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Abstract
Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly 
at early phases of drug safety testing. Toxicogenomics is a promising source of mechanisms-revealing data, but interpretative 
analysis tools specific for the testing systems (e.g. hepatocytes) are lacking. In this study, we present the TXG-MAPr webtool 
(available at https:// txg- mapr. eu/ WGCNA_ PHH/ TGGAT Es_ PHH/), an R-Shiny-based implementation of weighted gene 
co-expression network analysis (WGCNA) obtained from the Primary Human Hepatocytes (PHH) TG-GATEs dataset. The 
398 gene co-expression networks (modules) were annotated with functional information (pathway enrichment, transcription 
factor) to reveal their mechanistic interpretation. Several well-known stress response pathways were captured in the modules, 
were perturbed by specific stressors and showed preservation in rat systems (rat primary hepatocytes and rat in vivo liver), 
with the exception of DNA damage and oxidative stress responses. A subset of 87 well-annotated and preserved modules was 
used to evaluate mechanisms of toxicity of endoplasmic reticulum (ER) stress and oxidative stress inducers, including cyclo-
sporine A, tunicamycin and acetaminophen. In addition, module responses can be calculated from external datasets obtained 
with different hepatocyte cells and platforms, including targeted RNA-seq data, therefore, imputing biological responses from 
a limited gene set. As another application, donors’ sensitivity towards tunicamycin was investigated with the TXG-MAPr, 
identifying higher basal level of intrinsic immune response in donors with pre-existing liver pathology. In conclusion, we 
demonstrated that gene co-expression analysis coupled to an interactive visualization environment, the TXG-MAPr, is a 
promising approach to achieve mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data.
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Introduction

Mechanism-based risk assessment is the gold standard for 
safety assessment of drugs and chemicals, but is resource- 
and time-intensive (Lanzoni et  al. 2019). Establishing 
mechanisms generally requires extensive experimentation, 
leveraging literature data collected over years, and is often 
based on preclinical (animal) studies, which may or may 
not translate to human (Bailey and Balls 2019; Clark and 
Steger-Hartmann 2018; WHO-IPSC 2018). Approaches 
that rapidly reveal mechanistic detail of preserved responses 
between animal and human would advance next generation 
risk assessment and impact both predicting and monitoring 
toxicity (Rivetti et al. 2020). For example, early in devel-
opment, drugs that cause preclinical toxicity are often dis-
carded based on preclinical studies without knowing if a 
toxicity mechanism will translate to human, thus valuable 
compounds may be discarded. In addition, screening for 
safer compounds is hampered if testing assays do not inter-
rogate compounds against a mechanism-related event and 
results are not interpreted in the context of organ-specific 
toxicity.

Liver is a primary target organ for drugs and chemi-
cal toxicants due to its role in metabolism and disposition 
(Zhang and Venkat 2020). Drug-induced liver injury (DILI) 
is a major cause of clinical liver failure (Björnsson 2019; 
Reuben et al. 2016), drug attrition and black box warnings 
(Onakpoya et al. 2016; Solotke et al. 2018; Watkins 2011). 
DILI manifests as a variety of clinical pathologies and may 
depend on genetic and environmental factors making its 
prediction a challenge for the current preclinical testing 
paradigm (Koido et al. 2020). Likewise, hepatotoxicity and 
hepatocarcinogenesis are major concerns for environmental 
exposures (Colombo et al. 2019; Yorita Christensen et al. 
2013). Both non-genotoxic and genotoxic carcinogens often 
produce hepatoxicity prior to the emergence of liver tumors 
in longer term preclinical studies (Karin and Dhar 2016). In 
both situations, hepatotoxicity can be regarded as a multi-
step, multicellular disease process, where an initial molecu-
lar stress is followed by a series of cellular key events that 
couple the initial stress to an apical endpoint observable as 

a pathology, e.g. hepatotoxicity or liver tumors. However, in 
the absence of a mechanism that links cellular (stress) events 
to a pathology, risk assessment is typically based on the 
apical endpoint which can take months or years to develop.

Toxicogenomics, the study of transcriptome responses in 
toxicology, is a promising tool for a comprehensive analysis 
of toxicity to enable mechanism-based risk assessment (Liu 
et al. 2019). Current toxicogenomic approaches mainly rely 
on the analysis of Differentially Expressed Genes (DEGs) 
or enrichment analysis using annotated pathway analysis 
tools (Barel and Herwig 2018). Such an approach depends 
on ontologies with a high degree of redundancy and cap-
ture current knowledge of toxicology and general biology. 
These approaches are useful but biased toward genes that 
are well annotated and are not designed to interpret mecha-
nisms of toxicity applied to specific testing systems (e.g. 
hepatocytes). For these and other reasons, and despite sev-
eral decades of research, toxicogenomics has not produced 
the anticipated transformation of current safety assessment 
standard practice (Vahle et al. 2018).

It is known that groups of genes expressed downstream 
of a (stress-responsive) transcription factor will show co-
expression (Yin et al. 2021). For this reason, gene co-expres-
sion analysis has been applied to toxicogenomic datasets 
for rat liver (Podtelezhnikov et al. 2020; Sutherland et al. 
2018), but not for human hepatocytes up to now. These co-
expressed gene sets mediate the cellular response to stress, 
providing mechanistic information on the cellular pro-
cesses and key events involved in adaptation and progres-
sion. Herein, we used weighted gene co-expression network 
analysis (WGCNA) to identify sets of co-expressed genes 
(termed ‘modules’) using the large TG-GATEs toxicog-
enomic dataset for primary human hepatocytes (PHH) as a 
surrogate to address hepatotoxicity and gene expression in 
the human context (Igarashi et al. 2015; Zhang and Horvath 
2005). Gene modules were deployed in an R-Shiny analysis 
framework accessible via an interactive website, the PHH 
TXG-MAPr (https:// txg- mapr. eu/ WGCNA_ PHH/ TGGAT 
Es_ PHH/) to facilitate rapid visualization and mechanistic 
interpretation of transcriptomic data. Gene modules were 
annotated with external annotation resources (e.g. pathway 
enrichment and transcription factor modulation), which are 
useful in identifying known stress response pathways and 
modules populated by novel genes responsive to specific 
stressors. Using endoplasmic reticulum (ER) stress as a case 
study, we show that canonical ER stress response genes are 
captured in gene co-expression modules, including novel 
guilt-by-association genes. We identified ER stress as an 
early event in cyclosporine A (CSA)-induced toxicity and 
showed that ER stress modules respond similarly between 
CSA and the prototypical ER stressor, tunicamycin. ER 
stress and other known stress response pathways, which 
were captured in the PHH modules, are conserved across 

https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/
https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/
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species and test systems. Stress response modules correlate 
in clusters with defined biological functions triggered by 
compound exposure. We showed that datasets of different 
sources can be analyzed with the PHH TXG-MAPr tool for 
mechanistic interpretation. Finally, we leveraged our PHH 
WGCNA modules to evaluate donor-to-donor variability 
upon tunicamycin exposure and identified biological sources 
of variations. Our results show that co-expression analysis of 
toxicogenomic data using the PHH TXG-MAPr framework 
can support human-relevant next generation mechanism-
based risk assessment.

Materials and methods

Gene expression data processing

TG‑GATEs and GEO microarray data

Microarray data from primary human hepatocytes (PHH) in 
the TG-GATEs repository were downloaded (https:// dbarc 
hive. biosc ience dbc. jp/ en/ open- tggat es/ downl oad. html) and 
jointly normalized using the Robust Multi-array Average 
(RMA) method within the affy R package version 1.52.0 
(Gautier et al. 2004). To map probe sets to Entrez IDs, the 
BrainArray chip description file (CDF) version 20 was used 
(http:// brain array. mbni. med. umich. edu/ Brain array/ Datab 
ase/ Custo mCDF/ genom ic_ curat ed_ CDF. asp, HGU133Plus2 
array version). Under this annotation, every gene is defined 
by a single probe set. This resulted in 19,363 unique probe 
sets, each mapped to a single gene. The TG-GATES (TG) 
repository contains 941 PHH treatments, where each treat-
ment is defined as a combination of compound, time and 
concentration. Samples treated with vehicles are available 
for each individual time point, thus resulting in batch effect 
removal (Grinberg et al. 2014). For each compound/time-
point combination, the limma R package version 3.30.13 
(Ritchie et al. 2015) was used to calculate log2 fold-change 
values, which was performed by building a linear model 
fit including concentration levels in the design as covariate 
and computing the log-odds of differential expression by 
empirical Bayes moderation. Significance of log2FC was 
determined by using Benjamini–Hochberg multiple test-
ing correction. TG-GATEs rat primary hepatocytes (RPH) 
and rat in vivo liver datasets have been analyzed following 
the same steps using suitable BrainArray CDFs (version 
19, Rat2302 array version). Additional human hepatocytes 
datasets for uploading into the TXG-MAPr tool were first 
downloaded from Gene Expression Omnibus (GEO: https:// 
www. ncbi. nlm. nih. gov/ geo/): GSE83958; GSE45635; 
GSE53216; GSE74000; GSE13430; GSE104601. The first 
four datasets were processed similarly to the TG-GATEs 
PHH dataset, because the samples were analyzed with the 

same microarray platform (Affymetrix HGU-133 Plus 2). 
The GSE13430 and GSE104601 datasets were generated 
from the Agilent Human 1A Microarray (V2) G4110B and 
SurePrint G3 Human GE v2 8 × 60 K microarray platforms, 
respectively. These datasets were analyzed with GEO2R 
using the provided NCBI gene annotation. In the case of 
duplicated measurements (probes) for a single gene, the 
most significant probe (adjusted p value) was used for 
uploading the data.

TempO‑Seq S1500 + set PHH data

The inter-individual variability in chemical-induced ER 
stress signaling and module activation was evaluated by 
using available TempO-Seq data of PHHs derived from 
50 individuals which were exposed to a wide concentra-
tion range of tunicamycin (Niemeijer et al. 2021; Mav et al. 
2020). In short, plateable cryopreserved PHHs derived from 
50 individuals (KaLy-Cell, Plobsheim, France) were plated 
in 96 wells BioCoat Collagen I Cellware plates (Corning, 
Wiesbaden, Germany) at a density of 70,000 viable cells 
per well. Cells were allowed to attach for 24 h and treated 
with tunicamycin (Sigma) at a concentration range of 
0.0001–10 µM for 8 or 24 h. After exposure, cells were lysed 
with 1 × TempO-Seq lysis buffer (BioSpyder) and stored at 
− 80 °C. Lysates were analyzed at BioSpyder (Carlsbad, 
CA, USA) using the TempO-Seq technology in combination 
with the S1500 + gene set (Mav et al. 2018). Data analysis 
is reported in Mav et al. 2020, here briefly summarized: 
experiments having library size of raw counts lower than 
100,000 counts were filtered out. Raw counts were normal-
ized with DESeq2 (R package version 1.28.1) normaliza-
tion (Love et al. 2014), log2 transformed and analyzed with 
BMD express version 2.3 (Phillips et al. 2019).

Weighted gene co‑expression analysis

To identify co-expressed genes from the PHH data, we 
used the WGCNA R package version 1.51 (Langfelder and 
Horvath 2008) and applied it to a matrix consisting of 941 
rows (PHH experiments) and 17,500 columns (log2 fold 
change values for genes). Genes were included into the 
analyses when they showed FDR (BH) < 0.001 in at least 
one experiment. We created unsigned gene modules (i.e. 
grouping together co-induced and co-repressed genes), and 
selected the optimal soft power threshold maximizing both 
the scale-free network topology using standard power-law 
plotting tool in WGCNA (Langfelder and Horvath 2008) and 
the exclusion of genes having low gene intensity in the 
DMSO controls (determined via t-tests). We selected 5 as 
the optimal soft-power parameter. By further refining mod-
ules built using WGCNA function to merge similar modules 
(those having correlation of their eigengene values ≥ 0.8), 

https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html
https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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we obtained 398 modules containing 10,275 genes. As 
described in (Sutherland et al. 2016), for each experiment 
we calculated the eigengene score (EGs, or module score) 
which summarizes log2 fold change of their constituent 
genes. Briefly, this protocol consisted of performing PCA 
on the gene matrix of each module, normalizing the log2FC 
across the entire dataset using Z-score conversion, the 1st 
principal component corresponds to the EGs. To simplify 
comparison between modules, the raw module score was 
normalized to unit variance (fraction between each module 
score and its standard deviation across the entire dataset) 
facilitating comparison across modules and across treatment. 
Therefore, the modules score indicates the level of activation 
or repression induced by a given treatment, when consider-
ing such changes in the context of the large collection of drug 
perturbations. Represented as Z-score, an eigengene score 
greater than + 2.0 or smaller than − 2.0 can be considered as 
a large (and relevant) perturbation in the context of the 941 
experiments Although the EGs represent the overall activa-
tion or repression of the module gene members, each gene 
is ordered based on intra-modular connectivity with other 
genes. For every gene, we calculated the correlation between 
the log2 fold change versus the eigengene score of the par-
ent module across the 941 experiments (termed ‘corEG’). 
The gene with the highest correlation between log2FC and 
module EGs (so called ‘hub gene’) is the most representa-
tive of the entire module matrix and show stronger connec-
tion to the other module genes. Both positive and negative 
correlation with the EGs, corEG, were allowed, thus genes 
that are inversely correlated can be members of the same 
module. A negative corEG indicates an inverse relationship 
between the gene log2FCs and its module EGs. The matrix 
containing EGs across all treatments was organized into a 
folded hierarchical tree (dendrogram), based on Ward’s hier-
archical clustering of pair-wise Pearson correlations for each 
module across all treatment conditions. Module locations 
on dendrogram branches were identified with a hierarchi-
cal anti-clockwise nomenclature system (Supp. Fig. S1a). 
Some module branches were artificially elongated to separate 
module clusters and improve visualization (Supp. Fig. S1b). 
Compound correlation was calculated with Pearson and 
Spearman correlation using the module EGs across the entire 
set of treatment conditions (resulting in 941 instances); simi-
larly, module correlation was calculated across all modules 
(resulting in 398 instances). Preservation between the mod-
ules structure obtained with the PHH TG-GATEs data set 
and the RPH TG-GATEs and rat in vivo liver data sets has 
been performed as follows: (1) rat gene IDs have been con-
verted to human gene IDs with the Rat Genome Database, 
which provided one-to-one ortholog matches (https:// downl 
oad. rgd. mcw. edu/ data_ relea se/ RAT/ ORTHO LOGS_ RAT. 
txt, Smith et al. 2020), (2) preservation statistics have been 
calculated with the WGCNA R package and thresholds for 

interpretation were adopted by relevant literature (Langfelder 
et al. 2011). Briefly, a module showing Z summary >= 2 is 
considered moderately preserved, >= 10 highly preserved. A 
lower median rank indicate higher preservation.

Pathway mapping and enrichment analyses

Over Representation Analysis (ORA) was performed via 
Consensus Pathway DB (cpdb version 34), including the 
following databases: BioCarta, EHMN, HumanCyc, INOH, 
KEGG, NetPath, Reactome, Signalink, SMPDB, Wikip-
athways, UniProt, InterPro (Kamburov et al. 2013). GO 
enrichment was obtained with the R package topGO ver-
sion 2.26.0, algorithm = "classic", statistic = "fisher" (Alexa 
and Rahnenführer 2007). For both resources, we included 
in the tool enriched terms satisfying hypergeometric test p 
value < 0.01. However, for module interpretation (Table 1 
and Table S8) only the top 10 associated terms per modules 
were included, that corresponded to terms having always 
adjusted p value (FDR) for CPDB lower than 0.05. String 
DB (Szklarczyk et al. 2015) was used to obtain protein–pro-
tein interaction networks of specific modules. Edge weights 
are proportional to the combined score of the nodes that the 
edges connect (Szklarczyk et al. 2015). Graphical rendering 
was obtained with Cytoscape (Shannon et al. 2003) using the 
StringApp (http:// apps. cytos cape. org/ apps/ strin gapp) bridge 
component.

Transcription factor (TF) enrichment and TF activity 
scoring

A hypergeometric test was performed on gene members in 
each WGCNA module to identify its regulatory TFs using 
the function phyper within the stat package in R (version 
3.5.1). The gene set of TFs and their regulated genes (regu-
lons) are derived from DoRothEA (version 2, http:// www. 
github. com/ saezl ab/ dorot hea/ relea ses, Garcia-Alonso et al. 
2019) with two sets of confidence levels: the “high con-
fidence” level comprises categories A, B and C while the 
“high coverage” level comprises categories A, B, C and D. 
The enriched TFs with p value less than 0.01 were included 
in the study. In parallel, TFs’ activities were estimated as 
normalized enrichment scores using the function viper 
from the viper package (version 1.16.0, Alvarez et al. 2016) 
with two confidence sets of TF-regulon from DoRothEA as 
described. All parameter settings were assigned as in the 
original DoRothEA study (Garcia-Alonso et al. 2019).

Web application TXG‑MAPr

The user interface application of the TXG-MAPr tool has 
been implemented using the R-shiny package version 1.6.0 
(Chang et al. 2021). The graphical part of the application 

https://download.rgd.mcw.edu/data_release/RAT/ORTHOLOGS_RAT.txt
https://download.rgd.mcw.edu/data_release/RAT/ORTHOLOGS_RAT.txt
https://download.rgd.mcw.edu/data_release/RAT/ORTHOLOGS_RAT.txt
http://apps.cytoscape.org/apps/stringapp
http://www.github.com/saezlab/dorothea/releases
http://www.github.com/saezlab/dorothea/releases
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has been implemented through the functionalities of the 
ggplot2, ape, igraph, hclust and pheatmap R-packages 
(Csardi and Nepusz 2006; Kolde 2019; Paradis and Schliep 
2019; Wickham 2016). The credential system to log into 
the PHH TXG-MAPr tool is established using the shinyau-
thr package (https:// github. com/ PaulC 91/ shiny authr). The 
PHH TXG-MAPr tool is available at https:// txg- mapr. eu/ 
WGCNA_ PHH/ TGGAT Es_ PHH/.

Uploading new data files into TXG‑MAPr

In order to calculate new EGs for each module from external 
data, first a modified Z-score is calculated by dividing the 
gene log2FC by the standard deviation of the gene log2FC 
across all TG-GATEs conditions, and is further weighted by 
the correlation eigengene score (corEG) (Eq. 1). New EGs 
for each module are calculated by summing the Z-scored 
gene log2FC values of the module genes (n = number of 
genes in a module), normalized by the standard deviation 
of the raw module score in the TG-GATEs dataset (Eq. 2). 
When data of certain genes in a module is not available 
in the uploaded dataset, then the Z-score for that gene is 
assumed to be zero, which may create an underestimation 
of the final module EGs:

The new module EGs will be overlaid onto the PHH 
TXG-MAPr dendrogram and will be fully integrated into 
the web application for that particular session. Data will be 
removed when the session is closed.

Data analyses

Cluster correlation of the expanded seed module set

Figures were made using R and the packages ggplot2, 
pheatmap, igraph. Heatmap in Fig. 3 is obtained with 
the following steps: (1) selection of ‘seed modules’ 
i.e., modules having clear interpretation based on term 
enrichments and TFs associations (see Table 1). Because 
TG-GATEs data is a sparse matrix, i.e. not all the com-
pounds have been tested at all concentration levels and 
time points, we removed the 2-h experiments (missing 
for roughly 50% of the compounds) and applied imputa-
tion of the remaining missing value with Singular Value 
decomposition via the R package pcaMethods using the 
svdImpute function (Stacklies et al. 2007; Troyanskaya 

(1)Z-score =
log 2FC

SD (log 2FC)
∗ corEG,

(2)EGs =

∑n

k=1
Z-score

SD
�
∑n

k=1
all Z-score

� .
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et al. 2001). (2) Pearson correlations between seed mod-
ules and all other preserved modules were calculated con-
sidering all remaining EGs from TG-GATEs (119 mod-
ules × 779 experiments). Modules were added in (termed 
‘add-in modules’) if the (seed x target) correlation val-
ues were ≥ 0.7 to yield the ‘expanded set’ of 87 modules. 
Hierarchical clustering was obtained by applying the 
Ward D2 method, using 1-cor as distance. In particular, 
we applied the WardD2 method, including the full imple-
mentation of the Ward clustering criterion. Note that the 
results of Ward’s agglomerative clustering are likely to 
delineate clusters that visually correspond to regions of 
high densities of points in PCA ordination, e.g. produce 
‘round’ clusters (Murtagh and Legendre 2014).

Targeted genes set analysis (S1500 +)

To evaluate the quality of the genes belonging to the Bio-
Spyder TempO-Seq S1500 + set, we tested for difference 
of mean absolute corEG with a random draw of genes from 
the complete pool of genes available in the TG-GATEs 
dataset. The randomly selected gene set have the same 
size as the overlap of the S1500 + set with the TG-GATEs 
gene set (n = 1830) and this process was repeated 10,000 
times (Wilcoxon test), adjusting the p value with Bonfer-
roni method. The heatmap in Fig. 5 was obtained with the 
“complete” clustering algorithm applied to the Euclidean 
distance between samples. Donors module clusters were 
obtained with the same method as for TG-based module 
clusters (see paragraph above). The overlap between TG 
module clusters and donor module clusters was calculat-
ing using the WGCNA R package (Langfelder and Hor-
vath 2008) using the overlap function, which calculates 
the numerical overlaps between groups and quantify the 
significance by applying Fisher exact test. Donor traits 
(phenotypes) associations with modules responses after 
treatment of donor hepatocyte cultures were determined 
as previously described in (Sutherland et al. 2018). In brief: 
(1) different concentrations were analyzed separately, and 
only after 24 h of exposure (generally higher transcrip-
tomic changes). (2) For cluster to traits associations, cluster 
behaviors were calculated as mean of the EGs scores of 
the modules’ members of each cluster. Since only mod-
ules with high correlation populate a cluster, we expect 
that averaging their EGs would lead to a concordant score. 
To understand driver-modules for each association, we 
calculated module-to-trait relationships. (3) The associa-
tion between cluster (or module) and the occurrence of a 
donor trait was quantified using Cohen’s d, a measure of 
effect size. Since the average absolute module eigengene 
(avgAbsEG), a measure of overall transcriptional activ-
ity, can have an effect size for traits associations, logistic 
regression was performed to determine the contribution of 

a given module in explaining the residual odds of toxicity 
after accounting for avgAbsEG, and the significance of the 
module represented as adjusted p values (padj).

Results

The PHH TXG‑MAPr: a tool to visualize and explore 
biological interpretation in primary human 
hepatocyte transcriptomic data

We applied WGCNA to the TG-GATEs primary human 
hepatocytes (PHH) dataset (Igarashi et al. 2015), which 
includes exposure data for 158 compounds at various time 
points and concentration levels to identify the predominant 
networks of co-expressed genes (Fig. 1a exemplifies the pro-
cess for a subset of co-expressed genes). We obtained 398 
networks (modules) of highly correlated genes. Modules are 
labeled with a number inversely proportional to the num-
ber of member genes; larger modules have smaller number 
labels. An eigengene score (EGs) was computed for each 
module as the first principal component of each module data 
matrix and further scaled (see Material and Methods). Thus, 
the EGs represents the trend (induction or repression) of the 
entire module based on the included genes. By performing 
WGCNA, the final data matrix was reduced to 941 columns 
(treatments) and 398 rows (module EGs) which corresponds 
to a 97.7% reduction in dimensionality of gene expression.

To facilitate the analysis of transcriptomic information 
from module responses, we developed a module-based 
R-Shiny visualization and analysis framework, the PHH 
toxicogenomic (TXG) MAPr (PHH TXG-MAPr). The EGs-
treatment data matrix was organized into a folded hierar-
chical tree, or dendrogram, based on Ward’s hierarchical 
clustering of pair-wise Pearson correlations for each module 
across all treatment conditions (Fig. 1b, Supplemental Fig. 
S1a, b). The dendrogram allows one to visually appreci-
ate the induction or repression of modules EGs (red to blue 
color scale, respectively) and the proximity to modules with 
similar behavior (Pearson R; see Supp. Fig. S2 for dose– and 
time–response dendrograms for example compounds). We 
also incorporated module enrichment measures for biologi-
cal pathways and ontologies, transcription factor-target pairs, 
compound similarity analysis and a variety of other useful 
functions for mechanistic analysis and data mining.

To illustrate the utility of the PHH TXG-MAPr analysis 
framework, we investigated the response of cyclosporine A 
(CSA), which was transcriptionally active in PHH and has 
both mild hepatotoxic and more severe renal toxicity poten-
tial (Rezzani 2004). Strong induction of modules PHH:13 
and PHH:62 can be seen 24 h after treatment with 6 µM 
CSA (Fig. 1b). Using the compound correlation function-
ality, we sampled all pair-wise Pearson correlations for 
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all 398 module EGs across all treatment conditions; CSA 
shows highest similarity to tunicamycin (Pearson R = 0.84), 
suggesting a common mode of action (Fig. 1c, center). 

Modules at the extremities of the correlation plot (PHH:13 
and PHH:62 in the example) can be highlighted and tabu-
lated to facilitate further analysis. Correlation between gene 
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log2FC from the same treatment conditions had lower simi-
larity (Pearson R = 0.74; Fig. 1c, top). On average, across 
all TG-GATEs compounds the EGs-based max Pearson cor-
relations were higher than max correlation based on gene 
log2FC (Supp. Fig. S1c), suggesting that analyzing gene 
networks (modules) improves the robustness of compound 
comparison of transcriptomic data by averaging out the vari-
ations of individual gene perturbations. Although PHH:13 
and PHH:62 are in different branches they did show a Pear-
son correlation of 0.62 for all TG-GATEs treatment condi-
tions (Fig. 1c, bottom).

Tunicamycin (TUN) is a prototypical inducer of ER 
stress while there is literature reporting that CSA also 
perturbs ER functions (Foufelle and Fromenty 2016; 
Van Summeren et al. 2013; Vickers et al. 2017). There-
fore, we investigated modules PHH:13 and PHH:62 for 

genes associated with ER, ER stress and unfolded protein 
response (UPR). Module PHH:13 contains 121 genes, 
including well-known ER stress genes, like HSP90B1 
(GRP94), SEL1L, PDIA6, HSPA5 (BiP/GRP78) and its 
co-chaperone DNAJB9 (Suppl. Table S2). Since PHH:13 
was too large to visualize in a gene interaction plot, Fig. 1d 
(top) shows the module plot for the smaller module PHH:62 
(19 genes). This module contains genes involved in endo-
plasmic reticulum-associated degradation (ERAD), such 
as SELENOS and SELENOK, but also other ER resident 
genes with less clear connection to ER stress yet, such as 
FKBP2, SEC11C and SSR4 (Fig. 1d, top). There is a clear 
time- and dose-dependent induction of module PHH:62 by 
CSA, which follows a similar trend for the log2FC induc-
tion of the hub-like (highest corEG) module genes (Fig. 1d, 
center and bottom).

Using the PHH TXG-MAPr module enrichment func-
tionalities, we investigated the enrichment of biological 
processes and pathways (see Methods) as well as transcrip-
tion factors (TFs) enrichment using the DoRothEA gene set 
resource (Garcia-Alonso et al. 2018). Results were overlaid 
on the module dendrogram (Fig. 1e). Not surprisingly, mod-
ules PHH:13 and 62 showed the lowest p-values for GO-CC 
term “endoplasmic reticulum” as well as terms related to 
endoplasmic reticulum (ER) stress amongst others (Fig. 1e, 
top). Module PHH:13 was also enriched for transcription 
factor ATF6 target genes (Fig. 1e, center) consistent with 
the presence of more highly annotated ER stress genes. 
To determine if PHH:13, the primary module enriched for 
ATF6 gene targets, reflected general ATF6 activation, we 
calculated the ATF6 activation scores for all ATF6 target 
genes in the 10275 TXG-MAPr genes (see more details 
on DoRothEA in the “Materials and Methods” section) 
and we observed that ATF6 scores also showed time- and 
dose-dependent activation for both CSA and TUN (Fig. 1e, 
bottom).

Using the PHH TXG-MAPr analysis framework, we were 
able to rapidly identify the activation of an ATF6 regulated 
ER stress response as an early event following cyclosporine 
A exposure. Data underpinning these functionalities, and 
others not noted here, are accessible in a tabular format in 
the supplementary materials (Supp. Tables S1–S7). The ded-
icated PHH TXG-MAPr application is available at https:// 
txg- mapr. eu/ WGCNA_ PHH/ TGGAT Es_ PHH/.

Module preservation in the PHH‑TXG‑MAPr

Preservation statistics can be used to determine if networks’ 
node-edge relationships defined in one biological system are 
preserved in another (Langfelder et al. 2011). We evaluated 
network preservation of PHH modules versus rat primary 
hepatocyte (RPH) and in vivo rat liver TG-GATEs data-
sets using two different preservation statistics: Z-summary 

Fig. 1  The PHH TXG-MAPr: an innovative tool to visualize and 
understand PHH toxicogenomic data. a Example gene expression 
data matrix. Log2FC values of genes (rows) are shown for multiple 
treatment conditions (columns). Four groups of co-expressed genes 
(modules PHH:13, 62, 118 and 144), highlighted with boxes and 
color, show consistent patterns across the experimental conditions 
and are exemplified with the gene networks on the right side. Treat-
ments are clustered using Euclidean distance to group conditions 
that regulate the same groups of co-expressed genes. b Hierarchi-
cal tree view (dendrogram) of module scores at 24 h cyclosporine A 
exposure at HI dose level (6 µM). Highlighted modules are PHH:13, 
PHH:62 and PHH:118 which are strongly induced by CSA (orange/
red circles), while module PHH:144 is unchanged (yellow circles). 
c Comparing modules and compounds. Top: gene log2 fold change 
(log2FC) for cyclosporine A (HI dose = 6  µM, 24  h) are plotted 
against gene log2FC for tunicamycin (MED dose = 2  µg/mL, 24  h), 
showing a Pearson correlation of 0.74. Center: module EGs for cyclo-
sporine A are plotted against module EGs for tunicamycin, showing 
a Pearson correlation of 0.84. Bottom: EGs for module PHH:62 are 
plotted against EGs for module PHH:13 (all compounds, concen-
trations and time points) and show a Pearson correlation of 0.62. 
Straight blue line represents a fitted linear model. Gray shades repre-
sent confidence interval. d Grouping genes into modules. Top: gene 
network for module 62. Colors qualitatively represent log2FC upon 
treatment with cyclosporine A at HI dose (6  µM) for 24  h. Edges 
thickness is proportional to the adjacency value among the genes. 
The squared gene is the hub-genes. Center: module EGs profile for 
module PHH:62 at different cyclosporine A concentrations and time 
points (LO = 0.24  µM, MED = 1.2  µM, HI = 6  µM). Bottom: gene 
log2FC profile for hub-like genes belonging to module 62 at different 
cyclosporine A concentrations and time points. Color code of points 
and edges represents the correlation eigengene (corEG). e Annotat-
ing the modules. Top: Hierarchical tree view with module color and 
size proportional to the −  log10 p value for the enrichment for the 
GO term “response to endoplasmic reticulum stress” (GO:0006520). 
Significantly enriched modules PHH:13, 15 and 62 with p values 
(< 0.01) are highlighted in blue. Center: Hierarchical tree view with 
module color and size proportional to the −  log10 p value for the 
enrichment for the transcription factor ATF6. ATF6 enriched modules 
PHH:13 and 193 with significant p values (< 0.01) are highlighted in 
purple. Bottom: ATF6 activation score considering all its targets for 
cyclosporine A (LO = 0.24 µM, MED = 1.2 µM, HI = 6 µM) and tuni-
camycin (LO = 0.4  µg/mL, MED = 2  µg/mL, HI = 10  µg/mL) (color 
figure online)

◂

https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/
https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/
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and Median Rank (see Methods, Fig. 2a, b, Supp. Table S8, 
Supp. Fig. S3). Z-summary preservation statistic shows 
higher dependency on modules size, as noted in literature; 

large modules such as PHH:13 are highly preserved (Fig. 2a, 
color scale) (Langfelder et al. 2011). The complementary 
Median Rank statistic (Fig. 2b) is less dependent on module 
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size, and can assign high preservation ranking (quantified 
with low numerical scores) to small modules. Therefore, 
we considered preserved modules as those with Z-sum-
mary preservation score for both systems (RPH and rat 
liver) higher than 2 or ranked in the top 100 modules for 
the Median Rank statistics for both systems (for the latter, 
arbitrary threshold corresponding to 25% of all the PHH 
modules). This selection led to a set of 102 (26%) preserved 
modules from the PHH TXG-MAPr (Supp. Table S8), which 
include the UPR modules PHH:13 and PHH:62.

Stress response pathways represented by PHH 
modules

Pathway information facilitates mechanism-based risk 
assessment (Krewski et al. 2020). Therefore, we used the 
TXG-MAPr enrichment functionalities to identify modules 
representing cellular stress response pathways typically 
involved in toxicity and activated by stress-responsive TFs. 
These include the ER stress response and the larger inte-
grated stress response (ISR), as well as inflammatory path-
way, mitochondrial response, oxidative stress and the DNA 
damage responses, all of which were previously shown to be 
relevant for identifying the modes of action of compound-
induced toxicity (Wink et al. 2014). We focused on mod-
ules which (1) were identified by consistent enriched terms 
and TF associations with p values < 0.01 and FDR < 0.05, 
and (2) show response to prototypical compounds (Fig. 2c, 
Table 1). Below are the selected stress responses pathways 
represented by PHH modules which we aim to highlight in 
this study:

ER stress and ISR

As noted above, modules PHH:13 and PHH:62 are enriched 
for terms associated to endoplasmic reticulum localization, 
UPR and ERAD as well as transcriptional regulation by 
ATF6, all of which are components of the larger ISR (Hetz 
et al. 2020; Ron and Walter 2007). We also looked for mod-
ules regulated by ATF4, a transcription factor downstream 
of the ISR hub, and IF2α, a regulator of translation after 
stresses including ER stress, starvation, and viral infec-
tion (Pakos‐Zebrucka et al. 2016). Modules PHH:15 and 
PHH:295 were enriched for ATF4 gene targets, and terms 
associated with amino acid metabolism and transport, 
respectively (Table 1), which are processes that are regu-
lated by ATF4 (Hetz et al. 2020). All four modules respond 
to cyclosporine A and tunicamycin (Fig. 2c, panel i).

Heat‑shock, proteasome and lysosome

In response to proteotoxic stress, damaged proteins are 
bound to members of heat shock-inducible chaperone sys-
tem (heat shock response), which facilitate removal of dam-
aged proteins by lysosomes and/or proteasome degradation. 
Modules PHH:177, PHH:76 and PHH:82 (proteasome) and 
PHH:131, PHH:95 (heat shock) are preserved and respond to 
treatment with allyl alcohol (Mandrekar et al. 2008) (Fig. 2c, 
panel ii, Table 1). Module PHH:17 (annotated for GO:CC 
lysosome and includes SQSTM1) is also found to be pre-
served and is activated by fluoxetine, a known phospholipi-
dosis inducer (Breiden and Sandhoff 2019) (Fig. 2c, panel 
ii, Table 1).

Immune response

Immune response pathways including inflammatory media-
tors are activated in hepatocytes during liver injury and in 
disease states (Campos et al. 2020; Woolbright and Jae-
schke 2017). Immune response and inflammation terms are 
enriched in several preserved modules (PHH:12, PHH:247, 
PHH26, PHH:22 and PHH:136) that respond to inflamma-
tory agents such as interferon-α and TNF-α (Fig. 2c, panel 
iii, Table  1). Modules PHH:242, PHH:44 and PHH:70 
are also annotated for immune response but not preserved 
(Table 1). Compound regulation and module enrichment 
terms identify subgroups of immune response modules. 
STAT signaling modules (PHH:12, PHH:247) are strongly 
induced by interferon, while NF-kB signaling modules 
(PHH:22, PHH:136) are mainly induced by TNFα. Module 
PHH:26 is induced by both stimuli, but also has a mixed 
NF-kB and STAT annotation.

Fig. 2  Some PHH WGCNA modules are preserved in rat systems and 
connect to stress response pathways. a Z summary preservation score 
plot. Z summary preservation values of PHH modules in Rat in vivo 
Liver data (x-axis) are plotted against Z summary preservation val-
ues of PHH modules in Rat Primary Hepatocytes data (y-axis). Mod-
ules are colored based on their size (log10 transformed) and modules 
PHH:13 and PHH:62 are labeled. Higher scores imply better preser-
vations. The dashed lines correspond to Z summary = 2 and Z sum-
mary = 10, above which a module can be considered, respectively, 
moderate and high preserved. b Median Rank preservation score plot. 
Median Rank preservation values of PHH modules in Rat in  vivo 
Liver data (x-axis) are plotted against Median Rank preservation val-
ues of PHH modules in Rat Primary Hepatocytes data (y-axis). Mod-
ules are colored based on their size (log10 transformed) and modules 
PHH:13 and PHH:62 are labeled. Lower scores imply a higher rank 
and greater preservation. c Dose- and time-response EGs plots of 
modules representing stress response pathways. Modules are grouped 
by stress processes (roman letters) and their responses upon treatment 
with representative compounds is shown in dose–response (x axis), 
faceted by time. Modules are represented by different symbols, while 
compounds by different colors (color figure online)

◂
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Mitochondria

Mitochondria are an important target for hepatotoxic chemi-
cals and mitochondrial injury is commonly used to screen 
for hepatotoxic potential (Rana et al. 2019; Weaver et al. 
2020; Yang et al. 2015). Mitochondrial damage is commonly 
assessed by changes in respiration and the mitochondrial 
membrane potential. Less is known about the regulation of 
genes coding for mitochondrial proteins in response to toxic 
stress. Several preserved PHH modules are found to be anno-
tated with mitochondria-related and mitochondria-compo-
nent specific terms (PHH:113, PHH:138, PHH:2, PHH:256, 
PHH:33, PHH:97). These modules respond positively to 
doxorubicin (Osataphan et al. 2020) and are found to be 
repressed by ethionine (Zhang et al. 2020) (Fig. 2c, panel 
iv, Table 1). Notably, PHH:33 and PHH:97 were annotated 
by terms relating to regulation of mitochondrial ribosome 
translational control and mitochondrial organization. Mod-
ule PHH:173 shows enrichment for mitochondria genes, but 
is not preserved (Table 1).

DNA‑damage and oxidative stress

Modules PHH:59 and PHH:83 are enriched for TP53-regu-
lated genes and annotated for terms consistent with the DNA 
damage response (DDR). The NFE2L2 (NRF2) associated 
modules PHH:144 and PHH:325 include key genes such as 
SRXN1 and NQO1 which are direct targets of NRF2, and 
enrich for terms such as oxidoreductase and glutathione 
metabolism. In contrast to the other preserved modules from 
Table 1, modules associated with NRF2 and TP53 activa-
tion are not well-preserved, but these modules do respond 
as expected to specific inducers consistent with interpreta-
tion as oxidative stress and DNA damage modules, respec-
tively (Fig. 2c, panels v and vi and Table 1). Only modules 
PHH:243 (includes GADD45A/B) and PHH:337 (associated 
with NFE2L2) are found to be preserved (Table 1).

The examples described above exemplify the utility of 
PHH TXG-MAPr for identifying modules relevant to known 
stress pathway useful for mechanistic interpretation and 
benchmarking preservation of co-expression across species 
and liver in vivo. Other cellular processes and pathways 
not discussed can be identified using the main enrichment 
terms and TFs associations of the whole preserved module 
set (Table S8).

PHH stress response module seeds cluster 
in an interaction map to describe mechanisms 
of toxicity

In toxicity pathways, early events are coupled to a cas-
cade of perturbations that lead to an adverse outcome, e.g. 
cell death. Using the stress pathway modules as seeds, we 

created an interaction map (cluster correlation) between 
stress pathways and other highly preserved modules that 
cluster important cellular processes as well as preserved 
modules without clear annotation and identify off-diagonal 
interactions between important biological themes.

We used the well-annotated modules identified above 
(Table 1 and Table S8) as seeds, and identified preserved 
‘add-in’ modules (with or without clear enrichment) if they 
had a Pearson correlation ≥ 0.7 with a seed module, cal-
culated across all TG-GATEs PHH compound treatments. 
The final expanded set of 87 seed and add-in modules is 
in Table S8, identified by the column “Cluster”. Figure 3 
shows a cluster correlation analysis of the expanded seed set 
module EGs based on all TG-GATEs compounds, together 
with representative compound responses. Eight distinct clus-
ters emerged with modules annotated for similar processes 
forming macro groups; examples are described below. Note 
that within each group, modules with limited to no annota-
tion have been included, suggesting they belong to the same 
response group.

Cluster 1: immune response

Cluster 1 includes all the seed modules annotated for 
immune response pathway terms (Table 1), except PHH:247 
(cluster 8). Add-in module PHH:317, which showed no 
annotation terms, contains an interleukin receptor (IL18R1), 
but also some genes induced by inflammatory molecules, for 
which little is known regarding involvement with immune 
response (GSAP, CSTO). Similar to the observations 
obtained with TNF-α and interferon-α, inflammatory mod-
ules clusters into two subgroups, one enriched with NF-κB 
modules, the other in STAT regulated modules.

Cluster 5: mitochondria

Cluster 5 contained seed modules annotated with mitochon-
dria related terms, but also add-in modules with less clear 
annotation. Nevertheless, when looking for protein–protein 
interactions among genes belonging to this group of mod-
ules, high degrees of connections are found for a large sub-
group of genes, connecting within modules and showing 
high corEG (Wilcoxon rank sum test p = 7.72E-07, Fig. S4).

Cluster 3, 4 and 8: cellular stress responses

The above characterized stress modules, like oxidative 
stress, ER stress response, heat shock and DDR, clustered 
in isolated sub-groups within clusters 3, 4 and 8. However, 
these clusters also included other processes less commonly 
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associated with prototypical stress responses. For example, 
Cluster 3 contained the seed proteasome module (PHH:76), 
a module containing two growth arrest and DNA-dam-
age inducible (GADD) genes, GADD45A and GADD45B 
(PHH:243), the ATF4-regulated modules (PHH:15 and 
PHH:295), a module containing several inducible heat shock 
protein transcripts (PHH:131) and a module containing two 
NRF2 target genes, MAFG and MXD1 (PHH:337). Cluster 
3 also contained two RNA processing modules (PHH:42, 
PHH:19) associated with the nucleolus/ribosome biogenesis 
and mRNA processing, respectively. Cluster 8 contains the 
seed DDR modules (PHH:59 and PHH:83), both of which 
contain multiple TP53 regulated genes, and a seed mitochon-
drion module (PHH:2) along with modules enriched for fatty 
acid/cholesterol metabolism modules (PHH:40, PHH:240) 
but also cellular homeostasis modules, like PHH:1 (cell 
cycle), and PHH:11 (metabolism).

The expanded interaction map describes 
the interplay between cellular processes in response 
to chemical treatment

The interplay across module clusters appeared to capture 
elements of the dynamic interactions among biological 
response networks (off-diagonal correlation in Fig.  3). 
Clusters can interact positively, e.g. the mitochondria clus-
ter 5 and the RNA processing cluster 6 (which contains both 
ribosome RNA (rRNA) and mRNA processing modules), 
or negatively, e.g. activation of stress cluster 3 is commonly 
associated with down-regulation of modules in cluster 8 (cell 
cycle and mitochondrion). Interestingly, half the modules, 
largely those annotating for NF-κB in immune response 
cluster 1, showed positive correlation (induced) with acti-
vation of processes in clusters 2 and 3, while the other half, 
including the STAT modules, were inversely correlated and 
down-regulated. Cluster 1 showed a similar bifurcation 
with cluster 8 but in the opposing direction, i.e. the NF-κB 
modules positively correlated with clusters 2 and 3 were 
negatively correlated with cluster 8 while the STAT modules 
showed a positive correlation.

An integrated understanding of interaction among com-
plex cellular processes is critical for a mechanism-based 
risk assessment and requires identifying key event associa-
tions with an apical endpoint. Compound with higher versus 
lower risk may perturb more cellular processes in progress-
ing to cytotoxicity while others may have a more adaptive 
phenotype. Evidence for progressive perturbation (or lack 
thereof) can be derived within the module cluster correlation 
landscape by comparing the module activation by exemplar 
compounds (Fig. 3, right). For example, tunicamycin is a 
prototypical ER stress inducer and has a low cytotoxic con-
centration in human hepatocyte cells and a low LD50 of 
2 mg/kg in mice (Morin and Bernacki 1983; Zhang et al. 

2014). Tunicamycin clearly activates the ER stress response 
in PHH both via the ATF6 arm in cluster 4a (PHH:13 and 
62), the ATF4 arm (cluster 3) and fatty acid metabolism 
(cluster 8 and cluster 4), concurrently with strong repres-
sion of rRNA and mRNA processing (cluster 6) and immune 
response activation (cluster 1). In contrast, cyclosporine A, 
which is less toxic with an LD50 in mice ranging from 96 to 
2803 mg/kg (depending on the route of administration (Sax 
1975)), primarily triggered the ATF6-ER response (cluster 
4a). Taken together, these observations suggest that tunica-
mycin is inducing a more severe response impacting diverse 
cellular biological processes, whereas cells challenged with 
the used concentrations of cyclosporine A showed limited 
module perturbations.

A different picture emerged when we considered two 
prototypical drugs that can induce oxidative stress: aceta-
minophen and omeprazole. For both, immune responses 
were primarily repressed (cluster 1), while oxidative stress 
modules (cluster 4) were activated. In addition, omepra-
zole activates modules in cluster 3, concurrent with a 
deactivation of modules in cluster 8. Specific transcrip-
tion regulation modules are activated, including PHH:4 
which contains several stress-induced TFs (ATF4, ATF3, 
NFE2L2, TP53) and the xenobiotic stress module, includ-
ing CYP enzymes (cluster 4). Interestingly, PHH:358 
(cluster 4) contains CYP1A1 and CYP1A2, canonical AHR 
targets, and omeprazole is a known AHR ligand (Safe 
et al. 2020). Taken together, these observations suggest 
that omeprazole activates oxidative stress, coupled with 
the activation of processes to constrain protein damage 
(ATF4, proteasome and heat shock modules in cluster 3) 
and repression of fatty acid metabolism and cell cycle pro-
gress (cluster 8).

These examples illustrate the utility of the PHH TXG-
MAPr stress-pathway landscape for mechanistic evaluation 
of compounds and for comparing compounds with similar 
modes of action but with different degrees of toxicity.

Visualizing external datasets in the TXG‑MAPr tool 
reveals good correlation between different cell 
types and gene expression platforms in the mode 
of action

Integrating historical and new datasets to derive mechanistic 
interpretations is important, but it is often hard to determine 
if joint information, such as WGCNA modules, provides a 
consistent view of biological responses across experiments. 
The high variability of gene-level analyses, and the high 
penalty for multiple comparisons also complicate data inte-
gration. To validate the utility of the PHH TXG-MAPr for 
integrating and comparing external datasets, we created a 
data upload function, which calculates new module eigen-
gene scores (EGs) from the gene log2FC of the uploaded 
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Fig. 3  PHH stress modules interaction map. Cluster correlation 
matrix of the 87 modules correlating with well-annotated modules. 
On the left, modules are hierarchically clustered with Ward D2 algo-
rithm using Pearson correlation (red–blue color scale) as distance. On 
the far left, the preservation status of each module is indicated with 
gray color scale (black—preserved, gray—not preserved). Clusters 
of modules with concordant annotation are highlighted with dashed 

squares. On the left, EGs (purple–orange color scale) for the exem-
plar compounds tunicamycin, cyclosporine A, Acetaminophen, Ome-
prazole are shown for the 87 modules, in dose– and time–responses. 
On the far right, modules names are shown together with their main 
annotation (available for the seed modules), in red highlighted the 
modules show in Table 1 (color figure online)
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data and overlays the scores onto the module dendrogram for 
visualization (for further details, see Material and Methods 
paragraph “Uploading new data files”). To further describe 
CSA mode of action, we processed and uploaded samples 
from the GEO database of CSA prolonged repeated exposure 
followed by recovery in collagen sandwich cultured PHH 
(GSE83958 (Wolters et al. 2016)) into the PHH TXG-MAPr 
tool (Fig. 4a). The uploaded CSA dataset showed strong cor-
relation (Pearson R > 0.8) in module activation and repres-
sion among the three timepoints. A heatmap of module EGs 
(absolute EGs > 2) separates repressed and activated mod-
ules in different clusters (Fig. 4b). ER stress annotated mod-
ules (PHH:13 and PHH:62) and an ATF4 module (PHH:15) 
are located in the same cluster, which are strongly activated 
by CSA at high dose levels (Fig. 4c). In addition, the 5 day 
30 µM CSA treatment with 3 days recovery looks most simi-
lar to the CSA_24h_6 µM data from TG-GATEs based on 
module EGs correlation (R Pearson = 0.67, Fig. 4d). The 
absolute Pearson correlation between module EGs across 
the uploaded CSA conditions was higher than the absolute 
correlation between the gene log2FC (Supp. Fig. S5f). The 
uploaded data confirm that high dose cyclosporine A induces 
a strong ER stress response amongst others, which is pre-
sent for several days during daily exposure and persists even 
after washout. A similar ER stress response (PHH:13 and 
PHH:62) was also present in HepG2 hepatocytes exposed to 
CSA (GEO dataset: GSE45635 (Van den Hof et al. 2015)) 
and ER stress module activation was seen at low (3 µM) and 
high (20 µM) dose (Suppl Fig. S5a, S6 cluster 5 red line).

Additional datasets of human hepatocytes (PHH, HepG2 
and HepaRG) exposed the oxidative stress inducer acetami-
nophen (APAP) were analyzed to investigate the application 
of the PHH TXG-MAPr for a different compound (Suppl. 
Fig. S5b-e). The APAP datasets show a clear oxidative stress 
response (PHH:144, PHH:325) as well as many other mod-
ule perturbations, which is independent of the cell type or 
microarray platform (Fig. S6, cluster 8 red line).

Pearson correlations between CSA and APAP treatments 
in TG-GATEs and the uploaded data from GEO are shown 
in a cluster correlation plot (Fig. 4e). Hierarchical cluster-
ing based on correlation distance between samples sepa-
rates the data based on the mode of action, clustering ER 
stress inducers cyclosporine A and tunicamycin together and 
separated from oxidative stress inducer acetaminophen. In 
addition, different hepatocyte cell cultures (3D PHH, HepG2 
and HepaRG) show good correlation with the same com-
pound exposure, suggesting that a similar mode of action 
can be captured by other hepatocyte cells. GEO data of 
PHH exposed to APAP that was analyzed on two differ-
ent Agilent microarray platforms correlate well with the 
TG-GATEs data at the same concentration (GEO_PHH_
APAP_24h_5mM / GEO_PHH.3D_APAP_24h_5mM ver-
sus TG_PHH_APAP_24h_5mM), even though the average 

module coverage was 84 or 93% for the Agilent chips (e.g. 
only 84 or 93% of genes per module were measured in the 
chip). This indicates that the TXG-MAPr supports the 
analyses of gene expression data from different platforms/
chipsets. In contrast, low dose or early time-points do not 
correlate well with the same compound, likely due to the 
minimal module perturbations in these conditions (data not 
shown).

Overall, the PHH TXG-MAPr upload and analysis func-
tions are powerful tools to compare both global biological 
responses across disparate datasets and TG-GATEs data, 
while identifying specific modes-of-action, even for other 
hepatocyte cell types or other microarray platforms, suggest-
ing that co-expression analysis can obviate technical issues 
when comparing across expression datasets or platforms.

Leveraging WGCNA to interpret targeted RNA Seq 
datasets

Although high throughput technologies allow many samples 
to be processed in parallel, the high costs of whole transcrip-
tome profiling has led to the use of targeted RNA sequencing 
approaches which are gaining popularity for toxicology stud-
ies (Mav et al. 2018). We reasoned that mapping a targeted 
gene sets to co-expression modules might yield sufficient 
data to impute more detailed and biologically relevant infor-
mation. We tested this concept using the PHH TXG-MAPr 
by uploading a targeted RNA Seq data set, TempO-Seq, 
obtained from treating plated cryopreserved PHH from 50 
different human donors in a detailed dose–response protocol 
with tunicamycin at two time points (0.0001–10 µM, 8 and 
24 h, Niemeijer et al. 2021). We calculated the modules EGs 
for each donor-concentration–time point combination, a total 
of 600 different conditions, following the approach detailed 
in “Material and methods” section.

Of the 2708 genes measured in the TempO-Seq 
S1500 + gene set, only 1830 genes are mapped to the 
PHH modules (Supp. Table S9). Genes not mapping were 
excluded from the PHH network during modules generation 
because they did not have robust co-expression patterns and 
are included in the PHH TG-GATEs ‘gray’ module (Lang-
felder and Horvath 2008). Although some modules were not 
covered by any genes from the S1500 + set (coverage of 0%), 
modules selected in Fig. 3 have significantly higher coverage 
(Wilcoxon test, greater alternative, p < 0.05 and Fig. 5a, b), 
suggesting that the preserved and well annotated modules 
are better represented in the S1500 + set. In addition, the 
coverage was higher when the hub gene was present in the 
S1500 + set (Fig. 5b). EGs calculation depends on both the 
fold change and the correlation with the eigengene score 
of each gene (corEG, a measure of hubness), therefore we 
assessed the corEG values for S1500 + genes as a gene qual-
ity metric. At the module level, the average corEG does not 



3766 Archives of Toxicology (2021) 95:3745–3775

1 3



3767Archives of Toxicology (2021) 95:3745–3775 

1 3

seem to be heavily impacted by the subsampling of gene 
space, and modules in the expanded seed set (Fig. 3) show 
higher concordance (Fig. 5c, Pearson R 0.84 versus Pearson 
R 0.65 including all modules). Additionally, the S1500 + set 
shows higher average corEG compared with random draws 
of genes from PHH modules (adj. p value < 0.05, see Mate-
rial and Methods “Data analysis” section). We also assessed 
coverage within the set of the preserved modules; only 
two show coverage of 0%, PHH:103 and PHH:105 (Supp. 
Table S10). Thus, the S1500 + set represented a set of genes 
that overlap, to a greater or lesser extent, nearly all preserved 
modules and higher quality relative to their corEG values.

To test the impact of calculating EGs based on the 
S1500 + gene set, we recalculated EGs for all TG-GATEs 
samples using only the reduced S1500 + gene set and cal-
culated the Pearson correlation per module compared to 
EGs calculated using the complete gene set (Fig. 5d). Mod-
ules even with minimal, but above zero, gene coverage 
show good EGs correlation (always higher than 0.5), and 
modules in the expanded seed set (Fig. 3) show on aver-
age higher correlation (Wilcoxon test, p value of 2.72e-09). 
Using the ER stressor tunicamycin as a model compound, 
we performed a cluster correlation analysis using EGs for 
TG-GATE PHH data, calculated using both whole chip or 
just the S1500 + genes, and compared results with a set of 
TempO-Seq, S1500 + data derived from 50 donor PHH cul-
tures treated with tunicamycin (Fig. 5e, Supp. Figure 8). The 
Affymetrix and S1500 + derived scores for TG-GATEs tuni-
camycin treatments were always showing correlation > 0.7 
and clustered together. However, there was considerable 
variation within the donor set at the highest dose (10 µM). 

A subset of donors shows higher similarity within them-
selves and with TG-GATEs tunicamycin samples, especially 
for medium concentration and when calculated with the 
S1500 + gene set (Fig. 5e, donors in upper left quadrant, to 
compared to TG-GATEs sample in the right bottom quad-
rant). Another subset of donors showed lower similarities 
within each other and lower similarity with TG-GATEs tuni-
camycin samples (Fig. 5e, lower right quadrant).

Thus, a targeted gene set can be used as input to derive 
EGs for modules derived from the whole transcriptome and 
impute biological responses on EGs.

Assessing donor variability captured by PHH 
modules

Since modules with similar biological annotations cluster 
together based on EGs scores (Fig. 3) we reasoned that iden-
tifying sources of variability at the level of clusters might 
be more robust than at the individual module level. There-
fore, we clustered modules based on the S1500 + EGs of the 
50-donor dataset similarly to Fig. 3, and assessed the overlap 
between clusters (Fig. S9). Some, but not all, modules clus-
ters derived from the donor data show significant overlap 
with the groups obtained using the entire TG-GATEs set 
in Fig. 3 (Fig. S9b, exact Fisher p values and numerical 
overlaps are shown). In particular, RNA processing, stress 
clusters (ATF4 and ATF6) and transcriptions regulation 
modules are clustering similarly. The modest overlap is not 
surprising since the donor dataset is derived with a single 
compound with the PHH donors as the primary source of 
variability (Fig. 5e).

We then made use of modules EGs of S1500 + clusters 
1–8 to study donor variability in response to tunicamycin. 
Donor variability can be attributable to genomic makeup, but 
also lifestyle, disease and age status of each individual. Con-
sequently, we analyzed relationships between module scores, 
reflecting induction or repression of underlying genes, and 
the presence (positives) or absence (negatives) of donors’ 
traits, i.e. sex, the presence of cancer, liver pathology, hyper-
tension, diabetes, smoking habit (Supp. Table S11).

We applied the methodology described in (Sutherland 
et al. 2018) and averaged modules EGs within each module 
clusters and modeling each concentration separately. We 
calculated Cohen’s d effect sizes (eff, (Cohen 2013)) and 
performed logistic regression treating avgAbsEG (average 
absolute cluster score) as a covariate and quantified the p 
value for each module in explaining the odds of toxicity 
(signed_log10_p_adj) reflecting the adjustment for differ-
ences in overall gene expression, i.e. avgAbsEG (Supp. 
Table S12). Next, we calculated the same relationship for 
individual modules EGs (Supp. Table S13).

Fig. 4  Upload external data into the PHH TXG-MAPr. a Hierarchi-
cal tree view of module EGs upon 30 µM cyclosporine A exposure 
at 3 day (left), 5 day (middle) and 5 day + 3 day recovery (right). b 
Heatmap of all modules that have at least one condition with abso-
lute EG score > 2 for cyclosporine A treatment. All concentrations 
and time points from TG-GATEs (0.24, 1.2 and 6 µM) and uploaded 
GEO: GSE83958 dataset (30 µM) are shown. Modules are clustered 
by Euclidean distance, Ward.D2 method. The purple color scale indi-
cates to which cluster of Fig. 3 each module belongs, and gray color 
scale indicates the preservation status. c Zoom in for the third cluster 
obtained from the heatmap in B. Modules that have a strong annota-
tion for ER stress (PHH:13 and PHH:62) or ISR (PHH:15) are in this 
module cluster and are strongly induced by 6–30 µM cyclosporine A. 
d Compound correlation plot comparing the module EG scores of the 
uploaded 30  µM CSA data at 5  day + 3  day recovery (y-axis), with 
CSA_24hr_6µM (x-axis) available in the PHH TXG-MAPr (Pearson 
R = 0.67). e Cluster correlation heatmap showing the Pearson R corre-
lation between the conditions in TG-GATEs data (CSA, TUN, APAP) 
and the uploaded datasets with CSA and APAP exposures in PHH, 
HepG2 and HepaRG cells at various time points (see labels). Com-
pounds cluster by mode-of-action, because ER stress inducers TUN 
and CSA are clustering together and show low correlation with the 
oxidative stress inducer APAP (color figure online)
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Following this approach, we were able to identify mod-
ules and the underlying biological processes, which are 
uniquely associated with a donor’s trait upon tunicamy-
cin exposure, and with increasing association levels in a 
dose–response relationship (Fig. 6). Module clusters have 
variable number of genes included but still show good 
gene quality as quantified by the high average correlation 
with EGs calculated with the entire TG-GATEs gene set, 
especially compared to modules excluded by these clusters 
(Figs. 5d and 6). We focused on the presence of liver pathol-
ogy, that influences donor’s response based on different 
processes both positively and negatively (Fig. 6a). Modules 
annotated for DDR (PHH:83), protein folding (PHH:95) 
and oxidative stress (PHH:325 and PHH:144) are positively 
associated (induced) with liver pathology phenotype of the 
donor (Fig. 6a, Supp. Table S12, Supp. Fig. S10). Mod-
ules annotated for immune response had a negative associa-
tion (repressed) with liver pathologies (PHH:12, PHH:26, 
PHH:44, PHH:22, Fig. 6a, Supp. Table S12 and S8 for mod-
ule annotation). In particular, donors with liver pathologies 
show lower EGs for these modules, corresponding to lower 
log2FC values of the genes belonging to the modules, all 
annotated for being involved in inflammation and immune 
response (moderate and high negative Cohen’s d effect sizes, 
between − 0.4 and − 0.8, and adjusted p value < 0.05, Supp 
Table S13, Fig. 6b and Supp. Fig. S10c, showing genes in 
module PHH:12 with corEG > 0.8). To a closer inspection, 
genes with lower log2FCs are the result of already higher 
basal expression levels in PHH donors with pre-existing 

liver pathology (Fig. 6c, showing normalized counts for 
PHH:12 genes with significant difference between donors 
with or without liver pathologies, only with DMSO treat-
ment, Wilcoxon test, adj. p value < 0.05).

To conclude, pre-existing traits of PHH donors influence 
the cellular response to an ER stressor (tunicamycin). Such 
an influence can be attributable not to different magnitude of 
ER stress response activation, but to variations in the activa-
tion of accompanying processes like immune response or 
oxidative stress.

Discussion

In this work, we presented a novel Shiny web tool that allows 
users to apply a gene co-expression network (WGCNA) 
approach to investigate toxicity mechanisms rapidly and 
in the context of biological responses preserved between 
human and animals. This unbiased approach is not weighted 
toward current knowledge and can reveal unknown relation-
ships between genes and phenotype data, but it also encom-
passes known biological response networks through modules 
annotation. In addition, this approach is tailored for a gold 
standard in vitro testing system: primary human hepatocytes 
(PHH).

Toxicogenomics data can be difficult to interpret due to 
its high dimensionality and possible low signal-to-noise ratio 
(Ideker et al. 2011). We reduced gene expression dimen-
sionality from  104 to  102 by taking a modular approach and 
constructing networks of co-expressed genes from a large 
PHH transcriptomic dataset (Igarashi et al. 2015). A set of 
398 modules are presented in an intuitive visualization for-
mat, the PHH TXG-MAPr. A simplified upload function 
enables calculation of eigengene scores (EGs) from external 
sources, allowing new data to be integrated and interpreted 
in the PHH TXG-MAPr analysis environment, which con-
tains 158 chemical comparators combined in 941 different 
treatment conditions. Pathway enrichment and TF associa-
tions contribute to mechanistic interpretation of modules, 
allowing the user to identify key processes that are differ-
ent and in common between compound-induced responses. 
This represents a starting point for mechanistic interpretation 
across risk assessment applications, for example, to derive 
data-driven quantitative AOPs based on molecular initiating 
and key events represented by modules’ EGs. Stress induced 
pathways interact in cascades of perturbations, balancing 
adaptive and progressive responses. We showed how mod-
ules and correlation between them can represent connected 
mechanisms (Fig. 3) and used these to describe compounds’ 
mode of action (MoA). Although correlation analysis is not 
sufficient to establish causality, it can suggest potential areas 
for additional analysis in order to define cause-and-effect 
relationship, e.g. through validation of a mechanism-based 

Fig. 5  Upload of 50 donors PHH study S1500 + TempO-Seq set. a 
Histogram of modules coverage when uploading the targeted TempO-
Seq gene set. Frequency (y axis) of modules percentage covered 
by the uploaded targeted gene set (x axis). b Percentage covered (y 
axis) for PHH modules, grouped on the x axis by whether they are 
part of the correlation matrix in Fig.  3 (blue) or not (green). The 
plot is divided into two sections, the first one showing modules 
where the hub gene was included in the uploaded gene set, the sec-
ond one showing modules where the hub gene was not included in 
the uploaded gene set. c Mean correlation Eigengene for each mod-
ule, whole genes set (x axis) versus after upload with the targeted 
TempO-Seq gene set (y axis). Points are colored based on whether 
they are part of the correlation matrix in Fig. 3 (blue) or not (green). 
d Pearson R correlation for each module between EGs calculated with 
the complete gene set, and EGs calculated with the S1500 + gene 
set, for all TG-GATEs experiments. Points are plotted against mod-
ule coverage (x-axis) and are colored based on whether they are 
part of the correlation matrix in Fig. 3 (blue) or not (green). Inside: 
Pearson correlation calculated as previously grouped by whether 
they are part of the correlation matrix in Fig. 3 (blue) or not (green). 
Modules with coverage = 0% had been excluded. e Cluster correla-
tion heatmap (complete clustering, Euclidean distance) showing the 
Pearson R correlation between modules EGs of the 50 donors data-
set samples (10 µM, 24 h, pink color code on the left), TG-GATEs 
tunicamycin data obtained with the complete gene set (aquamarine 
color code on the left), and TG-GATEs tunicamycin data using only 
the S1500 + gene space (salmon color code on the left) (color figure 
online)
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risk assessment framework (Liu et al. 2019). In addition, 
gene co-expression modules allows to understand how appli-
cable a pathway is to other species (Perkins et al. 2015).

One of the most vexing problems in risk assessment is 
indeed understanding whether toxicology data are likely to 
extrapolate across species, e.g., from rodent to human, or 
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from one model to another, e.g. from in vitro to in vivo. Co-
expression analysis formalizes methods that allow compari-
son of node-edge relationships at the gene level (Langfelder 
et al. 2011). As a result, we were able to define a subset of 
modules, and the associated biological themes, with higher 
preservation between in vitro human and rat hepatocytes 
models. Interestingly, a number of preserved PHH modules 
show also overlap with published signatures of rat xeno-
biotic receptor activation (Podtelezhnikov et al. 2020): to 
mention a few, PHH:358 perfectly overlaps with the AHR 
signature, PHH:16 shows very high enrichment with gene 
members of the SREBP signature and prominent annotation 
for cholesterol biogenesis (Supp. Table S9). A remarkable 
observation of our results was the notable difference in pres-
ervation for some toxicologically relevant and well charac-
terized stress pathways. For example, ER stress response 
is highly preserved, while DNA damage (p53-driven gene 
expression) and oxidative stress (Nrf2-driven) responses 
are not. Interestingly, when comparing module preservation 
results, we found that in vivo rat liver and RPH show higher 
similarities (Pearson R 0.85 and 0.60 for Z-summary and 
Median Rank, respectively). In addition, Nrf2/p53 modules 
show good preservation between PHH and HepG2 data (data 
not shown), suggesting the differences in module preserva-
tion are influenced by species rather than culture conditions. 
We expect that preservation results depend, to some extent, 
on the input dataset composition. For instance, how well a 
certain process is captured in gene expression data from the 
input experiments, which can influence gene-to-gene cor-
relation patterns, could be a hypothesis to be explored in 
future studies. Nevertheless, literature reports that kinetics 
and activation of the non-preserved Nrf2/p53 processes are 
different across species (MacRae et al. 2015; Martin and 
Chang 2018; Monroe et al. 2020), suggesting that preserva-
tion of co-expression networks is a promising approach for 
the evaluation of the applicability domain of new approach 

methodologies (NAMs) for extrapolating safety assessments 
across species (Parish et al. 2020).

Comparison with external datasets is a crucial application 
of the PHH TXG-MAPr tool. Gene level comparisons can be 
risky given the likelihood of variability across models and 
the low signal-to-noise ratio. Within TG-GATEs data, we 
showed that compound correlations are improved at the mod-
ule level (Fig. 1c, S1c, S5f). In addition, module EGs derived 
from microarray-based external GEO data shows high simi-
larity across external and TG-GATEs datasets for the same 
compounds, suggesting that gene-level noise is dampened 
when results are evaluated at the modules level. Using the 
external GEO datasets, we also confirmed that ER stress is an 
early event in the mode of action of CSA in different liver cell 
types. In contrast, CSA did not show a good correlation with 
the MoA of APAP datasets, suggesting that oxidative stress is 
a secondary/late effect to high dose CSA exposure. Although 
several publications indicate that oxidative stress is involved 
during CSA induced cholestasis in liver (Kawamoto et al. 
2017; Koido et al. 2020; Wolters et al. 2016), our analysis of 
CSA exposed hepatocytes using the TXG-MAPr tool showed 
that the ER stress should not be neglected in the mechanism 
of CSA induced liver injury as was also suggested by others 
(Koido et al. 2020; Van den Hof et al. 2015b). To validate the 
applicability of the PHH TXG-MAPr for other transcriptomic 
platforms, we showed that Agilent microarray data of APAP 
exposure in PHH showed strong correlation with Affymetrix 
based data in TG-GATEs.

Integrating and comparing data across platforms repre-
sent a great challenge, especially in cases where targeted 
gene sets have been designed to be representative for the 
whole transcriptome (Mav et al. 2018; Soufan et al. 2019). A 
reduced number of features is convenient to diminish com-
plexity and costs, but can weaken the power of enrichment 
analysis given the smaller gene set background. Imputing 
the entire transcriptome response prior to analysis is one 
solution to this problem (Mav et al. 2020), but may not be 
tailored for the testing system in use. Using the TempO-Seq 
S1500 + gene set platform, we showed that EGs calculated 
with PHH co-expression modules can impute biological 
response patterns directly when analyzing and interpreting 
PHH data from targeted gene sets in the context of whole 
transcriptomic data. Although the targeted gene space is 
dramatically reduced compared to whole transcriptome 
data in TG-GATEs (~ 17%, 1830/10275 genes), the mod-
ules included in our collection of mechanistic relevant mod-
ules (Fig. 3) had significantly higher coverage compared to 
the entire module set, and include genes of high quality 
(as quantified by the corEG). Module EGs obtained with 
the complete gene set and with the S1500 + set are in good 
agreement, and the mechanistic relevant modules had sig-
nificantly higher agreement than the rest. Taken together, 

Fig. 6  Some PHH modules are associated with donor’s traits. a 
Dose–response plot of effect size and adjusted p value (log10 trans-
formation, keeping the sign) resulting from the association of mod-
ules clusters to donors’ presence of liver pathologies. Modules clus-
ters indicated by different color, number of donors showing (positive) 
and not showing (negative) the indicated trait are shown in the plot 
label. On the right, effect size and adjusted p value (log10 transfor-
mation, keeping the sign) of individual modules to trait associations 
most prominently contributing to the overall cluster associations 
highlighted with gray shadows. Modules are colored in different satu-
ration level of the same hue of the cluster they belong to. b Boxplot 
of modules’ EGs negatively associated with liverpath, grouped by 
increasing concentrations and presence/absence of liver pathologies. 
**Adjusted p value < 0.01, *adjusted p value < 0.05 in logistic regres-
sion of individual modules. c Boxplot of normalized counts of genes 
belonging to module PHH:12 and significantly different between 
donors with or without liver pathologies with only DMSO treatment 
(Wilcoxon test, BH adj. p value < 0.05)

◂
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these findings suggest that results based on only genes in 
the S1500 + platform can be extrapolated to recapitulate the 
whole transcriptome modules score variability.

Following this strategy, we circumvented the limited 
gene coverage of the S1500 + set by leveraging the corre-
lation structure of modules to define biological responses 
relevant to the differential sensitivity across responses of 
50 donors’ hepatocytes treated with an ER stress inducer, 
tunicamycin. Donors’ traits, particularly the presence of 
liver pathologies, show significant dose–response associa-
tions with clusters of modules referring to specific biological 
responses, namely immune, DNA damage, oxidative stress 
responses and protein folding. The presence of liver patholo-
gies seems to be associated with a weakened activation of 
innate immune response upon ER stress induction. Interest-
ingly, genes involved in innate immunity in donors with pre-
existing liver pathologies show already higher expression 
values without treatment compared to donors without liver 
pathologies. Under conditions of excessive stress, ER stress 
evokes inflammatory responses via the activation of the 
three UPR branches, which may sensitize to adverse events 
(Duvigneau et al. 2019; Fredriksson et al. 2014; Peng et al. 
2020). Donors with pre-existing liver diseases show already 
activated inflammation, therefore possibly resulting in even 
higher sensitivity. However, only innate immune response 
could be captured by the PHH model, as it includes isolated 
primary hepatocytes, but no other cellular components of 
the liver that contributes to the immune response. Mod-
ules related to DNA damage response, protein folding and 
oxidative stress response appear to be mildly sensitized in 
patients with liver pathologies upon ER stress induction. 
That is in accordance with a condition of chronic stress and 
continuous attempt to restore homeostasis (García‐Ruiz and 
Fernández‐Checa 2018). Our results partly overlap with 
findings in recent GWAS DILI studies, where cholestatic 
injury phenotype has been associated with UPR and mito-
chondrial stress, but most importantly with an increased 
sensitivity to ROS upon additional drug treatment (Koido 
et al. 2020). Interestingly, ER stress response did not show 
a connection with donor traits: ER stress related modules, 
collectively, were a stable and preserved set of biomarkers 
for the unfolded protein response. Ultimately these findings 
highlight how pre-existing liver diseases can be a confound-
ing factor when interpreting data from in vitro models using 
donor hepatocytes and that conserve alterations even in 2D 
culture conditions.

In conclusion, the TXG-MAPr takes advantage of the 
modular nature of gene co-expression networks to achieve 
mechanistic relevant, cross-species and cross-platform eval-
uation of toxicogenomic data. Practically, we envision a mul-
tifaceted application of the TXG-MAPr. Toxicogenomic data 
can be acquired for candidate compounds, even in a high-
throughput platform, and a summarized profile of preserved 

and highly interpretable co-expression module responses can 
be extracted. The latter can be used to determine the preva-
lent mode of action and to compare with legacy and internal 
data. Preserved co-expression PHH modules can be further 
exploited to derive translational biomarkers to be included 
in high-throughput in vitro screening methods, or to explore 
donor-to-donor different response, but also to benchmark 
donor’s pool responses. Overall, we demonstrated that gene 
co-expression analysis coupled to a facile visualization envi-
ronment, the PHH TXG-MAPr, is a promising approach 
to analyze in vitro human transcriptomic data and derive 
mechanistic interpretation, and therefore a substantial step 
forward towards integration of transcriptomic data in mecha-
nistic risk assessment practices.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00204- 021- 03141-w.
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