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Abstract: It is generally accepted that the convenient fabrication of a metal phthalocyanine-based
heterogeneous catalyst with superior catalytic activity is crucial for its application. Herein, a novel
and versatile ultrasonic-assisted biosynthesis approach (conducting ultrasonic treatment during
biosynthesis process) was tactfully adopted for the direct immobilization of a sulfonated cobalt
phthalocyanine (PcS) catalyst onto a graphene–bacterial cellulose (GBC) substrate without any
modification. The prepared phthalocyanine–graphene–bacterial–cellulose nanocomposite, PcS@GBC,
was characterized by field emission scanning electron microscope (FESEM) and X-ray photoelectron
spectroscopy (XPS). The catalytic activity of the PcS@GBC was evaluated based on its catalytic
oxidation performance to dye solution, with H2O2 used as an oxidant. More than a 140% increase of
dye removal percentage for the PcS@GBC heterogeneous catalyst was found compared with that of
PcS. The unique hierarchical architecture of the GBC substrate and the strong interaction between
PcS and graphene, which were verified experimentally by ultraviolet-visible light spectroscopy
(UV-vis) and Fourier transform infrared spectroscopy (FT-IR) and theoretically by density functional
theory (DFT) calculation, were synergistically responsible for the substantial enhancement of catalytic
activity. The accelerated formation of the highly reactive hydroxyl radical (·OH) for PcS@GBC was
directly evidenced by the electron paramagnetic resonance (EPR) spin-trapping technique. A possible
catalytic oxidation mechanism for the PcS@GBC–H2O2 system was illustrated. This work provides a
new insight into the design and construction of a highly reactive metal phthalocyanine-based catalyst,
and the practical application of this functional nanomaterial in the field of environmental purification
is also promising.
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1. Introduction

Metal phthalocyanine complexes (MPcs) are fascinating macrocyclic compounds for many
applications [1–3], especially in the area of bio-inspired catalysts [4–6], considering their structural
relations to naturally occurring metal porphyrin complexes. Employing MPcs as versatile catalysts in
different types of reactions were extensively studied [7–9], and enormous strides were made in this
field, while the simple preparation of an MPc catalyst with excellent catalytic performance is still a
major challenge.

The catalytic property of MPc is dependent on various factors; to adequately explore its catalytic
performance, the fundamental mechanism responsible for the catalytic reaction of MPc should be fully
understood. Firstly, MPc has a high tendency to form inactive aggregates, and the immobilization of
MPc onto appropriate support is a logical choice to offset this shortage. Secondly, the catalytic process
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of MPc is crucially dependent on the complexity of electron transfer after coordination between MPc
and reactant; thus, providing a microenvironment with outstanding electron transporting property is
potentially another strategy to enhance its catalytic activity.

As an important member of carbon allotropes, graphene constitutes a truly two-dimensional
planar sheet of sp2-hybridized carbon atoms. This unique structural feature results in outstanding
physicochemical properties, including extremely large specific surface area, excellent mechanical
property, and high electrical conductivity. The application of graphene in various fields, such as sensors,
electrodes, and nanofiller, has been frequently reported [10–15]. Particularly, the graphene framework
can be employed as an ideal support for the incorporation of various functional materials [16–18]. Based
on the hierarchical structures of both MPc and graphene, the immobilization of MPc onto graphene is
theoretically and experimentally feasible [19–24]. In addition, considering that graphene possesses
high electrical conductivity and superior electron mobility, synergistically enhanced performance is
reasonably expected with the combination of MPc and graphene.

In contrast to individual graphene nanosheets, macroscale graphene-based architectures with
three-dimensional structures may be a better choice when used as support for MPc catalyst. The 3D
structures can not only improves the dispersion of graphene and reduce the stack of graphene
nanosheets, but also promotes the diffusion adsorption of the reactants and improves the accessibility
of reactants to the active sites, which is also important to the heterogeneous catalyst [25–27].

In our previous work, a graphene-incorporated bacterial cellulose (GBC) nanohybrid was
employed as support for the covalent immobilization of tetraamino cobalt phthalocyanine (CoPc)
catalyst [28], and an improved catalytic activity of CoPc was found. However, several disadvantages
of this technique should be noted. Firstly, MPc was not directly immobilized onto graphene; thus,
the communication efficiency between these two electroactive components was significantly reduced,
which in return affects the catalytic performance of MPc. Secondly, the covalently binding method
is relatively complex, and organic solvent was essential for the immobilization. Moreover, the
microstructure of the BC support was inevitably damaged during the chemical treatment.

These issues created the objective of the present work, in which a facile and convenient one-step
ultrasonic-assisted biosynthesis approach (conducting ultrasonic treatment during biosynthesis
process) [29–31] was developed for the direct immobilization of sulfonated cobalt phthalocyanine
(PcS) catalyst onto the graphene–bacterial cellulose (GBC) substrate. The prepared nanocomposite,
PcS@GBC, was employed as the heterogeneous catalyst for the catalytic oxidation of reactive red X-3B
dye molecules. The influence of GBC substrate on the dye removal efficiency of PcS was thoroughly
investigated, and the strong interaction between PcS and graphene were identified experimentally by
Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible light spectroscopy (UV-vis), and
electron paramagnetic resonance (EPR) technologies and theoretically by density functional theory
(DFT) calculation.

2. Materials and Methods

2.1. Materials and Reagents

Cellulose-forming bacterium Acetobacer xylinum (A. xylinum) was purchased from BeNa Culture
Collection Co. Ltd. (Beijing, China). Graphene solution (0.4–0.5 wt %, with 0.4–0.5 wt % dispersant)
was purchased from Aladdin Co. Ltd. (Shanghai, China). Sulfonated cobalt phthalocyanine (PcS,
98 wt %) was purchased from Energy Chemical Co., Ltd. (Shanghai, China) and was purified by a
recrystallization process. Reactive red X-3B (RR) was purchased from Shanghai Chemical Reagent
Factory (Shanghai, China). 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was purchased from Sigma
Chemical Co. (Saint Louis, MO, USA). All other common chemicals were of analytical grade and
purchased from Sinopharm Chemical Reagent Co. Ltd. (Beijing, China).
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2.2. Preparation of PcS@GBC

PcS@GBC nanocomposite was prepared through direct immobilization of PcS onto the GBC
substrate during the biosynthesis process; the typical preparation procedure is as follows. A mixed
culture medium composed of 10.0 wt % D-glucose, 1.0 wt % yeast extract, 0.5 wt % peptone,
and 1.0 wt % ethanol was sterilized at 121 ◦C in an autoclave for 30 min. To initiate the biosynthesis
process, the bacterium Acetobacter xylinum was added into the mixture, and the temperature was kept
constant at 30 ◦C. After cultivation for 24 h, a certain amount of PcS solution and graphene solution
were separately added every 24 h, and the resulting mixture was conducted with ultrasonic treatment.
After cultivation for 10 days, the sample was collected, incubated in a NaOH solution (0.10 mol/L) for
30 min, thoroughly washed with ultrafiltration water, and subsequently stored in ultrafiltration water
for future use. The immobilized PcS amount of PcS@GBC (µmol/g) was calculated as follows:

immobilized PcS (µmol/g) =
n1

m0
(1)

where n1 is the mole number of PcS, which equals the mole number of the Co element and
was measured by atomic absorption spectrometry (Thermo Sollar M6); m0 is the weight of the
PcS@GBC nanocomposite.

The graphene content of PcS@GBC (mg/g) was calculated as follows:

graphene content (%) =
m2

m0
× 100% (2)

where m2 is the weight of graphene in PcS@GBC, which was measured from the precipitated weight of
PcS@GBC after digestion; m0 is the weight of the PcS@GBC nanocomposite.

2.3. Characterization

The morphologies and compositions of pure BC, GBC, and PcS@GBC nanocomposites were
monitored by field emission scanning electron microscopy (FESEM, Serion, FEI, USA) and X-ray
photoelectron spectroscopy (XPS). XPS spectra of all samples were recorded on a Kratos Axis Ultra
XPS system with Al (mono) Kα irradiation (hν = 1486.6 eV). The binding energy peaks of all the XPS
spectra were calibrated by placing the principal C 1s binding energy peak at 284.6 eV. The functional
groups of PcS, graphene, PcS–graphene mixture, and PcS–graphene nanohybrid were characterized by
Fourier transform infrared spectra (FT-IR, Brucker Optics, Switzerland). Each spectrum of FT-IR was
taken by 32 scans at a nominal resolution of 4 cm−1.

The Gaussian09 program package was used to perform the density functional theory (DFT)
calculation [32]. The B3LYP-D3 with a 6-31G(d) basis set was used for the geometry optimization.

2.4. Catalytic Oxidation Studies and Analysis

To study the catalytic activity of the PcS@GBC nanocomposites, RR dye solution was employed as
the model target and H2O2 was employed as an oxidant. The reaction was carried out in a stirred tank
glass reactor and placed in a thermostatic water bath with the temperature set to 50 ◦C. The typical
composition of the reaction mixture was 5 mL of RR dye solution (initial concentration 100 µmol/L) and
0.75 mg of PcS@GBC nanocomposite (immobilized PcS: 43 µmol/g, graphene content: 20.50%). The pH
value of the RR solution was adjusted to the desired value by using 1 mol/L HClO4 and 1 mol/L NaOH.
To initiate the catalytic process, a given volume of H2O2 was added into the above-mentioned reaction
mixture. The concentration of RR solution, which is proportional to its maximum absorbance at 539 nm,
was monitored by a UV-Vis absorption spectrometer UV-2450. The dye removal percentage of the
solution was expressed as the value of (1−C/C0), where C is the instant concentration of RR solution,
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and C0 is the initial concentration of RR solution. The catalytic activity of PcS@G/BC nanocomposite
was evaluated by the value of dye removal efficiency, which was calculated as follows:

Dye removal efficiency (µmol/g) =
100µmol/L× 5× 10−3L× (1−(C/C0)

7.5× 10−4g
(3)

where (1 − (C/C0)) is the percentage of removed RR dye after treatment. The EPR signals of radical
spin-trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were detected with a Bruker-A300 X-band
EPR spectrometer (Bruker, Karlsruhe, Germany).

To test the stability of PcS@G/BC for cyclic runs, the heterogeneous catalyst was recycled after
treatment, thoroughly washed with ultrapure water, and vacuum dried at 25 ◦C for 24 h for the
next use.

3. Results and Discussion

3.1. Materials Characterization

PcS@GBC nanocomposite was prepared by the direct immobilization of PcS onto the GBC substrate.
The macro- and microstructures of BC, GBC, and PcS@GBC were observed by digital images and
FESEM, respectively. As expected, the pure BC membrane shows a white color (inset of Figure 1A),
and an interconnected three-dimensional (3D) network morphology was found (Figure 1A), which was
important for the good dispersion of graphene and the subsequent immobilization of PcS. With the
incorporation of graphene, the membrane turns to dark black (inset of Figure 1B), and the adsorption
of graphene onto BC can be easily observed (Figure 1B). After PcS was immobilized onto GBC,
the resulting PcS@GBC membrane displays a deep green color (inset of Figure 1C), and the morphology
became much denser compared with that of GBC (Figure 1C). In addition, the elemental mapping
images (Figure 1D–F) and the energy dispersive X-ray spectroscopy (EDS) spectrum (Figure 1G) of
PcS@GBC clearly show the distribution and existence of N, S, and Co elements, indicating the uniformly
immobilization of PcS onto GBC and the successful preparation of the PcS@GBC nanocomposite.

The chemical compositions of pure BC, the GBC nanohybrid, and the PcS@GBC nanocomposite
were monitored by XPS. For BC, the characteristic peaks at 284.6 eV and 531.6 eV were ascribed to
the binding energies of C 1s and O 1s, respectively (Figure 2A(a)). When graphene was incorporated
into BC, the decrease of O 1s peak intensity (with decreasing the O atomic ratio from 44% to 28%)
and the increase of C 1s peak intensity (with increasing the C atomic ratio from 55% to 71%) were
found (Figure 2A(b)). For PcS@GBC, the marked increased peak at 398.6 eV was observed, which was
the typical signal of N 1s (Figure 2A(c)). A Co 2p3/2 peak and Co 2p1/2 peak located within the range
of 777–781 eV and 792–796 eV were detected, implying the existence of a Co element for PcS@GBC
(Figure 2B). In addition, the S2p peaks spinning at 166.4 eV and 161.7 eV correspond to the sulfinyl
group and sulfide group, and the binding energy located at 168.2 eV can be ascribed to sulfonyl group
of PcS (Figure 2C). The detection of S and Co elements further verified the successful preparation of
the PcS@GBC nanocomposite.

3.2. Study of Interaction between PcS and Graphene

The interaction between PcS and graphene is of vital importance to the successful preparation of the
PcS@GBC nanocomposite and the subsequent catalytic performance; therefore, the detailed interaction
process between these two nanocomponents is urged to be thoroughly understood. Figure 3A shows the
digital images of the color changes of the PcS solution after the addition of graphene and subsequently
the ultrasonic treatment. The PcS solution exhibited a color of brilliant blue, and the color turned
to green when graphene was added. Interestingly, the color of the PcS–graphene mixture has a
dramatic change when ultrasonic treatment was carried out; a yellow-colored solution was formed
with ultrasonication for 4 h.
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Figure 1. Field emission scanning electron microscope (FESEM) and optical images (inset)
of (A) bacterial cellulose (BC); (B) graphene–bacterial cellulose (GBC), and (C) the prepared
phthalocyanine–graphene–bacterial–cellulose nanocomposite (PcS@GBC); the elemental mapping
images of N, S, and Co elements (D–F) and EDS spectrum (G) of PcS@GBC.
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Figure 3. (A) Color changes of sulfonated cobalt phthalocyanine (PcS) solution with the addition
of graphene and the ultrasonic treatment; (B) Effect of ultrasonic time on the UV-vis absorption
spectrum of the PcS–graphene nanohybrid; (C) Effect of time on the UV-vis absorption spectrum of the
PcS–graphene mixture.

UV-vis absorption spectroscopy was employed to further understand the interaction between PcS
and graphene (Figure 3B). The PcS solution showed a strong Q-band characteristic peak centered at
670 nm, which was the result of the π–π* transition of mobile electrons of PcS from the ground state to
the first excited state (s0→s1) [33,34]. An additional weak vibrational satellite band centered at 605 nm
was the result of intermolecular aggregations between the PcS units. The Soret band characteristic
peak in the ultraviolet light region was also observed, which can be attributed to the transition from
the ground state to the second excited state (s0→s2). When graphene was added, the decreased
intensity of the Q-band peak with ultrasonic time was observed, indicating the existence of the strong
interaction between PcS and graphene. Furthermore, the red shift of the Q-band of the PcS–graphene
nanoconjugate was also noticed (Figure S1), which also indicated the change of the physicochemical
property of PcS by graphene and the electronic interaction between the two nanocomponents.

For comparison, when no ultrasound was applied, an approximately 10% decrease of absorption
strength of the Q-band of the PcS–graphene mixture was found within 1 h (Figure 3C). While a further
increase of time has little effect on the absorption intensity of the mixture, the spectrum keeps almost
intact, even prolonging the mixture time to 192 h. In addition, the observation of the shoulder peak
centered at 605 nm suggested that some of the PcS molecules remain in the aggregation state. This result
implies that the ultrasonic treatment was effective and indispensable for the good dispersion of PcS
molecules onto the graphene nanosheet.

Fourier transform infrared (FT-IR) spectroscopy is an effective technique to characterize the
functional groups of samples. Figure 4 shows the FT-IR absorption spectra of PcS, graphene,
the PcS–graphene mixture (product without ultrasonication), and the PcS–graphene nanohybrid
(product with ultrasonication). For pure PcS (Figure 4a), the characteristic peak located at 915 cm−1 was
associated with metal–ligand vibration, which revealed the coordination between the 3d unoccupied
orbital of Co and the four surrounding nitrogen atoms in the pyrrole rings [34–36]. The characteristic
peaks at 622cm−1, 1326 cm−1, and 1514 cm−1 represents the skeleton structure vibration of PcS,
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the C=C stretching vibration of the aromatic nucleus, and the C–C strectching vibration of pyrrole.
The characteristic peaks at 1719 cm−1 and 1028 cm−1 were attributed to the C=N stretching vibration
and S=O stretching vibration of PcS, respectively. For graphene, the absorption peaks that appeared
at 1580 cm−1 and 1210 cm−1 were attributed to the skeletal vibration of graphene nanosheets
(Figure 4b) [37,38]. All these peaks can be found for the PcS–graphene mixture (Figure 4c). In contrast,
an obvious blue shift of the characteristic peaks of C=N (1725 cm−1), S=O (1073 cm−1), and cobalt–ligand
(960 cm−1) was found for the PcS–graphene nanohybrid (Figure 4d), which provides further evidence
of the strong interaction between PcS and graphene and the formation of a PcS–graphene nanohybrid
with the ultrasonic treatment.
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PcS–graphene mixture, and (d): PcS–graphene nanohybrid.

Based on the above-mentioned results of UV-vis and FT-IR spectroscopy measurements, a schematic
diagram of the interaction process between PcS and graphene is shown in Figure 5. Without external
forces, the PcS molecules were randomly adsorbed onto the surface of graphene, and the interaction
between these two nanocomponents was relatively weak. When ultrasonic treatment was conducted
on the PcS–graphene mixture, the likelihood of the optimum contact between PcS and graphene
was significantly increased. The structural re-arrangement of PcS results in the stronger conjugated
electronic interaction between PcS and graphene.
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Density functional theory (DFT) computation, an effective tool to study the electronic structure of
nanomaterials, was adopted to fully optimize the structures of PcS, graphene, and the PcS–graphene
nanohybrid. As shown in Figure 6A, the geometry of the fully optimized PcS has a planar macrocyclic
configuration, and the calculated distance between the Co atom and its surrounding N atoms (dCo–N)
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was 1.922 Å (Table S1). The geometry of the fully optimized graphene is also planar, as expected
(Figure 6B), while the bond distance (dC–C) was calculated to be 1.420 Å, which was consistent with
the reference value [39,40]. For the PcS–graphene system, the basal plane adsorption of PcS onto
the planar graphene was observed, and the change of the calculated dCo–N for PcS (Table S1) as
well as the slight deviation of the geometry of graphene were also noticed (Figure 6C), implying the
existence of an interaction between PcS and graphene. The extended, delocalized, and π-conjugated
electron system and the unique planar 18 π-electron aromatic structure of the PcS skeleton facilitates
this specific interaction.
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3.3. Catalytic Oxidation Performance of PcS@GBC

To evaluate its catalytic performance, the prepared PcS@GBC was employed as a heterogeneous
catalyst for the decoloration of RR solution, with H2O2 as an oxidant. No obvious change of dye
concentration was found with addition of H2O2, suggesting that RR dye molecules can hardly be
oxidized by H2O2 alone (Figure 7A(a)). When PcS@GBC was present, a gradual decrease of dye
concentration was observed, which can be attributed to the good adsorption capacity of PcS@GBC; the
dye removal efficiency was ca. 190 µmol/g with 90 min of adsorption. Meanwhile, a further increase
of adsorption time has little effect on the dye removal efficiency, which indicated that the adsorption
has reached a dynamic equilibrium (Figure 7A(b)). In contrast, when both PcS@GBC and H2O2 were
present, a sharp decrease of dye concentration was found, and the dye removal efficiency was as high
as 600 µmol/g with only 50 min of reaction. The dye removal efficiency reached 660 µmol/g when the
reaction time was prolonged to 120 min, i.e., more than 99% of dye molecules were effectively removed
(Figure 7A(c)). These results indicated that the PcS@GBC heterogeneous catalyst has excellent catalytic
activity, and dye molecules can be efficiently decolorized with the PcS@GBC–H2O2 reaction system.

To better understand the role of every component of the PcS@GBC (PcS, graphene, and BC) during
the catalytic oxidation, the adsorption and catalytic oxidation behavior of different components were
briefly studied (Figure 7B). The dye concentration decreased by less than 10% with pure BC, and the
same result was found for BC+H2O2 (Figure 7B(a)), suggesting that BC has a slight adsorption capacity
to dye molecules. When GBC was employed, the dye concentration decreased by more than 25%,
which can be ascribed to its good affinity to organic dye molecules (Figure 7B(b)). Only 4% of dye
molecules can be absorbed by PcS within 90 min, while a ca. 40% decrease of dye concentration can be
reached with PcS+H2O2 (Figure 7B(c)), which shows that the PcS–H2O2 system is able to catalyze the
oxidation of dye molecules. Due to the formation of inactive aggregate in solution, the catalytic activity
of PcS was inhibited to some extent. When PcS was immobilized onto graphene, the resulting PcS@G
nanohybrid can absorb ca. 25% of dye molecules. With H2O2 added as an oxidant, the PcS@G–H2O2
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reaction system shows great decoloration capacity: ca. 75% of dye molecules can be catalytic oxidized
within 90 min (Figure 7B(d)), which was much higher than that of PcS+H2O2. The PcS@BC can absorb
13% of dye molecules, and ca. 50% of dye molecules can be catalytic oxidized with the PcS@BC+H2O2

(Figure 7B(e)), which was higher than PcS+H2O2 but lower than PcS@G+H2O2. Interestingly, the
catalytic oxidation efficiency of PcS@GBC+H2O2 was significantly improved when compared with
others (Figure 7B(f)). With the presence of H2O2, more than 95% of dye molecules were catalytically
oxidized by PcS@GBC, which was ca. 140% higher than that of the PcS–H2O2 system. Several
reasons were responsible for the substantially improved catalytic activity of PcS. Firstly, the very large
surface-to-volume ratio and the distinct 3D nanofibrous network architecture of BC promotes the good
dispersion of graphene, which in return improved the immobilization of PcS, and the aggregation of
PcS molecules was greatly prevented; thus, the catalytic activity of PcS was accordingly enhanced.
Secondly, the electron transfer efficiency plays an important role for the enhancement of catalytic
activity of MPc [28,41,42]. Due to its superior electron mobility, the incorporated graphene can facilitate
the electron transfer efficiency of the catalytic reaction, which also improved the catalytic activity of
PcS@GBC. Therefore, the conclusion is that BC and graphene have a synergistic effect on enhancing
the catalytic activity of PcS.
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Figure 8 displays the fully optimized geometries of PcS–H2O2 in the absence (Figure 8A) and
presence of graphene (Figure 8B), respectively. The Co–O distance (dCo–O) between PcS and H2O2 was
calculated to be 2.226 Å (Table S2). For comparison, the dCo–O value was 2.256 Å when graphene was
present, which suggests that the existence of graphene obviously influences the electronic interaction
between PcS and H2O2. Furthermore, the O–O bond distance (dO–O) of H2O2 was calculated to be
1.455 Å when it was chemisorbed onto PcS, and the value was 1.456 Å when graphene was also present;
comparing with that of pristine H2O2 (1.467 Å), the obvious change of dO–O revealed that the H2O2

oxidant was effectively activated by PcS. Overall, the presence of graphene can change the electronic
interaction between PcS and H2O2, further influencing the catalytic activity of PcS and the resulting
catalytic oxidation efficiency of dye molecules.
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To gain insight into the catalytic oxidation mechanism of the PcS@GBC–H2O2 reaction system,
the EPR spin-trapping technique was used to detect the reactive radicals formed during the reaction.
As shown in Figure 9A(a), no obvious EPR signal was detected with only PcS@BC. A similar spectrum
was observed for the PcS@GBC nanocomposite (Figure 9A(b)), which was in accordance with the
analysis of Figure 7, i.e., the decoloration for PcS@GBC alone was purely a physical adsorption
process. The characteristic four-line spectrum with a peak intensity of 1:2:2:1 was easily observed
for the PcS@BC–H2O2 reaction system (Figure 9A(c)), which was the well-known spectrum of the
DMPO–·OH adduct, indicating the formation of a highly reactive hydroxyl radical during the catalytic
oxidation. A similar DMPO–·OH spectrum can also be found for the PcS@GBC–H2O2 reaction system
(Figure 9A(d)). Moreover, the intensity of the signal was much higher than that of PcS–H2O2, implying
that the GBC substrate is beneficial for the formation of ·OH. GBC can not only allow the good
dispersion of the PcS catalyst, but also promote the electron transfer efficiency of PcS during the
reaction; thus, more ·OH can be produced during the reaction, and subsequently, the catalytic activity
of PcS was significantly improved.

For practical application, the stability and the recycling performance of the heterogeneous catalyst
should be carefully considered. The catalytic activity of the PcS@GBC–H2O2 reaction system in cyclic
utilization was performed, and the result was presented in Figure 9B. The dye removal efficiency has
no noticeable decline after five times of repetitive use, and more than 90% of dye molecules can be
decolorized within 90 min. These results showed that the PcS@GBC is a promising recyclable catalyst
for the consecutive catalytic oxidation of organic pollutants.

Based on the results presented above, a schematic illustration of synergistic effect of BC and
graphene for the enhancement of the catalytic activity of PcS was shown in Figure 10. The super
high surface-to-volume ratio and the 3D nanofibrous network architecture of BC guaranteed the
good dispersion of graphene, which in return improved the immobilization of PcS molecules and
prevented the formation of inactive aggregates. Besides serving as a template to immobilize the PcS
catalyst, the distinct π-conjugated PcS–graphene electron donor–acceptor greatly enhanced the electron
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transfer efficiency of the reaction system. H2O2, which was chemisorbed on the PcS, was more easily
dissociated to form the highly reactive ·OH, and therefore, the catalytic activity of PcS@GBC was
substantially enhanced.
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4. Conclusions

In the present study, a green and versatile ultrasonic-assisted biosynthesis approach was
presented for a one-step fabrication of highly reactive PcS@GBC heterogeneous catalyst by the
direct immobilization of PcS onto the GBC substrate. The interaction between PcS and graphene
was verified experimentally by FT-IR and UV-vis spectroscopy and theoretically by DFT calculation.
The PcS@GBC heterogeneous catalyst together with H2O2 can efficiently catalyze the oxidation of
dye solution; more than 99% of dye molecules were effectively removed within 120 min. The GBC
substrate can promote the dispersion of PcS, facilitate the electron transfer between PcS and H2O2,
and subsequently accelerate the formation of hydroxyl radicals; the dye removal efficiency of PcS@GBC
was as high as 660 µmol/g. The results of this work may provide a new standpoint for the design
and construction of a heterogeneous MPc-based catalyst, and the practical application of this highly
reactive functional nanomaterial in the field of environmental purification was also promising.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/9/1673/s1,
Figure S1: The red shift phenomenon of UV-vis absorption spectrum of the PcS–graphene nanohybrid during
the ultrasonication treatment, Table S1: The calculated average distances of C–C for graphene and the average
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distances of Co–N for PcS, Table S2: The calculated distances of Co–O between PcS and H2O2 and the O–O bond
distance of H2O2 in the PcS–H2O2 system and graphene–PcS–H2O2 system.
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