section 4.3.5)

The manikin, representing the human patient, is another

important artifact for the simulation. It provides an interface

for the instructor to construct and guide the evolution of

the scenario. The manikin is programmable; therefore, the

instructor can digitally set parameters for the patient manikin

(e.g., vital signs, movements, and conversations), which are then

physically enacted by themanikin system (P13). During dialogue

between the nurse and patient, the instructor speaks as the

patient through the manikin offering additional information

to the nurses (P10), as well as instructional scaffolding (P16),

when needed. For example, if the nurse fails to take the patient’s

temperature, the instructor might scaffold this behavior by

making a remark through the patient, such as “I also feel a chill,”

which may prompt the nurse to check for a fever by taking the

patient’s temperature. These dialogue acts can also be used by

the instructor to evaluate the nurse’s understanding and thought

processes. For example, consider the dialogue sequence from S1

shown in Table 2. In this case, the nurse has concluded that the

blood transfusion is causing the patient’s issues, but in order to

verify the nurse’s understanding, the instructor asks a clarifying

question through the manikin.
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TABLE 2 Sample dialogue from S1 demonstrating evaluation of the

nurse.

1 Nurse: I’m going to stop this infusion really quickly.

2 Patient: Why?

3 Nurse: Because when we give red blood cells, an

indication that you’re having a reaction to it

is low back pain and feeling itchy. So it

sounds like you’re having a reaction to the

blood transfusion.

4.3.3. Social structures theme

Within SBT, there are three main types of users (Rybing,

2018). First, learners (or participants) represent those who

participate in the simulation with the purpose of learning skills

or having their performance evaluated (Meakim et al., 2013).

Second, instructors (or teachers) are those who participate in

the simulation with the purpose of directing the simulation

to produce learning outcomes for the learners (Meakim et al.,

2013). Finally, confederates (or embedded participants) are

those who participate in the simulation with the purpose of

enabling or guiding the scenario in some way (Meakim et al.,

2013). The social structures of the simulation can be derived

from the three basic user types of SBT.

In our nursing case-study, each instance of the simulation

has three basic users: two students and the instructor. The

students act as learners in the simulation, one taking the role

of the primary nurse and one taking the role of the medical

provider. The instructor takes a dual role as both the teacher as

well as a confederate playing the part of the patient. The patient

is enacted through the manikin mediating artifact described in

the previous section.

4.3.4. Information flow theme

The primary goal for the nurse training in the MRMB

simulation is to collect sufficient information about the patient

(i.e., the information-gathering task) in order tomake a diagnosis

of the patient’s condition (i.e., the assessment task). Then, the

nurse has to act to alleviate the patient’s discomfort and attempt

to improve their health state; this is the intervention task. Thus,

the movement (P8) and transformation (i.e., interpretation)

(P9) of information is critical to making the correct diagnosis

and conducting the right intervention. There are four primary

sources of information in the simulation that follows the general

structure of the information-gathering sub-tasks in the task

model (Figure 4).

The first information source is the primary nurse, who

typically provides information in the form of clinical knowledge

that is previously learned during schooling and from prior

experiences. This clinical knowledge includes

• Declarative knowledge, e.g., what is the nominal range for

blood pressure?

• Procedural knowledge, e.g., how does one measure blood

pressure accurately?

• Inferred associations using prior knowledge and observed

information, e.g., given that the measured blood pressure is

greater than normal, does it explain the conditions that the

patient is experiencing?

• Diagnostic inferences, e.g., What may be the cause(s)?

It is important to note that the above is considered to be prior

information, and not included as an element of information-

gathering in the task model. Instead it is looked upon as a fixed

input to the simulation system. The nurse may be required to

recall this knowledge during the simulation, but this recall may

not require any form of enactment and interaction in terms of a

specific information gathering task within the training scenario.

Next, the patient’s electronic medical record (EMR), also

known as the patient’s chart, is an information source containing

a comprehensive history of the patient’s prior symptoms,

conditions, and treatments. The chart acts primarily as an

information hub (P10), which allows the nurse to quickly

reference the patient’s history in a comprehensive way. However,

it also plays the role of a mediating artifact (P15), since the chart

is generally divided into sections allowing the nurse to access the

relevant historical information related to the current diagnosis

task. Additionally, since the chart contains notes from previous

nurse shifts and the treatment being currently administered to

the patient, it also helps the nurse trainee to better analyze

the patient’s trajectory and current condition, and use this to

determine their goals and the tasks they need to perform (P17).

Third, the nurse is able to perform clinical procedures on

the manikin and gather information about the patient’s health

conditions. These clinical procedures take a variety of forms,

but the most common is collecting and characterizing the

patient’s vital signs. Nurses make use of the clinical equipment as

mediating artifacts (P15) to make measurements on the patient

and assess their condition. The mediating artifacts transform

measurements into textual and graphical information for easier

interpretation by nurses and other providers (P9). The output

information is aggregated and displayed on the vitals monitor

(see Section 4.3.1), which then acts as an information hub (P10).

Other clinical procedures can also be performed by the nurses as

needed. For example, if a patient is having pain in one of their

legs, as in S2, the nurse might perform a physical examination of

the patient’s leg to gain more information.

Finally, social interactions between the nurse and the patient

provide important information that is not measured directly.

The instructor speaks through the patient to provide some

of this information to the nurse(s). This information often

provides elaborations of the patient’s symptoms and additional

symptoms that are not directly measured. For example, the

patient might describe the location, severity, and history of their

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2022.941825
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Vatral et al. 10.3389/frai.2022.941825

pain. These social interaction represent the discourse sub-task in

the task model.

As the simulated scenario evolves, information primarily

flows from the four information sources described above to the

nurse (P8), who then process the information (P9, P18) and

act on it (P14). When nurses enters the room, they generally

begin with a brief interaction with the patient, and this results

in information transfer about the patient’s general conditions

and symptoms from the patient to the nurses. This typically

provides an initial baseline for the nurses to check for additional

symptoms and start making diagnostic inferences (P13). Thus, it

is a component of the general information gathering sub-task in

the task model.

Next, the nurses typically take some time to reference and

review the chart, synthesizing the information that they just

heard with the patient history before returning to a more

extended dialog with the patient to extract more specific

information to support diagnostic inferences. The nurses may

ask a series of questions to the patient combining what they

saw in the chart with their clinical knowledge (P14). This

discussion is typically followed-up by one or more clinical

procedures, such as taking vital signs and performing physical

examinations. This cycle of discussion with the patient followed

by clinical procedures can then be repeated as necessary until

the nurse reaches some form of conclusion about the patient’s

condition. At a higher-level, this can also be thought of as

a cycle between the diagnostic information gathering and the

synthesize information and construct intervention sub-tasks in

the task model.

Up to this point in the simulation, nearly all of the

information has been flowing in from the other information

sources in the environment to the nurses (P8). However, once

nurses collect sufficient information to reach a conclusion, the

process reverses and the synthesized information and resulting

conclusions are provided back to the rest of the system through

their resulting actions. Common actions at this point include

explaining the situation to the patient, starting and stopping

certain treatments (e.g., medications), and calling the medical

provider to give an update and request updated treatment. These

actions and the general flow of information from the nurse to

the environment is an enactment of the intervention task in the

task model.

4.3.5. Temporal evolution theme

The simulation evolves over time in one of two possible

ways: through nurse actions or nurse inaction. The instructor

has a script artifact which outlines a set of behavioral triggers

that detail how the scenario should change (P14). Most of this

script deals primarily with triggers due to nurse inaction. For

example, the script might dictate that if the nurse does not

start medication within 5 min of the scenario starting, then the

patient’s heart rate begins to climb steadily. On the other hand,

scenario changes due to nurse actions are primarily dictated by

medical and social responses based on the judgement of the

instructor (P3). The nurses gather information to evaluate the

situation. Then, based on their evaluations, the nurses intervene

to alleviate the patient’s conditions. Based on that intervention

(or lack thereof), the instructor modifies the scenario. If the

intervention was correct, then the patient improves and the

simulation ends, but if the intervention was incorrect, then

the instructor may further decline the patient’s health and the

nurse must re-evaluate the presented information and try a new

intervention strategy. The temporal evolution of the simulation

is built primarily along this cycle of information gathering

and intervention.

4.4. Computational framework

One of the primary goals of this work is to show how

quantitative data can enhance the qualitative DiCoT analysis and

integrate this analysis with task modeling framework to better

analyze and interpret learner behaviors. To do this, we create

a computational framework that takes the raw data collected

from the different sensors, maps it onto specific features derived

from the DiCoT analysis and then interprets them using the task

hierarchy. In our case study, we perform analysis on two raw

data sources,

1. Overhead video cameras, and

2. Eye tracking glasses.

These map onto four feature modalities that form the basis

of our analyzes: (1) position, (2) action, (3) speech, and (4)

gaze. The complete computational framework is illustrated as a

block-diagram in Figure 6.

From a combination of the four feature modalities, we

construct a complete progression of activities and events on

a timeline. A complete timeline for the case study analysis of

scenario 1 is shown in Figure 9, and a similar timeline for

scenario 2 is illustrated in Figure 10. This timeline structure

forms the basis for a second level of analyzes, where information

from the extracted features across the different modalities

are combined to extract patterns. By combining the aligned

features, extracted across the different modalities, we can extract

activity information in context, and propagate the low-level

actions up the task model to generate inferences about the

nurse(s) cognitive processes and their behaviors. We provide a

descriptive account for our analyzes of each of the modalities in

the subsections that follow.

4.4.1. Position modality

The nurse’s positions in the simulated hospital room are

derived using visual object motion tracking techniques applied

to the video from the two overhead cameras. Our motion
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FIGURE 6

The overall computational architecture used for the quantitative analysis.

tracking techniques are derived from the tracking-by-detection

paradigm, which is a two stage approach to tracking Sun et al.

(2020). First, in each frame of video, deep learning-based object

detection models localize people that appear in the video frame

and represent them with bounding boxes. After this detection

step, the detections are merged together frame-by-frame into a

timeline based on a matching algorithm.

In our case studies, we use the matching cascade algorithm

originally developed in Wojke et al. (2017), and later refined

for static cameras by Fu et al. (2019). The matching

cascade algorithm matches bounding boxes and tracks between

subsequent frames based on the distance between the two

bounding boxes and approximation of the velocity of the

object in the track. In addition, the matching cascade algorithm

matches the bounding boxes iteratively based on the age of a

detection and track, leading to lower false positive rates.

However, these motion tracking techniques only produce a

track of the nurses in reference to the video frame. We need

to map these tracks into the nurses’ positions in the hospital

room as we have described in the physical layout theme of

our DiCoT framework. To accomplish this, we extend our

traditional motion tracking techniques to project the camera-

space motion tracks onto a top-down map representation of the

environment (see Figure 3, Right).

Our approach for mapping these camera-space tracks onto

this hospital room space computes a planar homography, which

associates known points in the camera-space to known points in

the map-space using rotation, translation, and scaling operators.

Given the computed homography matrix, we can project the

camera-space tracks onto the room-space for each frame of

video, using the center of the person’s bounding box as the

projected point. This results in a continuous time-series of nurse

positions in the simulation room relative to the top-down map.

Further details of this map-projection object tracking can be

found in Vatral et al. (2021).

While the continuous time-series of nurse positions in the

hospital room is a useful analysis tool, on it own, it lacks the

semantic context necessary for meaningful insights. To add this

semantic context back to the position data, we discretize the

continuous positions into four regions developed using DiCoT

analysis (see Section 4.3.1): (1) left of the bed, (2) right of bed,

(3) foot of the bed, and (4) outside the room. To perform this

discretization, we define a polygonal region on the top-down

map of the hospital room for each of the DiCoT semantic

regions. Then for each timestamp of the continuous track, we

check the polygonal region that contains the nurse’s position

and assign that label to the given timestamp. This allows us to

track in terms of time intervals of nurse positions in the different

semantic regions of the room, and when they transition between

these regions.

4.4.2. Action modality

In addition to providing position information, analysis of the

overhead camera video also provides important information and

context for the actions that the nurse performs in the training

scenario. Specifically for this case study, we annotate instances

in the video where the nurse performs an action by physically

interacting with any of the artifacts in the MRMB environment

previously identified from the DiCoT analysis.

Additional contextual information can be derived by

combining the physical activity that defines an action with

other modalities. For example, analyzing speech (see Section

4.4.3) may provide additional information about why a nurse is

performing a specific action, or how two nurses are coordinating

their actions, for example, when they are jointly performing a

procedure. Similarly, a coding of the nurses’ gaze (see Section

4.4.4) may provide additional information about how a nurse is

performing an action. In some situations, the nurse may look

at the same object that they are physically interacting with; in
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other situations, the nurse may look at a different object than the

one they are physically interacting with. As an example, while

physically examining a patient, a nurse may turn their gaze to

the vitals monitor to see how their current measurement may

match with other vital signs (e.g., blood pressure beingmeasured

and heart rate of the patient). These examples clearly illustrate

the importance of combining information across modalities

for action annotation to gain a complete understanding of the

nurses’ activities in the training environment.

To perform action annotation, we have developed a coding

schema based on the artifacts from the DiCoT analysis, which

represents all of the high-level objects that nurses physically

interact with during the simulation. These objects are primarily

medical equipment, e.g., the patient chart, the vitals monitor,

and the IV unit. They also include specific parts of the patient

that are relevant for physical examination in these scenarios,

e.g., the patient’s hands, legs, body, and head. In total, we coded

nurse actions into 13 categories for the two scenarios in our case

studies, which can be seen on the timelines for each scenario

(Figures 9, 10). The annotation recorded the action category

along with start and end timestamps with a one-half second

fidelity. Nurses were considered to be performing a given action

category if they were physically interacting with the action object

using some part of their body, typically their hands. For example,

if the nurse was holding a phone or touching the dial pad, then

they were coded as performing the phone action. Alternatively,

if the nurse’s hands were on the mouse and keyboard of the

chart computer, then they were coded as performing the patient-

chart action.

4.4.3. Speech modality

Raw speech is collected from multiple streams that include

the audio from the two overhead cameras, and each of the Tobii

eye tracking glasses. For this case study, we only analyzed audio

from the overhead camera at the head of the bed. In future

work, particularly during simulations with a greater focus on

teamwork, we intend to analyze audio by creating an egocentric

framework for each agent in the training scenario.

While raw recorded speech patterns are useful for some

tasks (e.g., emotion detection), most NLP tasks perform analysis

directly on a body of text, which requires raw audio to first be

transcribed as a preprocessing task. For the current case study,

we utilized the Otter.ai speech transcription service (Otter.ai,

2022). After transcription, the speech text is annotated (tagged)

with specific events for analysis via the BRAT Rapid Annotation

Tool (BRAT) (Stenetorp et al., 2012). Based on the task model

(see Section 4.2), we developed a tagging schema for the speech

data, which breaks down the dialogue into six speech event tags,

which are enumerated below:

1. Generic, introduction: Refers to introductory speech such

as greetings.

2. Generic, acknowledgment: Refers to generic

acknowledgments of understanding, typically used as

part of closed-loop communication patterns.

3. Information, request: Refers to the soliciting of information

from another person.

4. Information, provide: Refers to the furnishing of information

to another person.

5. Action, verbalization: Refers to the verbalization and

explanation of an action. This verbalization can occur before

an action begins, while an action is being performed, or after

an action has been completed.

6. Action, request: Refers to a request for another person to

perform an action, typically taking the form of either a

question (e.g.,Will you do this?) or a command (e.g., Do this).

Figure 7 illustrates a tagged speech snippet from Scenario

1. In this part of Scenario 1, the patient indicates that her

“lower back hurts a little bit” and she feels “just kind of

itchy all over.” These are examples of the patient providing

information to the nurse, so they are tagged as “Information,

provide.” The nurse then responds with an “Action, request”

by indicating that she (the nurse) would like to check the

patient’s vitals. The nurse then asks the instructor whether

the vital signs device is connected to the blood pressure

cuff, which is tagged as another request for information. The

instructor then responds to the nurse in the affirmative, which

is another instance of “Information, provide.” Notably, the

nurse asks “was that connected to the blood pressure cuff?”

The italicized “that” in this example is ambiguous if speech is

the only modality considered for analysis. However, applying

the vision and gaze modalities make it clear that the nurse is

referring to the device used to actually take the patient’s blood

pressure. This is an example of how multimodal approaches

can augment the information obtained from simulation-based

learning environments.

Additionally, it is important to note that there are

transcription errors in Figure 7. An important research

consideration is whether or not to correct these errors before

conducting the analysis. Human-in-the-loop transcription

corrections provide the cleanest text to feed into the language

model during analysis; however, there is a trade-off. Human-

engineered text is expensive to generate time-wise, as manually

correcting transcriptions involves reading every piece of a

transcribed block of text. With large corpora, this is infeasible.

Additionally, human-in-the-loop transcription correction

precludes online analysis, as a human would first have

to manually edit the transcription before it is used in a

downstream task. Lastly, there can be an advantage to having a

certain degree of noise in the data, as this can prevent language

models from overfitting. Contemporary language models are

traditionally trained on large corpora of canonical text. Because

speech is rarely canonical, fine-tuning a language model to

recognize spoken text is a challenge. However, this can often
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FIGURE 7

An example of dialogue from scenario 1 which has been annotated using the developed tagging schema.

be mitigated (at least in part) by injecting noise (misspellings,

for example) in the data (Cochran et al., 2022). It is for these

reasons we decided to annotate the text as-is from Otter.ai,

without manually correcting the transcriptions.

4.4.4. Gaze modality

Gaze data is collected using Tobii Glasses 3. The glasses

record multiple raw data streams including egocentric-view

video, audio, eye gaze (2D and 3D), and inertial movement

units (IMU) (Tobii Pro, 2022). The eye gaze data stream is

sampled at 50 Hz and contains 2D coordinates corresponding

to the egocentric video and 3D coordinates with respect to the

camera’s coordinate system. The egocentric video is sampled at

25 Hz in 1920x1080 resolution. The IMU sensors onboard the

glasses include an accelerometer, gyroscope, and magnetometer,

which are sampled at 100 Hz, 100 Hz, and 10 Hz, respectively.

Through the combination of all data streams recorded by the

Tobii glasses, the nurse’s experience in the simulation is logged

with high fidelity.

Given the high sampling rate and noise present in eye-

tracking data, fixation classification is a common practice in the

eye-tracking literature to pre-process raw gaze data and prepare

it for further analysis (Bylinskii et al., 2015; Liu et al., 2018). Our

initial pre-processing step applies Tobii’s Velocity-Threshold

Identification (I-VT) fixation filter to extract reliable fixation

and saccade data. The classification algorithm identifies fixations

and saccades based on the velocity of the eye’s directional shift

and a set of hyperparameters (Olsen, 2012). The default values

provided by Tobii for the I-VT fixation filter were used during

our analysis (Tobii Pro, 2012).

The final preprocessing step is to encode the fixation data

into areas of interest (AOI) sequences. Linking fixations to

AOIs bridges the gap between direct sensory output to domain-

specific content, thus providing further insight into the nurses’

attention and engagement. The temporal evolution of nurses’

visual attention is represented by AOI sequences. In this study,

AOI encoding from the fixation data is manually annotated to

11 objects of interest (OOI) that were selected based on the

DiCoT analysis (patient, provider, screen chart, paper chart,

vitals, medical tray, equipment, keyboard, instructor, one-way

mirror, ground). Each of these physical objects are treated as an

AOI and are annotated using the egocentric video. The manual

FIGURE 8

An example of fixation overlay from Scenario 2 used for manual

annotation. In this frame, the resulting AOI is “patient”.

tagging is performed through visual inspection of the egocentric

video with fixation data overlaid. In each case where the nurse

fixates on one of the AOIs, the start and end time of the fixations

are recorded. An example of the gaze overlaid on the video is

shown in Figure 8, where the red circle marks the fixation.

5. Case-study analysis

The alignment and processing of multiple data modalities

reveals new inferences about the simulation and the nurse’s

behaviors. In this section, we analyze and interpret these

integratedmultimodal timelines (Figures 9, 10) in depth for each

scenario. We provide details of the basic breakdown of nurse

actions and use the DiCoT framework to interpret these actions

in context and map them onto the task analysis hierarchy. In

addition, we compare across the two scenarios to see how the

nurses differed in their cognition and use of environmental

affordances in the MRMB environment.

5.1. Scenario 1

For scenario S1, the timeline breaks down into

approximately five high-level segments. The first segment

follows the general information gathering task established by

the task analysis model in Section 4.2. During this segment,

the nurse first enters the room and greets the patient, and then
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FIGURE 9

The complete timeline of events for scenario S1 containing annotated data from participant position, action, gaze, and speech.

moves off to the left side of the bed. In this position she begins

a period of alternating between reading the patient chart and

conversing with the patient, as indicated by her eye gaze moving

between the patient and chart monitor. The conversation here is

primarily pairs of information-request and information-provide,

indicating that the nurse is asking the patient questions to

clarify and expand on the information the nurse is reading from

the chart.

Once the nurse decides she has enough information to

build her initial mental model of this patient’s situation, the

simulation enters the second phase. This transition is marked

by the nurse moving from the left side to the right side of

the bed, as seen in the position modality around 80 s into

the scenario. As previously shown from the DiCoT analysis,

this movement between regions in the room is an important

indicator of task transitions. During this new segment, the nurse

moves to the diagnostic information gathering phase described in

the taskmodel. In this phase, the nurse increases her interactions

with the equipment and the vitals monitor. We derive this

information from the gaze, which shows movements between

equipment, the vitals monitor, and the patient. In addition, her

physical actions show interaction with the vitals monitor and the

blood pressure cuff. In this segment, we can apply information

from the DiCoT framework to provide additional context for

establishing these action as diagnostic information gathering.

Because of this movement from the left to the right side of the

bed (physical layout) and the increased interaction with clinical

equipment (artifacts and environment), we infer that the nurse is

attempting to establish and refine her diagnostic inferences from

the initial information gathering phase. She performs clinical

procedures, such as taking additional vital sign measurements

to aid her diagnostic hypothesis formation.

In this segment, we also see a reduction in dialogue, which

likely has two causes. First, specific to this scenario, much of

the information that can be obtained from the patient has

already been gathered in the previous segment. Second, the

cognitive load associated with performing clinical procedures

(e.g., when taking a blood pressure reading) is likely higher than

simply reading the patient chart. Because of this, the nurse may

focus more on the clinical task at the expense of continuing

conversations with the patient. This is especially true for novice

trainee nurses who are still learning how to perform clinical

procedures in correct and effective ways. Knowing that these

clinical tasks require higher cognitive loads and having observed

from the control room that the nurse reduced her dialogue, the

instructor likely also intentionally reduced their conversations

with the nurse during this period. The instructor may have

spoken less through the patient while these tasks were being

performed to avoid splitting the nurse’s attention, conforming

to the best practices during SBT (Fraser et al., 2015).

Around 220 s into the scenario, our video analysis shows that

the nurse begins to interact with the blood pump, which implies

a transition to the third segment of her overall task. According

to the DiCoT analysis, the blood pump is a mediating artifact,
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not an information source. Given this additional context, we can

conclude that the nurse has reached the end of her diagnostic

information gathering phase and has begun the intervention

process in this new segment. Since the nurse interacts with the

blood pump at the start of the intervention process, we can

hypothesize that the nurse has reached a diagnostic conclusion,

and suspects the blood infusion process. In other words, the

nurse suspects that the patient is being administered the wrong

blood type during infusion.

Specifically, in this segment the intervention represents the

stabilization process, which requires the nurse to stop the blood

infusion and prevent any further damage to the patient’s health

because of the infusion of the incorrect blood type. At the start

of this segment, as our video analysis shows, the nurse stops

the infusion, but the speech modality also records an action-

verbalization event. The speech analysis module interprets the

nurse telling the patient that she is turning off the blood infusion.

This is immediately followed by the patient asking “Why?,”

and the nurse follows up with a proper diagnostic explanation,

i.e., “an incorrect blood type is being infused.” This discourse

interaction, transcribed in Table 2, is an example of the dual

social role of the instructor as both the teacher evaluating the

nurse, and a confederate playing the part of the patient (see

Section 4.3.3).

It is quite reasonable for a patient to ask questions about

their condition and the treatments being administered in a real

hospital setting. The instructor plays this role as the confederate.

Indirectly, some of the questioning by the patient (i.e., the

instructor as the confederate) also serves as an evaluation of the

nurse who must explain her reasoning. This sort of evaluation

questions arise from the instructor’s role as the teacher, rather

than the confederate. Since the instructor is playing both social

roles, this discourse interaction may fulfill multiple pedagogical

roles in the simulation scenario, i.e., how the nurse conveys

diagnostic information to the patient to reassure them, and

how the nurse has combined all of her observations to make

diagnostic inferences. In this same time interval where the nurse

interacts with the blood pump and verbally explains what she is

doing, we also see her gaze moves between the equipment (the

blood pump) and the patient, which is likely part of the social

dynamics when interacting with a patient. The nurse should not

ignore the patient while performing clinical procedures, which

is exemplified here as the nurse shifting her gaze between the

patient and the blood pump.

Once the stopping of the infusion is observed in our video

analysis, the fourth segment of the simulation begins, with the

transition marked again by the nurse’s movement; this time the

movement is from the right side of the bed back to the left side.

This segment maps on to the treatment intervention phase of the

task model. Since the diagnosed issue is not one that already has

a physician prescribed treatment, the nurse calls the provider

to make them aware of the new situation, as indicated by the

phone action around 290 s into the scenario. We can see that

during the period where the nurse is using the phone, her gaze

is primarily on the chart monitor, likely because she is reading

off the patient’s information to the provider over the phone.

This is also consistent with the speech acts, where we see several

sequential information-provide acts, again likely because she is

giving the patient’s information to the provider over the phone.

During this same period, the speech also shows a few action-

request events, which correspond with the nurse requesting

that the provider come to the room to confirm the diagnosis.

Shortly after the phone call, the final segment of the simulation

begins, marked by the arrival of the provider around 390 s into

the scenario. In this segment, we again see several sequential

information-provide acts in the speech corresponding to the

nurse explaining the patient’s situation to the provider. The

nurse and the provider then look at a reference chart, which

contains information about the protocol to re-test blood type.

Finally, the two move to the foot of the bed and begin examining

the equipment cart, likely to collect the necessary equipment

to draw the patient’s blood. This marks the end of the training

scenario, and the nurse moves on to a debrief session outside of

the simulation hospital room.

5.2. Scenario 2

In scenario 2, the timeline breaks down into four high-

level segments. Once again, the first segment represents the

general information gathering task. The nurse enters the room

and moves to the left of the bed by the patient chart monitor.

During this initial movement period, there is a short sequence of

alternating information-request and information-provide speech

acts, indicating the nurse asking the patient initial questions to

learn about their general background and current condition. Just

as in S1, the initial movement to the left side of the bed is a

significant indicator of entering an information gathering phase,

as indicated by the physical layout DiCoT analysis.

This initial movement and speech is then followed by a long

period of attention strictly on the chart monitor, as seen in both

the actions and gaze, as well as the absence of any dialogue.

As shown in the information flow DiCoT analysis, this chart

monitor is a significant information hub in the room and further

supports this segment as information gathering. The absence

of dialogue here is also particularly interesting when compared

to the nurse in scenario 1, who tended to multi-task dialogue

with the patient while reading the chart. However, here we

see a different information gathering strategy of first spending

devoted time to the chart, followed by a shorter period of

information-request and information-provide acts (e.g., question

and answer) around 100 s into the scenario.

During this question and answer period, the nurse’s position

moves quickly between the foot of the bed, the right of the bed,

and back to the left of the bed, with her gaze also moving rapidly

between pieces of equipment and other artifacts in the room.
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FIGURE 10

The complete timeline of events for scenario S2 containing annotated data from participant position, action, gaze, and speech.

On its own, it is unclear what exactly the purpose of these rapid

movement and gaze changes are; however, given that this occurs

while the dialogue is primarily question and answer, which is

an information gathering task, it is likely that the movement

and gaze are also related to the information gathering. While

the nurse is using dialogue to gather information about the

patient during this period, she is simultaneously also gathering

information about the available equipment and physical layout

of the room using her movement and gaze.

At this point, the second segment of the simulation begins,

marked by the nurse moving back to the left side of the bed and

her gaze now stabilizing back on the patient and chart, around

140 s into the scenario. Like scenario 1, the second segment

represents diagnostic information gathering. Having determined

patient history and the current issue with the patient, i.e., severe

right leg pain, the nurse begins a physical examination of the

patient in order to further refine her diagnosis of the problem.

The nurse begins examining the patient’s left leg for a short

period of time, while asking the patient whether certain areas

that the nurse touches are tender. This is derived from our

analysis of nurse’s actions, which show physical interaction

with the patient’s leg, along with speech analysis which shows

sequential information-request and information-provide acts.

After this exchange, the nurse turns her gaze from the patient

back to the chart, likely because she is surprised when the leg

does not hurt to the touch. At this point, the information she

obtained from dialogue with the patient and the patient chart

does not match with the physical exam of the leg. Because of

the conflicting information, the nurse looks back on the chart

to recheck the information she previously gathered and her

diagnostic hypothesis.

After a fewmoremoments of examination and dialogue with

the patient, the patient finally speaks up and says, “It’s my other

leg that hurts.” At this point, the nurse quickly moves over to

examine the right leg, as shown in the action data. There are

several interesting points about this interaction. First, dialogue

of the patient is another manifestation of the dual social role

of the instructor. The instructor is acting as the patient in this

moment, but also providing some instructional scaffolding, e.g.,

that the nurse needs to examine the other leg. By inhabiting

this dual social role, the instructor can seamlessly introduce

the instructional scaffolding into the simulation scenario by

speaking through the patient.

Second, by combining data modalities, we gain a much

deeper understanding of the nurse’s activities in the training

scenario. Because we have the eye gaze information and see

that the nurse looks back at the chart, we interpret that the

nurse realizes that there is an issue before being corrected by the

patient. Pedagogically, this is important because it shows a level

of metacognitive awareness in the nurse which we may not have

realized otherwise. The nurse looks back on the chart to recheck

her diagnostic hypothesis because of the conflicting information

she has received that the patient’s leg does not hurt to the touch.

Without this gaze information, we may have surmised that the
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nurse had gone down a wrong path, and would need to be

corrected on her diagnostic hypothesis. However, her looking

back to study the chart and asking questions to the patient made

us realize through the analyzes that she was reconsidering her

current diagnostic hypothesis.

After examining the right leg, the training scenario

transitioned into the third segment, marked by the movement of

the nurse from the right side of the bed where she was examining

the leg back to the left side of the bed. This movement, around

220 s into the scenario, again highlights the physical layout

theme of the DiCoT analysis. In this segment, the nurse began

the intervention process. No stabilization processes are clinically

necessary in this scenario, so the nurse immediately proceeded

to treatment. Just as in S1, there was no physician prescribed

treatment, so the nurse called the provider to update them and

get a new treatment order, as indicated by the phone action.

While on the phone, the nurse’s gaze was primarily on the patient

chart, with a few instances of looking back at the patient, and

simultaneously her dialogue was a series of information-provide

acts. This gaze and speech in combination indicate that she

was reading patient information off the chart to the provider,

and filling in additional details based on her observations and

gathered information of the patient condition.

Shortly after the phone call, the scenario transitioned into

the fourth segment, marked by the entry of the provider into

the room and the nurse moving to the foot of the bed, around

290 s into the scenario. In this segment, the dialogue shows a

series of sequential information-request and information-provide

pairs, indicating that the provider was asking questions to the

nurse and the nurse was answering based on her gathered

information and assessment of the patient. During this sequence,

the provider asked whether the nurse has gathered patient vitals.

After realizing that she did not finish this task earlier, the nurse

began to interact with the equipment to complete collecting

the vital signs, as shown by the thermometer action and the

nurse’s gaze moving between equipment and the vitals screen.

The scenario finished with a short discussion about the next

steps for treatment, specifically the scheduling of a scan of the

patient’s leg, shown by the series of information-provide acts in

the speech at the end of the timeline.

5.3. Cross-scenario discussion

In this section, we combine the analysis across both

scenarios to demonstrate how the collected data supports the

DiCoT analysis presented previously. For this analysis, we will

focus on the three primary DiCoT themes which are typically

analyzed: physical layout, information flow, and artifacts and

environment. We will examine each of the three DiCoT themes

individually and how the data-driven evidence supports the

major conclusions from that theme.

To support the comparison between the contextually

different scenarios, we computed a series of marginal and

conditional distributions of the four data modalities. Figure 13

shows the marginal distribution of gaze across the entire

scenario; Figure 11 shows the distribution of gaze conditioned

on position in the room; and Figure 12 shows the distribution of

speech conditioned on position in the room. These distributions

were computed based on the modality-aligned timelines

(Figures 9, 10) by dividing the sum of the time spent on a

given modality class by the total scenario time. For example, to

compute the percentage of equipment gaze events conditioned

on being positioned on the left side of the bed, we divided the

sum of the times spent looking at equipment while on the left

side of the bed by the total time spent on the left side of the

bed. By comparing the marginal and conditional distributions

of the scenarios instead of the scenario timelines directly, we

can help reduce the temporal autocorrelation caused by the

differences between the scenario contexts. In other words, the

distributions provide a more direct comparison between the two

scenarios that does not care about the order in which nurses

completed actions, since the order is highly dependent on the

specific scenario and patient condition.

Beginning with the physical layout theme, a wealth of data

supports the roles that space and physical layout play in the

nurses’ cognition. The timeline analysis shows that both nurses

exhibit similar patterns in their movement through the physical

space. Each nurse begins by entering the room through the door

at the foot of the bed and immediately moving to the left side.

The nurses stay on the left side to gather initial information

from the chart and conversation with the patient before moving

to the right side of the bed to begin their diagnostic clinical

procedures. While the specifics of information gathering and

clinical procedures differ between the two scenarios, the general

movement patterns and associated tasks in these areas of the

room remain very similar.

Support for the roles of these spaces can also be seen through

the conditional distributions of gaze in Figure 11. For both

nurses, the percentage of gaze events focused on the chart and

the patient was higher when they were on the left side of the

bed, while the percentage focused on the vitals screen was higher

when they were on the right side of the bed. This was particularly

evident for scenario 1, where focus on the chart and vitals when

on the left side of the bed were 25 and 2.8%, respectively. It

changed to 1.9 and 18.5%, respectively when they were on the

right side of the bed.

For scenario 2, while the difference in gaze for the chart

monitor was fairly small, changing from 22.8% on the left

down to 20.0% on the right, the difference in gaze for the

vitals monitor was still quite large, with 10.5% when on

the left and jumping to 40.0% when on the right. These

differences between the left and right sides of the bed was

also supported by the speech analysis. As shown in Figure 12,

the nurses in both scenarios performed most of their dialogue
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FIGURE 11

Distribution of gaze across five major object categories conditioned on the nurse’s position in the room for each scenario.

Frontiers in Artificial Intelligence 23 frontiersin.org

https://doi.org/10.3389/frai.2022.941825
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Vatral et al. 10.3389/frai.2022.941825

FIGURE 12

Distribution of total speech acts conditioned on the nurse’s position in the room for each scenario.

FIGURE 13

Marginal distribution of nurse gaze across five major object categories for each scenario.

when positioned on the left side of the bed. This suggests

that the nurses’ information gathering done through dialogue

with the patient happened primarily when they were on the

left side of the bed. Together, this gaze and dialogue data

further confirmed the role of each of these spaces in the room;

the left side of the bed was primarily used for information

gathering and the right side was primarily used for providing

clinical procedures.
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For the information flow theme, data from the nurse gaze

provided significant support for three primary information

sources described in the DiCoT analysis: the chart, the patient,

and the vitals monitor. Examining Figure 13, which shows the

marginal distribution of nurse gaze over the course of the entire

scenario. It is clear that the nurses spent most of their time

looking at three primary information sources. Over 50% of the

total gaze time in both scenarios was spent looking at these

three information sources, with 56% for scenario 1 and 76.1%

for scenario 2.

The nurses used these three sources to gather, aggregate,

and synthesize information which may have been relevant to

the patient’s diagnosis and treatment. The timeline analysis

also supports the information flow theme, demonstrating the

transition from information flowing to the nurse to information

flowing from the nurse. In both scenarios, the first two timeline

segments involve the nurse gathering information. In the

first segment, this information came primarily from reading

the patient chart and conversation with the patient. In the

second segment, the information came primarily from the nurse

performing clinical activities.

At this point, the information flow in both scenarios

reversed, with the nurses now becoming the information

source and the patients and provider becoming the information

recipients. Once the nurses had transformed and synthesized the

gathered information, they reported their diagnostic inferences,

thereby becoming an information source. In both scenarios,

the nurse first provided information on her conclusions to the

patient, explaining the diagnosis and how they arrived at that

conclusion. Then the nurse provided information to the medical

provider, first in the form of general patient information over the

phone, and then in the form of explaining the diagnosis once the

provider arrived in the room.

Moving on to the artifacts and environment theme, the

gaze data again clearly supported the use of medical equipment

as the primary mediating artifact. As seen in Figure 13, the

nurses in both scenarios spent a significant portion of their

time with their gaze fixated on the equipment. In scenario

1, the equipment represented the single highest portion of

gaze activity at 28.3%. In scenario 2, the nurse looked at the

equipment for less time than in scenario 1, but still for a large

portion of the total time: 16.2%, which was third overall in

terms of the activities conducted. The difference in time here

between the two scenarios can be explained by the context of

the patient’s presenting issue; in scenario 1, the primary cause

was primarily linked to the equipment, i.e., the blood pump

infusing the wrong blood type. In scenario 2, the primary cause

was internal to the patient. The significant portion of time in

both scenarios dedicated to medical equipment is evidence of

its fundamental role in the distributed cognition analysis of the

training scenario.

Beyond these mediating artifacts, the data also supports

the use of several artifacts as information hubs, specifically

the chart and vitals monitors. As seen in Figure 13, the

nurses spend 38.2% and 49.9% of their time, respectively,

looking at these two monitors in scenarios 1 and 2. In

addition, the timeline analysis suggests that the nurses frequently

returned to these information hubs for confirmation and further

checking when they were in doubt about their conclusions. For

example, we see this behavior in scenario 2 when the nurse

looked back at the chart after her physical examination of

the patient’s left leg did not support her internal diagnostic

hypothesis. This shows that the nurses trust the information

provided by these artifacts, which support their cognitive

reasoning processes in aid of information gathering and

diagnostic reasoning.

6. Discussion

Overall, the patterns and distributions derived from our

analysis framework clearly demonstrate the effectiveness of

our approach in combining qualitative DiCoT analysis with

multimodal analytics and the task model to analyze and

interpret learner activities and behaviors in the MRMB training

simulation. Specifically, this study shows the benefits of our

cyclic analysis, with insights generated from both a forward

pass of the framework, i.e., using the qualitative analysis to

define and structure the quantitative analysis, as well as a

backward pass of the framework, i.e., using results of the

quantitative analysis to provide more detailed analysis of the

learners activities and behaviors than we could generate by

pure qualitative analysis, as proposed by the DiCoT framework.

The more in-depth information generated by multimodal

analysis benefits the two primary stakeholders: (1) learners and

instructors through debriefing and after-action reviews, and

(2) simulation designers and researchers, who can study the

effectiveness of the simulation scripts in promoting effective

learning activities. In this section, we discuss the implications

of the framework and its resulting insights for both of

these groups.

6.1. Implications for learners and
instructors

The primary goal of any simulation-based training

environment is for the trainees to learn, practice, and develop

expertise in skills that transfer to the real task environment. In

our nurse case-study, this means that the nurses develop new

knowledge and experience that supports both the psychomotor

skills and cognitive and metacognitive processes. One of

the critical components that mediates this knowledge gain,

especially for novice learners, is effective feedback mechanisms

during simulation debrief (see Section 2.1). It is the analysis

of nurse performance and the generation of relevant feedback
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linked to the performance, where our current work is most

likely to impact learners and their instructors in constructive

ways. By using our analysis framework to generate evaluations

of learner behavior, we can present these insights back to

learners and instructors during debriefing (also known as

after-action reviews) to help promote constructive discussion

among the trainees and instructor as part of a larger formative

feedback system.

This paper represents an initial step toward analyzing learner

performance and behaviors, and then generating formative

feedback, and as a result, this case-study analysis was performed

post-hoc. Therefore, no feedback was generated for learners.

However, with continued research, we hope to develop a

formative feedback framework with input and support from

the instructors to support effective learning of skills and

decision making processes. For example, at the beginning of

each scenario in our case study, the nurses both start with

talking to the patient and reading the patient chart. However,

the ways in which these two actions are sequenced differ

greatly between the two nurses. In S1, the nurse tended to

multi-task combining dialogue with the patient and reading

the chart. On the other hand, in S2, the nurse spent a long

period of time solely focused on reading the chart without

any interaction with the patient, Only after she had reviewed

the chart in some detail, did she start talking to the patient

in depth. By generating analytics about the nurses’ gaze and

speech patterns, we can highlight this difference between the

nurses and present this feedback as a discussion point during

debriefing: Was there a good reason for the difference in

approach between the two nurses? Is it not important that the

nurse to communicate with the patient sufficiently often so

patients do not feel that they are being ignored? Therefore,

some level of multi-tasking may be a useful protocol to adopt at

this stage of examining the patient and collecting information

about their situation. As a next step, we hope to get nursing

instructors and experts in as part this discussion. This will

help us generate appropriate feedback that will help learners,

and also help instructors in setting up constructive discussion

among the learners by presenting contrasting cases (Bransford

and Schwartz, 1999).

While this is only one simple example, it demonstrates

the underlying concept: analytics generated using our activity

analysis framework can be presented back to learners and

instructors to help promote meaningful discussion, especially

around topics that may be otherwise difficult to identify in

a single viewing of the scenario. The design of formative

feedback that is actionable and important for discussion

is a large research questions in itself (Jørnø and Gynther,

2018; Pardo, 2018) and is beyond the scope of this paper;

however, analysis framework we present here represents an

important first step in this direction for SBT and MRMB

training environments.

6.2. Implications for simulation designers
and researchers

Because of the cyclic nature of our analysis framework,

the insights generated from our analysis and future analytics

methods can be used to help refine the qualitative models of

the simulation system. This is of particular importance and

interest to simulation designers and researchers, as it uncovers

new insights to improve our understanding of both the given

simulation system and the science of simulation-based training

as a whole.

For example, the multimodal data analysis permits the

discovery of latent relations between different aspects of the

distributed cognition system. In our nursing case-study, this

is exemplified through the use of information hubs. The

distribution of gaze conditioned on position reveals new insights

about the use of information hubs. Initially, the DiCoT analysis

revealed the dependency of physical space as a mediator in

collection and analysis of the information provided on the

two screens as information hubs (i.e., the patient chart and

vitals). By combining the physical, artifacts, and information

flow segments of DiCoT analysis, we derived how the use of

each screen was largely mediated by the nurse’s position on the

left side of the bed near the patient chart, or on the right side of

the bed near the vitals monitor. As described in Section 5.3, we

see support for this analysis in the conditional gaze distribution,

with fixations on the vitals screen going from 2.8 to 18.5% and

10.5 to 20%, when moving from left to right of the bed in

scenarios 1 and 2, respectively.

However, based on this initial DiCoT analysis, we would

also expect fixations on the patient chart to have the opposite

relationship, decreasing significantly when moving from left to

right of the bed. However, in our case studies, the fixations

on the patient chart only significantly decreased in S1, moving

from 25% on the left to 1.9% on the right, while in S2 the

fixations on the patient chart decreased very slightly, with

22.8% on the left and 20% on the right. While it is clear that

physical layout mediates the use of these information hubs,

the data also suggests an additional latent mediating factor

is present. We hypothesize that differences in the simulation

scenarios contributed to this, with S2 requiring more references

to the patient chart than S1, probably because of the incorrect

diagnostic hypothesis the nurse initially made, but there are also

other potential explanations, such as differences in the strategies

adopted by the two nurses.

This is a simple example of a new insight generated by

the quantitative methods that can lead to additional research

to refine the qualitative models, but it also demonstrates the

overall idea of the cyclic model design. After using the system to

analyze learner data, we gain new insights that can be given back

to simulation designers and researchers to help formulate new

research questions and supporting simulation studies. We can
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iteratively update our qualitative understanding of simulation

based on learner data, leading to better analysis of the data, and

subsequent learner feedback, in the future.

7. Conclusions

In this paper, we presented an analysis of a nurse

simulation-based training environment using multimodal

learning analytics, cognitive task analysis, and distributed

cognition analysis using the DiCoT framework. We show how

the analysis of multimodal data from both qualitative and

quantitative perspectives can be combined into a common

framework for analyzing mixed-reality simulation-based

training environments, such as the nursing case study analyzed

here. While this work is still in its initial stages, the analysis

methods developed and demonstrated here suggest a great

potential for combining qualitative distributed cognition

analysis with multimodal quantitative analytics in order to

generate a more complete understanding of SBT as a whole.

The strengths of each method are amplified when used together,

and such an integrated approach can help shed new lights on

simulation-based training and generate new insights.

However, this work and the framework it presents are not

without limitations, and future work is required to address

these concerns. One of the major limitations of the presented

framework is its lack of guidance on the selection of adequate

data sources and design of the associated analysis techniques.

Since relevant data sources and analysis techniques differ widely

among SBT domains, it is difficult to create a universal guidance

on selection and design of these concepts while also keeping

the domain-generality of the presented framework. In addition,

this study was also limited by the sample size, only analyzing a

small case-study of two simulation. This small study size allowed

us to focus carefully on the design of the framework and the

specific feature of the analysis, but limits the argument for the

generalizability of the framework and the analysis results.

Future work will expand our study, both to more data

from the nurse training simulation domain, as well as to

a variety of other training domains. This expanded work

will help to mitigate both of these limitations, as it will

allow us to further validate the analysis methods across a

wide variety of participants, as well as reveal commonalities

among disparate training domains that can be used to

generate guiding principles for the selection of adequate data

sources and design of the associated analysis techniques.

In addition, these further studies will place an emphasis

on capturing data related to collaborative and teamwork

activities in these environments, helping to further develop

the distributed cognition frameworks that ground our data

analysis techniques.

To support these expanded studies, future work will also

focus on replacing the manual annotation of data used in this

study with automated AI and machine learning techniques.

Specifically, manual annotation was used in this study for the

action, speech, and gazemodalities. For actions, techniques from

video activity/action recognition will be applied to automatically

extract time segments where the nurse is performing relevant

actions (Ghadiyaram et al., 2019; Zhu et al., 2020). For speech,

tagging will be automated using pre-trained natural language

processing models, such as deep transformer models like

Google BERT (Devlin et al., 2018), which have been fine-

tuned on our specific domain. In addition, these pre-trained

language models will also be applied toward a variety of other

downstream NLP tasks, such as event detection and discourse

analysis. For gaze, computer vision techniques will be used to

automatically match the egocentric video to annotated static

camera viewpoints, allowing us automatically determine specific

objects (AOIs) that the nurse is looking at (Bettadapura et al.,

2015).

Finally, this study and its associated framework was

limited in guiding the design of formative learner feedback

mechanisms based on the analysis. While Section 6 discussed

some of the implications of the framework and its analysis on

learning and pedagogy, including the possibility of developing

formative learner feedback to support discussion sessions using

contrasting cases, the framework itself does not detail guidance

for designing learner feedback mechanisms. In addition, for this

study specifically, analysis of the case-study data was performed

post-hoc, so feedback based on the analysis could not be

generated in-time for students. Future work, will automate the

analysis methods, develop learning analytics to evaluate learner

behaviors and actions, and will focus on presenting learners with

online feedback designed to support simulation debriefing and

after-action reviews. By presenting the results of our analysis to

learners and instructors, we can get valuable feedback about the

usability of the system and what types of feedback mechanisms

might be relevant and important for these stakeholders to see in

future iterations of the system.
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