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Contemporary evolution has the potential to significantly alter biotic responses to
global change, including range expansion dynamics and biological invasions. Models
predicting range dynamics often make highly simplifying assumptions about the genetic
architecture underlying relevant traits. However, genetic architecture defines evolvability
and higher-order evolutionary processes, which determine whether evolution will be
able to keep up with environmental change or not. Therefore, we here study the impact
of the genetic architecture of dispersal and local adaptation, two central traits of high
relevance for range expansions, on the dynamics and predictability of invasion into an
environmental gradient, such as temperature. In our theoretical model we assume that
dispersal and local adaptation traits result from the products of two noninteracting
gene-regulatory networks (GRNs). We compare our model to simpler quantitative
genetics models and show that in the GRN model, range expansions are accelerating
and less predictable. We further find that accelerating dynamics in the GRN model
are primarily driven by an increase in the rate of local adaptation to novel habitats
which results from greater sensitivity to mutation (decreased robustness) and increased
gene expression. Our results highlight how processes at microscopic scales, here within
genomes, can impact the predictions of large-scale, macroscopic phenomena, such as
range expansions, by modulating the rate of evolution.
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Range expansions and species invasions are happening at an increasing rate as a result of
human activities, such as species introductions, the rewiring of dispersal networks (1), and
global changes, in general (2). Therefore, predicting such range expansion and invasion
dynamics is of great interest. However, making ecological predictions is challenging
because of the various sources of environmental and demographic stochasticity, along with
the complexity intrinsic to biological systems. As a consequence, the uncertainty associated
with ecological predictions, given a spatial and temporal scale (3), is large, which implies
that predictability tends to be small. For example, even in highly controlled laboratory
settings, it is not clear if ecological models can correctly predict range dynamics and the
uncertainty associated with them (4, 5).

To make matters even worse, contemporary evolution can not only affect ecological
patterns and dynamics (6) but also modify the predictability of range expansions (7).
This is because range expansions both drive and are impacted by evolution of traits that
influence spatial spread (dispersal ability) and demography (reproduction), forming an
eco-evolutionary feedback loop (8). During range expansions, dispersal evolves due to
spatial sorting of dispersers (9), whereby faster dispersers end up at the range front,
speeding up spread (10). It is therefore not surprising that models including dispersal
evolution better predict range expansions, yet, they still globally underpredict their speed
(11). In addition, range expansion into heterogeneous environments, such as abiotic
gradients of temperature, salinity, or humidity, for example, may greatly be limited by local
adaptation to the environmental conditions (12–14). In analogy to dispersal evolution,
rapid evolution of local adaptation modifies the demography of the expanding population
by changing survivorship or fecundity in the novel environment. Finally, gene surfing, the
spatial analog of genetic drift (15), introduces stochasticity due to evolution.

While these challenges have been addressed in the literature, relevant models often as-
sume evolution under equilibrium ecological conditions and focus on optimal phenotypes.
During range expansions, however, ecological and evolutionary change happen on similar
timescales. Clearly, adaptive evolution in response to rapid ecological changes is contingent
on the supply of genetic variation (16). Therefore, one must consider not only evolutionary
optima but also the rate of evolutionary change, that is, evolvability. Evolvability of a trait
depends on variation, which refers to the standing genetic variation (17) of the trait, and
variability (18), which describes the generation of novel genetic variation by means of
mutation or recombination (reviewed in ref. 19). While variation can be studied using
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standard quantitative genetics approaches, the study of variability
requires knowledge of numbers and effects of loci, their epistatic
interaction, pleiotropy, mutation rates, and mutation effects (18).
These properties depend on the genetic architecture (20), or the
genotype-to-phenotype map (21–23) of the trait of interest. As
a consequence, Meliàn et al. (24) argue that the structure of
gene networks has to be taken into account for an appropriate
integration of ecology and evolution.

Despite the relevance of a trait’s genetic architecture, eco-
evolutionary models of range expansions typically make strong
simplifying assumptions regarding the genetic basis of dispersal
(25). Some studies of local adaptation during range expansions
have assumed more complex additive (26–28) and nonadditive
genetic architectures (29, 30). Other studies have tried to un-
derstand the impact of ploidy (31) and modifiers of mutation
rates (32) on eco-evolutionary range dynamics. Yet, up to now,
models of range expansions into environmental gradients have not
taken into account the genetic architecture of both relevant traits:
dispersal and local adaptation.

One promising way to integrate genetic architecture into mod-
els of range expansions is gene-regulatory network (GRN) mod-
els, particularly the one introduced by Wagner (33). The GRN
genotype-to-phenotype (GP) map consists of a number of tran-
scription factors which can regulate each other’s gene expression
states. Interactions between genes are represented by a regula-
tory matrix (the genotype) containing weights. These weights
are optimized by evolutionary simulations, where fitness is a
function of gene expression levels (phenotype under selection).
Some variants of the Wagner model also include an explicit map
from gene expression states to a continuous (34) or discrete (35)
phenotype, on which fitness then depends. Nonlinearity in the
interaction between different loci in the Wagner model and its
variants implies that mutation effects are emergent and not fixed
as assumed in quantitative genetics models. Therefore, particularly
the robustness (decreased sensitivity) to mutation, also known as
genetic canalization, has been studied extensively in the Wagner
model and its variants (36–39). GRN models have also been
used to study the evolution of evolvability under conditions of
ecological change (34, 35, 40), including local adaptation (29, 30,
41). Kimbrell (29) showed that local adaptation was accompanied
by a transient breakdown of canalization (increased sensitivity to
mutation) during a linear four-patch range expansion.

With this background, we seek to address how a microscopic
property, such as the genetic architecture of a trait, can mod-
ify predictions of large-scale, macroscopic processes, here range
expansion dynamics. We develop a stochastic individual-based
metapopulation model of range expansions into an environmental
gradient (for example, temperature or salinity) in which dispersal
and local adaptation traits can evolve and are assumed to result
from the products of two noninteracting gene-regulatory net-
works.

Concretely, we model a metapopulation of a sexually reproduc-
ing, diploid species with discrete, nonoverlapping generations. Lo-
cal population dynamics follow logistic growth. Dispersal is local,
and individuals may die with a certain probability during dispersal
[μ; dispersal costs (42)]. Initially, the metapopulation adapts to
the constant environment in its native habitat (Fig. 1A). With
this evolutionary history, the species may subsequently expand
its range into a linear environmental gradient (Fig. 1A). In this
gradient, local environmental conditions [τenv (x )] impact the
survivorship of a female’s offspring. Depending on the mismatch
(s) between the female’s genetically encoded local adaptation
phenotype (τ ) and the environment, the offspring’s survivorship is
reduced following a Gaussian function. Thus, the local adaptation
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Fig. 1. Range expansions into an environmental gradient (A) and the as-
sumed genetic architectures (B and C). (A) We model range expansions into
an environmental gradient in a landscape of 500 × 5 patches. Individuals
are initially adapted to their constant, native habitat (range core; central
10 × 5 patches) and can subsequently expand their range into a novel linear
environmental gradient of slope b along the x direction. Dispersal is local,
and individuals may disperse to one of their eight nearest neighbors. In our
standard scenario, we compare range expansion dynamics assuming either
that dispersal and local adaptation traits result from the products of two
noninteracting GRNs (B) or that both traits have a simple additive genetic
architecture (C). (B) The GRN model. Two noninteracting GRNs separately
encode dispersal probability (d) and the local adaptation phenotype (τ ) of a
Gaussian niche function. Each GRN has an input layer (constant input xz,1 to
each gene, where z represents the dispersal trait d or the local adaptation
trait τ ), a regulatory layer (regulatory genes with expression level Sz,i for every
gene i for the trait z), and an output layer (the phenotype downstream of
gene expression, here dispersal [d] or local adaptation [τ ]) highlighted in
gray. Uz, Wz, and Vz are matrices of weights that connect the input layer to
the regulatory layer, the genes within the regulatory layer, and map gene
expression states to the output phenotype, respectively, for each trait z.
(C) Simple additive genetic architecture. One quantitative locus each encodes
dispersal (d) and the local adaptation trait (τ ). Even though in the main text
results we assume a simple additive model with only one locus for each trait,
we also explore the consequences of assuming different numbers of loci and
per locus mutation effects (SI Appendix).

phenotype corresponds to the external environment that
maximizes female fecundity. Importantly, dispersal (d ) and local
adaptation (τ ) traits are assumed to result from the effects of two
noninteracting gene-regulatory networks (GRN model; Fig. 1B).
A more detailed model description can be found in Fig. 1 and in
SI Appendix. Parameters are explained in SI Appendix, Table S1.
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Fig. 2. Comparing range dynamics for GRN (green) and simple additive
(purple) genetic architectures. (A) Example snapshot of the landscape at dif-
ferent times (t = 2,000, 6,000, 10,000) since the beginning of range expansion
where occupied patches are in color and unoccupied patches are blank.
The environmental gradient increases symmetrically on either side of the
landscape. Early in the range expansion (t = 2,000), new patches are colonized
more quickly in the simple additive model, but accelerating range expansions
in the GRN model invert this pattern later on (t = 6,000, 10,000). (B) Range
front position, that is, the position of the occupied patch farthest from the
range core, as a function of time since the beginning of range expansion. Since
we model a symmetric environmental gradient, range expansions toward
both sides of the landscape are comparable. Thus, we pool the 50 replicates,
which amount to a total of 100 range expansions. The solid line represents
the median position of the range front over these 100 range expansions of
our stochastic model. The shading represents the corresponding interquartile
range. The horizontal lines highlight the differences in variability of range
expansion between the GRN and simple additive models when the range front
is at the same median distance (160 patches; indicated in gray) from the range
core. Focal scenario parameters are as follows: b = 0.04, λ0 = 2, α = 0.01,
mmin = 0.0001, μ = 0.1, ε = 0, ω = 1, and number of genes per GRN n = 3.

We compare emergent range dynamics in our GRN model
with a complex genetic architecture, to a model in which quan-
titative loci encode dispersal and local adaptation each (simple
additive architecture; Fig. 1C ). The main difference between these
models is that mutational effects, that is, how sensitive a trait
is to mutation (41), are emergent in the GRN model but are
fixed in the simple additive genetic architecture. While absolute
differences in range expansion speeds between the models will
depend on the exact per locus mutation effects and number of
loci, relaxing the often made assumption of additivity in the
GRN model is expected to modify range dynamics qualitatively:
evolvability and changing mutation effects in the GRN model
may lead to accelerating range dynamics, also making them more
variable, or less predictable. Differences in range dynamics could
be driven by the genetic architecture of dispersal (rate of spread)
or of local adaptation (demography), or both could interact. We
analyze the relative importance of dispersal versus local adaptation
by developing models with mixed genetic architectures in which
dispersal is encoded by a simple additive architecture and local
adaptation (LA) by a GRN (GRN LA + simple additive dispersal)
and vice versa (simple additive LA + GRN dispersal).

Results and Discussion

We first consider emergent range dynamics focusing on the po-
sition of the range front, that is, the farthest occupied patch
from the range core, as a function of time since the beginning
of the range expansion. We find that the GRN model leads to
accelerating range expansion dynamics, when contrasted with
the simple additive model (Fig. 2). The acceleration observed
in the GRN model is robust to changes in model parameters,
that is, for environmental gradients of different steepness (b),
changing dispersal costs (μ), and stochastic events such as random

patch extinctions (ε; SI Appendix, Figs. S1 and S2). Importantly,
when other additive architectures with differing number of loci
and mutation effects are considered, range expansions can be
overall faster or slower, depending on the details of these additive
architectures, but are not accelerating in comparison to the GRN
model (SI Appendix, Figs. S3 and S4).

Why do we observe accelerating range expansions in the GRN
model but not in the simple additive model? Fundamentally, rapid
evolution of either dispersal or of demographic traits during the
range expansion process could modify expansion speeds.

Dispersal Evolution. In the absence of an environmental gradi-
ent, dispersal evolution has been shown to lead to accelerating
range expansions (10, 43). We recapture these accelerating dy-
namics in the absence of environmental gradients, irrespective
of whether dispersal is encoded by a GRN or a simple additive
genetic architecture (SI Appendix, Fig. S5). Increased dispersal at
the range expansion front evolves in both the simple additive and
GRN models (Fig. 3A) when environmental gradients are present
(see also ref. 44). However, dispersal evolves to greater values in
the GRN model when compared to the simple additive model.
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Fig. 3. Evolved dispersal probability (A), time to adapt (B), sensitivity to mu-
tation (C), and mean absolute gene expression levels (D) as a function of the
distance from the range core for the GRN (green) and simple additive (purple)
models. All measures are calculated for 100 replicate range expansions, solid
lines are medians, and shaded areas interquartile ranges. (A) Dispersal prob-
ability increases as the expanding population moves farther from the range
core in both the GRN and simple additive models. (B) Time to adapt. The time
to adapt is the duration an expanding population takes to completely adapt
to a novel environment (patch cross-section). The time to adapt decreases as
the expanding population moves farther along the environmental gradient
for the GRN model but remains constant in the simple additive model. Note
that the initial increase is due to standing genetic variation present in the
range core. (C) Sensitivity to mutation of the local adaptation trait. This is a
measure of how much the local adaptation phenotype changes in response
to an introduced mutation in the GRN genotype (SI Appendix). For the GRN
model, the sensitivity to mutation increases as a function of the distance from
the range core. Phenotypic effects of mutation cannot change in the simple
additive model. (D) Mean absolute gene expression. We average the absolute
value of gene expression states of all genes in the GRN. Gene expression
states evolve to extremes farther away from the range core. Focal scenario
parameters are as follows: b = 0.04, λ0 = 2, α = 0.01, mmin = 0.0001, μ = 0.1,
ε = 0, ω = 1, and number of genes per GRN n = 3.
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To test whether differences in dispersal genetic architecture,
and hence dispersal evolution, drive accelerating range dynam-
ics in the GRN model, we use our mixed genetic architec-
ture models and show that accelerating range expansions into
environmental gradients occur only when the local adaptation
trait is encoded by a GRN, irrespective of the genetic archi-
tecture of dispersal (SI Appendix, Figs. S6 and S7). Even when
dispersal does not evolve, a GRN genetic architecture for local
adaptation leads to accelerating range expansions (SI Appendix,
Figs. S8 and S9). However, dispersal evolution does increase the
overall speed of range expansion relative to when dispersal is
fixed (SI Appendix, Figs. S8 and S9). Thus, the GRN genetic ar-
chitecture of dispersal does not drive accelerating range expansion
dynamics in our model.

Evolution of Local Adaptation. As a consequence, as soon as
environmental gradients are present, which is very likely the case
in nature (e.g., climatic gradients) (45), our model suggests that
dispersal evolution, and the ability of individuals at the expansion
front to spread, may not be the main driver of accelerating range
expansions. Therefore, acceleration along gradients must be due
to changes in traits that rather impact demography directly by
limiting population growth in novel environments, which in our
study implies evolution of local adaptation.

In order to better understand the dynamics of local adaptation,
we follow the time a population needs to adapt to the conditions
in a patch across the gradient (here defined as level of adaptation
s > 0.96) and refer to this as the “time to adapt.” The time
to adapt for the simple additive model does not change as the
population expands along the gradient (Fig. 3B). However, in the
GRN model, the farther away a patch is from the range core,
the smaller the time to adapt (Fig. 3B). This means that as the
population moves along the environmental gradient, it adapts
more quickly to new local conditions (for representative dynamics
of local adaptation in both models, see SI Appendix, Fig. S10).

Why does the time to adapt decrease in the GRN model?
In other words, why does the rate of adaptation increase in the
GRN model but remain constant in the simple additive model?
One crucial difference between the assumptions of the GRN
model and the simple additive model is how mutations change
the phenotype, that is, the sensitivity to mutation. If a mutation is
introduced into one of the alleles encoding local adaptation in the
simple additive model, the phenotype will change linearly with
this mutation. However, in the GRN model, the sensitivity to
mutation can itself evolve because of nonlinearity in the interac-
tion between the multiple loci. Here the sensitivity to mutation
increases in a saturating manner as the population moves farther
along the gradient and away from the range core (Fig. 3C ). This in-
creased sensitivity to mutation allows the expanding populations
to adapt more quickly and reduces the time until a given popu-
lation is fully adapted (SI Appendix, Figs. S10 and S11). Interest-
ingly, our model predicts that increased sensitivity to mutation is
accompanied by the evolution of extreme gene expression levels
(Fig. 3D).

This association of extreme gene expression states with a greater
sensitivity to mutation is an interesting consequence of assuming
a mapping between equilibrium gene expression states and the
phenotype under selection, here a continuous local adaptation
trait. Indeed, such an association is contrary to the expectation
from the Wagner model (33) with sigmoid gene expression (37).
Rünneburger and Le Rouzic (39) have shown that in such a
model, stabilizing selection on discrete gene expression states that
are closer to the extremes of the sigmoid (−1 or 1) lead to
more canalized (less sensitive) GRNs (Fig. 4A). However, in our
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Fig. 4. Mechanism for the evolution of increased sensitivity to mutation in
the sigmoid Wagner model (A) and the local adaptation GRN in the present
study (B). For this example, we consider a highly simplified scenario in which
the GRN is at a fixed point equilibrium, and we focus on how a single gene
would respond to perturbations to the genotype at extreme and intermediate
gene expression levels. We further assume that any perturbation in the
input the gene receives takes its gene expression to another fixed point
equilibrium. For an easier comparison of both GRN models, the phenotype
under selection is highlighted with a gray background. (A) In the sigmoid
Wagner model, the vector of equilibrium gene expression states S∗ is the
phenotype under selection; therefore, any perturbation ΔY in the input a
single gene receives (either from the input layer or from other genes) would
lead to greater phenotypic difference at intermediate gene expression states
when compared to those at extremes (ΔS∗

i ) (39). (B) In our model the output
z of the GRN is the continuous local adaptation phenotype under selection.
Here the linear effects downstream of a gene i contribute to a trait determined
by the output weight Vz,i; therefore, the contribution of each gene to the
phenotype is Vz,iS∗

z,i . In this case, any perturbation in the output weights
Vz,i , say, Vz,i + ΔVz,i , would yield a greater difference in contribution to the
phenotype at extreme rather than intermediate gene expression.

model, we have assumed a linear mapping between equilibrium
gene expression states and the phenotype under selection (z = τ ;
z =

∑n
i=1 Vz ,iS

∗
z ,i ). Thus, when the expression level for a given

gene at equilibrium S∗
z ,i is closer to the extremes (−1 or 1), any

perturbation ΔVz ,i in the corresponding output weight Vz ,i

will be amplified (Fig. 4B). Vice versa, closer to intermediate
gene expression levels (closer to 0), the perturbation will be
silenced. As a consequence, as gene expression states evolve to
their extremes, the mutation effects due to a perturbation ΔVz ,i

in the output weights become equivalent to mutation effects in
a simple additive model with n loci. At the macroscopic level
of range expansions, this implies that expansion speeds (slopes
in SI Appendix, Figs. S3 and S4) and time to adapt to novel en-
vironments (SI Appendix, Fig. S12) of the GRN and the simple
additive model with n = 3 loci converge because of decanalization
in the GRN model. Importantly, only the GRN model can exhibit
changes in sensitivity and therefore changes in range expansion
speed which leads to accelerating expansions.

Predictability of Range Expansions. Finally, we investigate how
genetic architecture impacts the variation between range expan-
sion replicates and, thereby, predictability sensu Melbourne and
Hastings (4). Generally speaking, the GRN model leads not
only to accelerating (SI Appendix, Figs. S1 and S2) but also to
more variable range expansions when compared to the simple
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additive model (Fig. 2B and SI Appendix, Figs. S13 and S14), as
can be seen when comparing differences between the left and
right range fronts in the GRN model in Fig. 2A, for exam-
ple. Even additive models with n = 3 loci, which, as discussed
above, have the same per locus mutation effects as the GRN
model after decanalization, show less between replicate variation
in range expansion dynamics when compared to the GRN model
(SI Appendix, Figs. S15 and S16). This holds true for different
gradient slopes, dispersal costs, and extinction probabilities, irre-
spective of the genetic architecture assumed for the dispersal trait.
The greater variability of range expansions in the GRN model
implies that range expansions are less predictable when the GRN
encodes local adaptation. This shows that the assumed genetic
architecture not only leads to systematically and qualitatively
different predictions on average but also to different uncertainties.

General Discussion

Our study highlights the central role of genetic architecture in
determining the dynamics of range expansions into an environ-
mental gradient. We show that assuming a complex GRN genetic
architecture for relevant traits leads to accelerating range expan-
sions when compared to models that assume a simple additive
genetic architecture.

Accelerating range dynamics result from a faster rate of adap-
tation due to an increase in the sensitivity to mutation of the
local adaptation trait, as the expanding population moves along
the gradient. As shown by our comparison of alternative models,
the genetic architecture of the dispersal trait and even disper-
sal evolution altogether are not responsible for the acceleration.
Rather, the acceleration pattern is exclusively linked to the genetic
architecture of local adaptation. The increasing rate of adaptation
resulting from evolution of greater sensitivity to mutation in the
local adaptation GRN observed in our model is an instance of
the evolution of evolvability. Particularly, as defined by Wagner
and Altenberg (18), there is a change in trait variability (potential
to vary; sensitivity to mutation) in the direction of adaptive
opportunity. Cobben et al. (32) have demonstrated the evolution
of evolvability in individual-based simulations of range expansion
when dispersal, local adaptation, and mutation rates evolve. They
find that the rate of adaptation at the range front increases because
of the evolution of increased mutation rates encoded by a modifier
locus. For sexual species, this result can be sensitive to the assumed
distribution of mutation effects and level of linkage between the
modifier locus and local adaptation locus because the modifier
locus evolves by hitchhiking (46). However, in our model, there is
no need for evolution at a modifier locus. Rather, the increase in
the rate of adaptation results from the interaction between genes
and their downstream effects.

The consideration of mutational effects is important for un-
derstanding the rate of adaptation to a gradient landscape, espe-
cially in the absence of standing genetic variation. This has been
demonstrated in studies of additive genetic architectures: Schiffers
et al. (26) find that the rate of adaptation is greatest when the
mutational effect size matches the steepness of an environmental
gradient. Gilbert and Whitlock (27) show that adaptation to
a novel habitat patch proceeds primarily by mutations of large
effects. By modeling local adaptation as a GRN, we allow for
changes in the sensitivity to mutation itself. As a consequence,
whereas in the additive architecture studies described above, muta-
tional effects are fixed parameters, in our work, they are emergent
properties. Therefore, while we reemphasize the importance of
understanding mutation effects, we add to previous work by
showing that the sensitivity to mutation increases as an expanding

population moves farther along the gradient, which leads to an
increase in the rate of adaptation. This is only possible if the
assumption of additivity is relaxed, like in the present study.

Kimbrell (29) and Kimbrell and Holt (41) have shown for
a GRN model of local adaptation in a source–sink system, in
which gene expression states are the phenotype under selection,
that canalization breakdown (increase in sensitivity) is followed
by adaptation to a sink or gradient of sinks, with a return to
preadaptation levels of canalization. In our model, we show that
sensitivity to mutation also increases when the trait under con-
sideration is continuous, resulting from linear downstream effects
of a GRN, however, by a different mechanism. In continuous,
sigmoid Wagner-like GRN models (37) where gene expression
states are the phenotype under selection (including refs. 29 and
41), Rünneburger and Le Rouzic (39) show that selection for
extremes of gene expression leads to greater canalization in genes
under selection.

By contrast, in our model, we show that greater mutational
sensitivity is associated with extremes of gene expression because
of the amplification of mutational effects downstream of gene
expression. This effect cannot emerge in most GRN models due
to the assumption that gene expression states are the phenotype
under selection. To our knowledge, this association of sensitivity
and extreme gene expression has been discussed only once before
by Draghi and Whitlock (47) but with a different kind of GRN
model in the context of the evolution of robustness to intrinsic
noise. These authors study a trade-off between the robustness of
a single gene and a GRN to intrinsic noise (which is greater at
low gene expression) and the amplification of mutations in down-
stream effects (which is greater at high gene expression) and find
that robustness to intrinsic noise evolves despite this constraint.
Our finding that increased sensitivity to mutation is driven by
extremes of gene expression is an interesting prediction going
beyond what our model had originally been designed to predict.
Concretely, this yields empirically testable predictions for gene ex-
pression states under directional selection, namely, that increased
sensitivity to mutation should be associated with intermediate
gene expression when gene expression states are the phenotype
under selection while we predict the opposite to be true for traits
that result from effects of gene expression, such as in our model.

Our model assumes a particular genetic architecture underlying
dispersal and local adaptation traits. However, our results are likely
valid more generally for mutation-limited quantitative trait evo-
lution under directional selection: our proposed mechanism for
the evolution of increased sensitivity is not restricted to GRN GP
maps but can also emerge in other genetic architectures such as the
multilinear GP map. The amplification of downstream mutations
by extreme gene expression can be considered as a special case of
positive directional epistasis, in which multiple loci interact to
amplify each other’s effects in the direction of selection. This is
a mechanism that has been shown to lead to greater evolvability
(48, 49) in a multilinear GP map (50). Hence, we may expect
accelerating range expansions in general for nonadditive GP maps.

Our study demonstrates the consequences of relaxing the
assumption of additivity and the utility of GRN GP maps for
understanding adaptation during range expansions and eco-
evolutionary dynamics more generally. However, several open
questions remain. Particularly, constraints to the increased
sensitivity to mutation imposed by a fixed epistatic structure (48),
interactions between multiple traits (34), numbers of genes that
contribute directly to the local adaptation phenotype (39), and the
evolution of robustness to intrinsic noise (47), to name but a few,
would impact range expansion dynamics and represent interesting
future avenues of research. Further, by assuming a mapping
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between gene expression states and a continuous phenotype trait,
we have highlighted how gene expression states themselves might
impact evolvability, opening up the question of how various
gene expression activation functions and mappings between
equilibrium gene expression states and discrete (35) or continuous
(34) phenotype under selection might modulate evolvability.

Interestingly, we also find that as long as the local adaptation
trait is encoded by a GRN, we observe accelerating range expan-
sions regardless of the genetic architecture underlying the dispersal
trait and even in the absence of dispersal evolution. In the absence
of environmental gradients, evolution of greater dispersal as a
result of spatial sorting (10), spatial selection, and increased kin
competition (43) leads to accelerating range expansions. However,
when an environmental gradient is present, these advantages of
dispersal are greatly reduced by the direct reduction in fitness
resulting from maladaptation to the external environment (44).
This explains the reduced importance of dispersal genetic architec-
ture in our study. At the same time, this cost–benefit balance also
explains why in our GRN model dispersal evolves to higher values
during range expansions (Fig. 3A): as expanding populations
adapt more quickly to the gradient in the GRN model, and
therefore reduce maladaptation, spatial selection becomes again
more important and leads to higher evolved dispersal probabilities.

Finally, we show that genetic architecture has an important im-
pact on the predictability of range expansions. Between-replicate
variation is higher when local adaptation is encoded by a GRN
than by a simpler genetic architecture. Therefore, range expansions
are less predictable in the GRN model. This could be because in
the GRN model, uncertainty is propagated between the process
of increase in sensitivity to mutation (evolvability) and adaptation
to the new environmental conditions (evolution). The challenges
of predicting biological responses to environmental change, in
general, are compounded by the levels of organization and spa-
tiotemporal scales (3). In particular, previous purely ecological
studies of range expansion have found that stochastic models may
either accurately estimate (5) or overestimate (4) the predictability
of observed range expansion speeds. Evolution clearly plays a role
in the predictability of range expansion (7). We here show that
the predictability of range expansions is not only modified by
evolution but also by the evolution of evolvability. This finding
has two important implications: First, in biological systems in
which local adaptation is encoded by a GRN, range expansion
and invasion dynamics may be even more variable than predicted
using classical models. Second, vice versa, while range expansions
may be intrinsically very variable, using appropriate models based
on realistic genetic architectures may help to generate accurate
predictions of uncertainty. The latter are important as they define
the forecast horizon (3) as well as risk management strategies.
More generally, our work highlights how assumptions related to
microscopic levels of biological organization, here the assumed
genetic architecture, can propagate and impact not only mean pre-
dictions of eco-evolutionary processes but also their predictability
at macroscopic scales.

Materials and Methods

We develop an individual-based metapopulation model of range expansion
into a linear external environmental gradient with slope b (SI Appendix, Eq. S3)
in which dispersal and local adaptation traits are encoded by gene-regulatory
networks (Fig. 1). A summarized model description is given below, and details
can be found in SI Appendix.

Life Cycle. We assume a diploid organism that reproduces sexually. Dispersal
is natal and costly (dispersal costs μ) and, since the landscape is represented
by a regular grid, possible to the eight nearest-neighboring patches. Individuals

disperse according to a genetically encoded dispersal probability d which is either
represented by a GRN or a single quantitative locus (Fig. 1B and C). After dispersal,
individuals may reproduce in their target patches. Local population dynamics
follow the Beverton–Holt model of discrete logistic growth (SI Appendix, Eq. S1).
A female chooses a mate at random from its own patch.

The realized expected fecundity of a female is modified by the environment
following a Gaussian niche function (SI Appendix, Eq. S4; local adaptation phe-
notype τ ). The number of offspring a female produces is Poisson distributed with
a mean equal to its realized fecundity in order to capture demographic stochas-
ticty. For all genetic architectures explored, offspring inherit parental genotypes,
one allele from the female and male parent at each locus. After reproduction,
the parental generation dies and is replaced by the offspring generation. Entire
patches may go extinct with a probability ε representing random catastrophic
patch extinction events.

Genetic Architecture. A detailed description of the GRN model and other
alternate genetic architectures can be found in SI Appendix.
GRN genetic architecture. As shown in Fig. 1B, we model the GRN for each trait
(indexed by z = d, τ ) as having three layers: input layer, regulatory layer, and
output layer (35).

We represent the expression states of the regulatory genes by Sz(I) for each
modeled trait z = d, τ at the Ith iteration of a developmental process (33).
Gene expression states at each iteration during development are continuous
and sigmoid functions of the input they receive and may take values between
−1 and 1 (37). The slope (rz) and threshold (θz) of this sigmoid are properties
of the regulatory genes and are genetically encoded (35). Each gene receives
a single constant input. The input matrix (Uz) connects the input layer to the
regulatory layer. The regulatory genes influence each other’s expression states
according to weights present in a genetically encoded regulatory matrix (Wz).
The dynamical developmental process (SI Appendix, Eq. S5) takes place for 20
iterations for each individual, and the equilibrium gene expression states (S∗z )
characterize the developmental system if a fixed point steady state is reached
within this duration (34). Limit cycle dynamics are not considered viable (33).

Finally, we assume that the trait under consideration varies linearly with
equilibrium gene expression states. As a consequence, each trait is given by the
weighted sum (SI Appendix, Eq. S6) of the gene expression levels (34), and the
output matrix (Vz) is composed of these weights. Thus, the output layer processes
the gene expression states and gives the trait. The input matrix, regulatory
matrix, and output matrix along with the threshold and slope of the sigmoid are
genetically encoded by diploid loci. These loci are initialized randomly using a
Gaussian distribution with mean 0 and SD 1 and are subject to mutation with
a probability m(t) (SI Appendix, Eq. S2 and Table S1) and effects drawn from a
normal distribution with SD 0.1.
Simple additive genetic architecture. In the simple additive model, one
diploid quantitative locus each encodes dispersal probability (d) and the local
adaptation phenotype (τ ) to local adaptation (Fig. 1C). Each allele for a given
locus is initialized with a random number drawn from a uniform distribution
going from 0 to 1. Alleles may mutate during inheritance with a given probability
mmin (SI Appendix, Eq. S2 and Table S1) and by a number drawn from a normal
distribution with mean 0 and SD 0.1.

Analysis. For all the parameter combinations explored (SI Appendix and
SI Appendix, Table S1), we ran 50 replicate simulations, which amounts to 100
range expansions (left and right sides of the expanding metapopulation), and
tracked the range border position as a function of time. For the focal scenario, we
also track the average dispersal probability, level of adaptation (s), the sensitivity
to mutation (for details, see SI Appendix), and the gene expression states of the
local adaptation GRN throughout the landscape. The sensitivity to mutation is a
measure of how much a trait changes if the GRN is perturbed.

Additionally, we calculate the time to adapt, which is the difference between
the time when the expanding population enters a given patch cross-section
and the time when the population adapts to it completely. We use a threshold
for the level of adaptation s > 0.96 because the population cannot reach s = 1
as a consequence of expansion or genetic load.

Data Availability. Computer code is available at GitHub and Zenodo (DOI:
10.5281/zenodo.5747752) (51).
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