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Oxidized phospholipids have been shown to exhibit pleio-
tropic effects in numerous biological contexts. For example,
1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC),
an oxidized phospholipid formed from alkyl phosphatidylcho-
lines, is a peroxisome proliferator–activated receptor gamma
(PPARγ) nuclear receptor agonist. Although it has been re-
ported that PPARγ agonists including thiazolidinediones can
induce plasma volume expansion by enhancing renal sodium
and water retention, the role of azPC in renal transport func-
tions is unknown. In the present study, we investigated the ef-
fect of azPC on renal proximal tubule (PT) transport using
isolated PTs and kidney cortex tissues and also investigated the
effect of azPC on renal sodium handling in vivo. We showed
using a microperfusion technique that azPC rapidly stimulated
Na+/HCO3

− cotransporter 1 (NBCe1) and luminal Na+/H+

exchanger (NHE) activities in a dose-dependent manner at
submicromolar concentrations in isolated PTs from rats and
humans. The rapid effects (within a few minutes) suggest that
azPC activates NBCe1 and NHE via nongenomic signaling. The
stimulatory effects were completely blocked by specific PPARγ
antagonist GW9662, ERK kinase inhibitor PD98059, and CD36
inhibitor sulfosuccinimidyl oleate. Treatment with an siRNA
against PPAR gamma completely blocked the stimulation of
both NBCe1 and NHE by azPC. Moreover, azPC induced ERK
phosphorylation in rat and human kidney cortex tissues, which
were completely suppressed by GW9662 and PD98059 treat-
ments. These results suggest that azPC stimulates renal PT
sodium-coupled bicarbonate transport via a CD36/PPARγ/
mitogen-activated protein/ERK kinase/ERK pathway. We
conclude that the stimulatory effects of azPC on PT transport
may be partially involved in volume expansion.

Hypertension can lead to the development and progres-
sion of atherosclerosis, and it also contributes to the
development of cardiovascular diseases (1). In contrast,
atherosclerosis is known to be a risk factor for hypertension
(2). However, the underlying mechanism for the develop-
ment of hypertension because of atherosclerosis has not
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been elucidated yet. A large number of studies have
demonstrated the role of oxidation products in the pro-
gression of atherosclerosis (3, 4). Because of oxidative stress,
oxidized phospholipids (oxPLs) are generated from a variety
of phospholipids containing polyunsaturated fatty acids (3).
OxPLs are mainly accumulated in atherosclerotic lesions (5),
and they are associated with endothelial dysfunction (3, 6),
adhesion, transmigration, cytokine production by macro-
phages (5, 7), proliferation, migration, and phenotypic
switching of vascular smooth muscle cells (8–10), and
apoptosis (7). Although oxPLs exert both proatherogenic
and protective effects by affecting diverse gene expression
and signaling pathways, their proatherogenic action is pre-
dominant at the sites of tissue deposition of oxPLs, leading
to the progression of atherosclerosis (5, 11, 12).

An increase in renal proximal tubule (PT) sodium reab-
sorption can lead to hypertension (13). Approximately 50 to
60% filtered Na+ and 80% filtered HCO3

− are reabsorbed from
PT by the cooperative action of Na+/H+ exchanger 3 (NHE3)
and vacuolar-type H+-ATPase (V-ATPase) expressed on the
luminal membranes and Na+/HCO3

− cotransporter 1 (NBCe1)
expressed on the basolateral membranes (14–16). The func-
tions of NHE3 and NBCe1 are regulated by humoral factors
and various signaling mechanisms (14, 17). Indeed, we have
previously reported some NHE3 and NBCe1 stimulators, such
as angiotensin II (Ang II), insulin, and thiazolidinediones
(TZDs) (18–22).

Peroxisome proliferator–activated receptor gamma
(PPARγ), a ligand-activated transcription factor belonging to
the nuclear receptor superfamily, is expressed in various tis-
sues and cell types, such as white and brown adipose tissues,
vascular smooth muscle cells, macrophages, and vascular
endothelial cells (23). PPARγ is also widely present in the
kidney, including PTs and collecting ducts (24). TZDs are
well-known exogenous PPARγ agonists that exert pleiotropic
effects, including an improvement of insulin sensitivity and
anti-inflammatory effects (25). The use of TZDs has been
limited because of important side effects such as edema and
congestive heart failure (26, 27). TZD-induced volume
expansion is largely because of an enhancement of renal so-
dium and water retention (28). In addition, TZDs stimulate
J. Biol. Chem. (2022) 298(3) 101681 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2022.101681
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://orcid.org/0000-0003-2103-3605
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://orcid.org/0000-0001-7401-2934
Delta:1_given name
https://orcid.org/0000-0002-5379-4305
mailto:nakamura-stm@umin.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2022.101681&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Oxidized phospholipid-induced proximal tubule transport
both NBCe1 and NHE3 activities through the PPARγ/proto-
oncogene tyrosine-protein kinase Src/epidermal growth factor
receptor/extracellular signal–regulated kinase (ERK)-depen-
dent nongenomic signaling pathway in isolated rat, rabbit, and
human PTs (22). On the other hand, a variety of endogenous
PPARγ ligands such as oxidized low-density lipoproteins
(LDLs), oxPLs, eicosanoids, and linoleate derivatives have also
been identified (29, 30). 1-O-hexadecyl-2-azelaoyl-sn-glycero-
3-phosphocholine (azPC), an oxidation product of LDL alkyl
phosphatidylcholines (PCs) present in atherosclerotic lesions,
is a potent PPARγ agonist (30). The binding affinity of azPC is
almost equivalent to that of rosiglitazone (30). However, the
influence of azPC on renal sodium and fluid transport remains
unclear.

Therefore, in the present study, we used isolated PTs from
rats, mice, and humans to investigate whether azPC affects
renal PT sodium transport.

Results

Effects of azPC on NBCe1 activity in isolated rat PTs

To investigate the effects of azPC on PT transport, we first
examined NBCe1 activity using freshly isolated and luminally
collapsed PTs from rat kidneys. As shown in Figure 1A and
Fig. S1, azPC rapidly stimulated NBCe1 activity in isolated rat
PTs. The stimulatory effects of azPC on NBCe1 activity were
dose dependent in the concentration range 0.04 to 0.3 μM,
whereas no difference was observed between 0.3 μM azPC and
1.0 μM azPC. Therefore, we conducted further experiments
using 0.3 μM azPC.

We next examined whether the stimulation of NBCe1
activity by azPC was dependent on PPARγ signaling using a
specific PPARγ antagonist, GW9662 (2-chloro-5-nitro-N-
phenylbenzamide; 5 μM). GW9662 completely inhibited the
stimulatory effects of azPC on NBCe1 activity without
affecting the basal NBCe1 activity (Fig. 1B). We also per-
formed gene-silencing experiments with siRNA against
PPARγ in cultured rat PTs, as previously described (20, 31).
As shown in Figure 1C, 40 nM siRNA against PPARγ
significantly suppressed the expression of PPARγ mRNA as
compared with the scrambled negative control. In addition,
treatment with 40 nM siRNA against PPARγ did not affect
the basal NBCe1 activity as compared with the treatment
with scrambled negative control, which completely blocked
the stimulation of NBCe1 by azPC (Fig. 1D). Moreover, we
examined the effect of azPC on NBCe1 protein expression
in rat kidney cortex tissues using Western blot analysis.
Figs. S2 and S3 show that azPC did not affect NBCe1
protein abundance. These results indicate that azPC stimu-
lates NBCe1 activity via PPARγ-dependent signaling without
altering NBCe1 protein expression.

Effects of azPC on luminal NHE activity in isolated rat PTs

Next, we focused on luminal NHE activity in freshly isolated
rat PTs. Luminal NHE activity was measured using lumen-
opened PTs, as previously described (22, 31–33). The
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stimulatory effects of azPC on luminal NHE activity were
observed in a dose-dependent manner (Figs. 2A and S5),
similar to NBCe1 activity. Therefore, we used 0.3 μM azPC for
subsequent experiments.

Next, we performed experiments using an NHE inhibitor,
ethyl-isopropyl amiloride (EIPA; 100 μM). As shown in
Figure 2B, the stimulatory effects of azPC were completely
inhibited by EIPA. EIPA treatment partially, but significantly,
decreased the basal activity by approximately 30% (Fig. 2B).
NHEs are expressed on basolateral and luminal membranes of
the PT (34, 35). NHE1, which is ubiquitously expressed on
basolateral membranes, also plays an important role in Na+–
H+ translocation in the PT (34). To confirm whether NHE1
contributes to the stimulatory effect of azPC on NHE activity,
we examined the effect of a selective NHE1 inhibitor, car-
iporide (1 μM) on NHE activation by azPC. Figure 2C shows
that cariporide did not affect the basal activity or azPC-
induced stimulatory responses. These results suggest that
azPC stimulates luminal NHE activity in rat PTs.

We next investigated whether the stimulation of luminal
NHE activity by azPC was mediated by PPARγ using GW9662
(5 μM). GW9662 completely inhibited the stimulatory effects
of azPC on luminal NHE activity without affecting the basal
NHE activity (Fig. 2D). Furthermore, we performed gene-
silencing experiments using siRNA against PPARγ at 40 nM.
As shown in Figure 2E, siRNA treatment against PPARγ did
not affect the basal NHE activity as compared with the treat-
ment with scrambled negative control, which completely
suppressed the stimulation of luminal NHE by azPC. More-
over, we examined the effect of azPC on NHE3 protein
expression in rat kidney cortex tissues using Western blot
analysis. Figs. S2 and S4 showed that azPC did not affect NHE3
protein abundance. Therefore, these results indicate that azPC
stimulates luminal NHE activity via PPARγ-dependent
signaling without altering NHE3 protein expression.

Signaling pathway for stimulation of NBCe1 and NHE
activities by azPC in rats

We previously reported that TZDs stimulate PT sodium
transport through the PPARγ/Src/epidermal growth factor re-
ceptor/ERK pathway (22). In this study, we confirmed whether
the signaling mechanism of azPC-induced PT transport stim-
ulation overlaps with that of TZD-induced PT transport
stimulation. We examined the effect of a mitogen-activated
protein/extracellular signal–regulated kinase kinase (MEK)
inhibitor, PD98059 (2-(2-amino-3methoxyphenyl)chromone;
10 μM), on azPC-induced stimulation of PT transport by
measuring NBCe1 and luminal NHE activities in freshly iso-
lated rat PTs, and we analyzed the impact of azPC on ERK
phosphorylation in rat kidney cortex tissues using Western blot
analysis. As shown in Figure 3, A and B, PD98059 did not affect
the basal activities of NBCe1 and NHE, and it completely
inhibited the stimulatory effects of azPC on both NBCe1 and
NHE activities. Western blot analysis revealed that azPC
induced ERK phosphorylation in a dose-dependent manner
(Figs. S6 and S7). Furthermore, azPC-induced ERK



Figure 1. Effects of 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC) on Na+/HCO3
− cotransporter 1 (NBCe1) activity in rat proximal

tubules (PTs). A, effects of azPC in the concentration range from 0.04 to 1 μM on NBCe1 activity in isolated rat PTs. Control, n = 21; 0.04 μM azPC, n = 5;
0.1 μM azPC, n = 5; 0.3 μM azPC, n = 6; 1 μM azPC, n = 5; **p < 0.01 versus control. B, effects of 5 μM GW9662 (2-chloro-5-nitro-N-phenylbenzamide) on
NBCe1 activity in PTs treated with 0.3 μM azPC. Control, n = 6; azPC, n = 6; GW9662, n = 8; azPC + GW9662, n = 8; *p < 0.05 versus control. C, peroxisome
proliferator–activated receptor gamma (PPARγ) mRNA expression in isolated rat PTs treated with siRNA against PPARγ at 40 nM (si-PPARγ) as compared with
that in isolated rat PTs treated with scrambled negative control (si-scrambled). n = 4; *p < 0.05 versus si-scrambled. D, effects of siRNA treatment on 0.3 μM
azPC-stimulated NBCe1 activity in isolated rat PTs. PTs were treated with si-scrambled or si-PPARγ. n = 7; *p < 0.05 versus si-scrambled. Each open bar
represents the relative activity of NBCe1. NBCe1 activity of control group (azPC-untreated PT) was set at 100%.

Oxidized phospholipid-induced proximal tubule transport
phosphorylation was completely blocked by GW9662 and
PD98059 (Fig. 3, C–F). These results suggest that azPC-
induced stimulation of PT transport is dependent on the
PPARγ/MEK/ERK signaling pathway.
The role of cluster determinant 36 in azPC-induced stimulation
of PT transport in isolated rat PTs

It has been reported that cluster determinant 36 (CD36), a
multifunctional receptor mediating the cellular uptake of
various oxidation products, promotes the uptake of extracel-
lular azPC in human monocytes (30). To confirm whether the
stimulatory effects of azPC on PT transport were mediated by
CD36, we examined the effect of a CD36 inhibitor, sulfo-
succinimidyl oleate (SSO) (200 μM), on azPC-induced stimu-
lation of PT transport by measuring NBCe1 and luminal NHE
activities in cultured rat PTs. As shown in Figure 4, A and B,
SSO completely inhibited the stimulatory effects of azPC on
both NBCe1 and NHE activities without affecting the basal
activities of NBCe1 and NHE. These results indicate that the
azPC-induced stimulation of PT transport is mediated by
CD36.
Acute in vivo effect of azPC on renal sodium reabsorption

We next examined whether azPC promoted renal sodium
reabsorption in rats. We used rats fed a high-salt diet (8%
NaCl) to detect rapid changes in renal sodium handling.
Figure 5, A–C shows that azPC significantly reduced fractional
excretion of sodium (FENa) without affecting creatinine
clearance or urine volume. In addition, GW9662 administra-
tion completely blocked FENa reduction by azPC (Fig. 5A).
Furthermore, we analyzed the effect of azPC on NBCe1 and
NHE3 protein expression in rat kidney cortex tissues. As
shown in Figure 5, D–F, we found no changes in protein
abundances of NBCe1 and NHE3, similar to the in vitro ex-
periments (Figs. S2–S4). These results indicate that azPC
promotes renal sodium reabsorption through a PPARγ-
dependent mechanism without altering the protein expression
of NBCe1 and NHE3.

Effects of azPC on PT transport in humans

Next, we examined the effect of azPC on PT transport in
humans. No patient showed a severe renal dysfunction
(Table S1). Addition of 0.3 μM azPC stimulated both NBCe1
J. Biol. Chem. (2022) 298(3) 101681 3



Figure 2. Effects of 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC) on luminal Na+/H+ exchanger (NHE) activity in rat proximal
tubules (PTs). A, effects of azPC in the concentration range from 0.04 to 1 μM on luminal NHE activity in isolated rat PTs. Control, n = 21; 0.04 μM azPC, n =
6; 0.1 μM azPC, n = 5; 0.3 μM azPC, n = 5; 1 μM azPC, n = 5; *p < 0.05, **p< 0.01 versus control. B, effects of 100 μM ethyl-isopropyl amiloride on luminal NHE
activity in PTs treated with 0.3 μM azPC. n = 6; *p < 0.05 versus control. C, effects of 1 μM cariporide on luminal NHE activity in PTs treated with 0.3 μM azPC.
n = 6; *p < 0.05 versus control. D, effects of 5 μM GW9662 (2-chloro-5-nitro-N-phenylbenzamide) on luminal NHE activity in PTs treated with 0.3 μM azPC.
Control, n = 6; azPC, n = 6; GW9662, n = 5; azPC + GW9662, n = 5; *p < 0.05 versus control. E, effects of siRNA treatment on 0.3 μM azPC-stimulated luminal
NHE activity in isolated rat PTs. PTs were treated with si-scrambled or siRNA against peroxisome proliferator–activated receptor gamma (PPARγ) at 40 nM.
n = 6; *p < 0.05 versus si-scrambled. Each PT was also treated with 200 nM bafilomycin A1. Each open bar represents the relative activity of luminal NHEs.
NHE activity of the control group (azPC-untreated PT) was set at 100%.

Oxidized phospholipid-induced proximal tubule transport
and luminal NHE activities in freshly isolated human PTs, and
the stimulatory responses were completely suppressed by
GW9662 (Fig. 6, A and B). Moreover, Western blot analysis in
human kidney cortex tissues revealed that 0.3 μM azPC
significantly enhanced ERK phosphorylation, and the
enhancement of ERK phosphorylation was completely blocked
by GW9662 (Fig. 6, C and D). Thus, we observed that azPC
stimulated human PT transport through the PPARγ/MEK/
ERK signaling pathway as well as rat PT transport.
Discussion

In this study, we demonstrated that azPC rapidly stimulated
renal PT sodium transport by activating both NBCe1 and
luminal NHEs in rats and humans, and the stimulatory re-
sponses were mediated by PPARγ. The azPC-induced activa-
tion of NBCe1 and NHE was inhibited by PD98059 and SSO in
isolated rat PTs. In addition, azPC enhanced ERK phosphor-
ylation in kidney cortex tissues, and azPC-induced ERK
phosphorylation was inhibited by GW9662 and PD98059.
These results suggest that azPC stimulates sodium reabsorp-
tion from rat and human PTs through the PPARγ/MEK/ERK
signaling pathway mediated by CD36 (Fig. 7).

The action of TZDs on sodium transporters in PT has been
reported previously (36–38). For example, troglitazone has
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been reported to activate NBCe1 activity in rabbit PTs (36).
Other studies have also reported that TZDs enhance the
expression of NHE3 in human PT cells and rat kidneys
(37, 38). However, the effect of endogenous PPARγ ligands on
sodium transporters in PT is unknown. In this study, we
demonstrated that 0.3 μM azPC stimulated NBCe1 activity by
approximately 34 ± 5% in isolated rat PTs, which was com-
parable to that of NBCe1 activation by TZDs (approximately
35–40%) in our previous study using rat PTs (22). Several
previous findings that the efficacy of other NBCe1 stimulants
such as Ang II was approximately 25 to 60% also suggest that
azPC has a sufficient impact on NBCe1 activity (18–20).
Therefore, the effect of azPC on PT transport seems likely to
be involved in volume expansion, although the effect of azPC
on other nephrons, including collecting ducts, needs to be
elucidated.

Nuclear receptors, including PPARγ, have been reported to
exert rapid actions through a nongenomic mechanism in
addition to the classical genomic mechanisms that regulate the
transcription of target genes (39). The nongenomic actions of
PPARγ can occur both in a PPARγ-dependent and PPARγ-
independent manner (40, 41). Accumulating evidence suggests
the involvement of the nongenomic actions of PPARγ in
various physiological mechanisms such as platelet activation
(42, 43), anti-inflammatory effects (44), antineoplastic effects



Figure 3. Role of extracellular signal–regulated kinase (ERK) in 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC)-induced peroxisome
proliferator–activated receptor gamma (PPARγ)-dependent pathway in ratproximal tubules (PTs). A, effects of 10 μM PD98059 (2-(2-amino-
3methoxyphenyl)chromone) on Na+/HCO3

− cotransporter 1 (NBCe1) activity in PTs treated with 0.3 μM azPC. Control, n = 6; azPC, n = 6; PD98059, n = 4;
azPC + PD98059, n = 4; *p < 0.05 versus control. B, effects of 10 μM PD98059 on luminal Na+/H+ exchanger (NHE) activity in PTs treated with 0.3 μM azPC.
n = 6; *p < 0.05 versus control. C, ERK phosphorylation in rat kidney cortex tissues. Kidney samples were treated with 0.3 μM azPC in the presence or the
absence of 5 μM GW9662 (2-chloro-5-nitro-N-phenylbenzamide). D, effects of 5 μM GW9662 on azPC-induced phosphorylation of ERK in rat kidney cortex
tissues. n = 6; *p < 0.05 versus azPC-untreated and GW9662-untreated kidney cortex. E, ERK phosphorylation in rat kidney cortex tissues. Kidney samples
were treated with 0.3 μM azPC in the presence or the absence of 10 μM PD98059. F, effects of 10 μM PD98059 on azPC-induced phosphorylation of ERK in
rat kidney cortex tissues. n = 6; *p < 0.05 versus azPC-untreated and PD98059-untreated kidney cortex.

Oxidized phospholipid-induced proximal tubule transport
(45, 46), and neuropathic pain control (41); however, its role in
renal transport is far from being elucidated. We previously
demonstrated the nongenomic action of TZDs on PT sodium
transport using mouse embryonic fibroblast cells from
PPARγ−/− mouse (22). This previous study showed that the
rapid stimulation of NHE1 activity and ERK phosphorylation
by TZDs depend on the ligand-binding ability but not the
transcriptional activity of PPARγ (22). The short time frame in
the range of seconds to minutes is essential to distinguish
between nongenomic and genomic actions (39). The azPC-
induced actions on PTs were exerted rapidly within a few
Figure 4. Effects of sulfosuccinimidyl oleate (SSO) on 1-O-hexadecyl
Na+/HCO3

− cotransporter 1 (NBCe1) and Na+/H+ exchanger (NHE) in culture
PTs treated with 0.3 μM azPC. n = 6; *p < 0.05 versus control. B, effects of 200 μM
azPC, n = 7; SSO, n = 6; azPC + SSO, n = 6; *p < 0.05 versus control.
minutes, which were consistent with the features of non-
genomic actions. In addition, azPC stimulated both NBCe1
and NHE3 activities without altering these protein abundances
(Figs. S2–S4), which was consistent with previous studies
showing that rapid nongenomic actions of steroid hormones
do not increase in protein levels (47, 48). Furthermore, we
found that azPC activated luminal NHEs in rat and human PTs
but not in mouse PTs (Fig. S8), which was similar to TZD-
induced actions (22). Therefore, these findings suggest that
the PPARγ-dependent signaling pathway activated by azPC
may overlap with the nongenomic signaling pathway activated
-2-azelaoyl-sn-glycero-3-phosphocholine (azPC)-induced activation of
d rat proximal tubules (PTs). A, effects of 200 μM SSO on NBCe1 activity in
SSO on luminal NHE activity in PTs treated with 0.3 μM azPC. Control, n = 7;

J. Biol. Chem. (2022) 298(3) 101681 5



Figure 5. Effects of 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC) on in vivo renal sodium and fluid transport in rats fed a high-salt
diet (8% NaCl). Effects of azPC or GW9662 (2-chloro-5-nitro-N-phenylbenzamide) on fractional excretion of sodium (FENa; A), creatinine clearance (B), and
urine volume (C) in acute renal clearance study. Control, n = 6; azPC, n = 5; GW9662, n = 6; azPC + GW9662, n = 6; *p < 0.05 versus control. D, Na+/HCO3

−

cotransporter 1 (NBCe1) and Na+/H+ exchanger (NHE3) protein expression in rat kidney cortex tissues. Kidney samples were collected 90 min after vehicle
(control) or azPC administration. E, effects of azPC on NBCe1 protein expression in rat kidney cortex tissues. n = 5. F, effects of azPC on NHE3 protein
expression in rat kidney cortex tissues. n = 5.

Oxidized phospholipid-induced proximal tubule transport
by TZDs. Although a variety of nongenomic signaling acti-
vated by PPARγ ligands has been described (49), the MEK/
ERK pathway probably plays an important role in PT transport
because multiple ligands such as TZDs and Ang II have been
reported to activate both NBCe1 and NHE3 through the MEK/
ERK pathway (19, 22).

We measured NHE activity by calculating the rate of
decrease of intracellular pH (pHi) caused by bath Na+

removal and buffer capacity using lumen-opened PTs (31).
To confirm the activation of NHE by azPC, we demon-
strated that azPC-induced stimulation was completely
inhibited by 100 μM EIPA (Fig. 2B). Furthermore, EIPA
decreased the basal activity by approximately 30% (Fig. 2B),
which seemed less effective than other studies because
several previous studies have reported that EIPA reduces
HCO3

− reabsorption in PTs by 40 to 60% using a micro-
perfusion technique (32, 50, 51). Our results are presumed
to be affected by sodium-coupled transporters other than
luminal NHEs. Several studies have suggested the involve-
ment of transporters other than NHE3 and V-ATPase in
luminal sodium-coupled bicarbonate absorption in PTs
(32, 50–52). The presence of a novel NBC on the luminal
membranes of PTs has also been proposed in a recent study
(53). Sodium-coupled transporters expressed on the luminal
membranes of PTs can be reflected in our method while
the function of NBCe1 is not significantly affected by Na+
6 J. Biol. Chem. (2022) 298(3) 101681
concentration (54). Cariporide was used to confirm whether
azPC activated NHE1 expressed on the basolateral mem-
branes of PTs (Fig. 2C) (35). The results showed that car-
iporide did not affect NHE activation by azPC, indicating
that azPC activated luminal NHEs. Moreover, comparative
studies using a microperfusion technique showed that the
contribution of NHE2 to Na+–H+ translocation in PTs was
less than that of NHE3 (50, 55). Based on these results, we
determined that azPC can activate NHE3.

The stimulatory effects of azPC on PT sodium transport
were dose dependent at submicromolar concentrations. The
pharmacokinetics of azPC have not been fully understood, and
the physiological concentration of azPC in PT is unknown.
However, the concentrations of azPC used in the present study
should be reasonable. It has been demonstrated that azPC
dose-dependently induces PPAR response element reporter
gene expression at submicromolar concentrations in CV-
1 cells transfected with acyl-CoA-oxidase–PPAR response
element–luciferase reporter plasmid (30). Other studies have
also reported that 1 μM azPC exhibits sufficient PPARγ acti-
vation comparable to that of TZDs (56, 57). In addition, the
plasma of humans and rodents contains low micromolar levels
of total oxidatively fragmented PCs, and the plasma
concentrations of several types of fragmented PCs such as
1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine are
in low micromolar or submicromolar ranges. Thus, previous



Figure 6. Peroxisome proliferator–activated receptor gamma (PPARγ)-dependent stimulation of Na+/HCO3
− cotransporter 1 (NBCe1) and luminal

Na+/H+ exchanger (NHE) activities by 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC) in humans. A, effects of 5 μM GW9662 (2-chloro-
5-nitro-N-phenylbenzamide) on NBCe1 activity in human proximal tubules (PTs) treated with 0.3 μM azPC. n = 6; *p < 0.05 versus control. B, effects of 5 μM
GW9662 on luminal NHE activity in human PTs treated with 0.3 μM azPC. n = 6; *p < 0.05 versus control. C, extracellular signal–regulated kinase (ERK)
phosphorylation in human kidney cortex tissues. Kidney samples were treated with 0.3 μM azPC in the presence or the absence of 5 μM GW9662. D, effects
of 5 μM GW9662 on azPC-induced phosphorylation of ERK in human kidney cortex tissues. n = 6; *p < 0.05 versus azPC-untreated and GW9662-untreated
kidney cortex.

Oxidized phospholipid-induced proximal tubule transport
studies likely support the validity of the concentrations of
azPC in the present study (7, 11, 58).

CD36, which mediates the cellular uptake of various
oxidation products such as oxPLs and oxidized LDL, is
Figure 7. Schematic representation of the effect of 1-O-hexadecyl-2-
azelaoyl-sn-glycero-3-phosphocholine (azPC) on sodium transport in
proximal tubules (PTs). azPC activates basolateral Na+/HCO3

− cotrans-
porter 1 (NBCe1) and luminal Na+/H+ exchanger 3 (NHE3) through the
peroxisome proliferator–activated receptor gamma (PPARγ)/mitogen-acti-
vated protein/extracellular signal–regulated kinase kinase (MEK)/extracel-
lular signal–regulated kinase (ERK) signaling pathway, leading to the
stimulation of sodium transport in PTs.
widely expressed in the PTs of the kidney (59). Although a
previous study has reported that azPC enhances CD36
expression and that CD36 promotes the uptake of extra-
cellular azPC in human monocytes (30), the association
between azPC and CD36 in PT transport remains unclear.
The present study demonstrated that azPC-induced PT
transport stimulation was mediated by CD36 using SSO in
isolated rat PTs. Previous findings that the downstream
signaling triggered by renal CD36 includes the MEK/ERK
pathway suggest that the PPARγ/MEK/ERK signaling acti-
vated by azPC is one of the downstream signals triggered by
CD36 in the PT (60, 61).

In summary, we demonstrated that azPC rapidly acti-
vated basolateral NBCe1 and luminal NHEs via the PPARγ/
MEK/ERK pathway mediated by CD36 in isolated PTs from
rat and human kidneys. The stimulation of PT sodium and
water reabsorption by azPC is likely a novel mechanism
leading to the development of volume expansion. We
believe that these findings can provide an impetus for
elucidating the mechanism of atherosclerosis-induced
volume expansion and hypertension because azPC is
strongly associated with the development and progression
of atherosclerosis.
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Experimental procedures

Animal studies

Male Wistar rats and male C57BL/6 mice were purchased
from CLEA Japan, Inc. They were housed in cages with a
12/12 h light/dark cycle, and they were provided a normal diet
containing 0.5% NaCl (MF; Oriental Yeast Co, Ltd) and water
ad libitum. Rats and mice, at 4 to 6 weeks of age, were sacri-
ficed after anesthetization with excessive amounts of pento-
barbital sodium (Somnopentyl) (intraperitoneally, 50 mg/kg),
and the samples were obtained. All animal experiments were
performed in accordance with local institutional guidelines
(authorization number: P17-070).

Human samples

Human kidney samples were obtained from patients who
underwent unilateral nephrectomy for renal carcinoma. The
study was approved by the Institutional Review Board of the
University of Tokyo School of Medicine (2520-[11]), and
signed informed consent was obtained from all subjects. This
study was conducted according to the principles expressed in
the Declaration of Helsinki.

Measurements of NBCe1 activity in renal PTs from rats and
humans

NBCe1 activity was determined as previously described (18,
22, 62). Briefly, the PT (S2 segment) fragment was manually
microdissected from rat or human kidneys without collagenase
treatment, and it was transferred to a perfusion chamber
mounted on an inverted microscope. To avoid the influence of
luminal transporters, the PT fragment was collapsed with two
holding pipettes. The luminally collapsed PT was incubated
with an acetoxymethyl ester form of a pH-sensitive fluorescent
dye 20,70-bis(carboxyethyl)-5(6)-carboxyfluorescein acetox-
ymethyl ester (Dojindo Laboratories) in Dulbecco’s modified
Eagle’s medium (DMEM) for 10 min, and pHi was monitored
with a photometry system, MetaFluor 7.7 software (Molecular
Devices). The chamber was perfused with prewarmed (38 �C)
DMEM equilibrated with 5% CO2/95% O2 gas, and subse-
quently, bath HCO3

− concentrations were repeatedly switched
from 25 to 12.5 mM in the absence and presence of azPC
(Cayman Chemical Company) or other chemical agents such
as a specific PPARγ antagonist GW9662 (Sigma–Aldrich) at
5 μM and an MEK inhibitor PD98059 (FUJIFILM Wako Pure
Chemical) at 10 μM, both of which exhibit sufficient inhibitory
activities without affecting the basal NBCe1 activity in PTs
(19, 22). NBCe1 activity was calculated using the rate of pHi

decrease in response to bath HCO3
− reduction and buffer

capacity.

Measurements of luminal NHE activity in renal PTs from rats,
mice, and humans

Luminal NHE activity was determined as previously
described (22, 31, 33). Briefly, the PT (S2 segment) fragment
was freshly isolated in the same way as the measurements of
NBCe1 activity, and they were attached to a glass coverslip
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with Cell-tak glue (Corning). The tubule was placed on a
perfusion chamber mounted on an inverted microscope, and
the end of the tubule was cut with a capillary glass to suffi-
ciently expose the lumen of the tubule. The lumen-opened PT
was incubated with 20,70-bis(carboxyethyl)-5(6)-carboxy-
fluorescein acetoxymethyl ester in Hepes-buffered solution
(144 mM Na+, 5 mM K+, 1.5 mM Ca2+, 1 mM Mg2+, 137 mM
Cl−, 2 mM H2PO4

−, 1 mM SO4
2−, 5.5 mM glucose, 25 mM

Hepes, adjusted to pH 7.4) (31, 63) for 10 min, and pHi was
monitored with MetaFluor 7.7 software. A prewarmed (38 �C)
Hepes-buffered solution was used for the bath perfusate, and
200 nM bafilomycin A1 (FUJIFILM Wako Pure Chemical) was
added to block the effect of V-ATPase on PT transport
(31, 33). The perfusate was repeatedly switched from Hepes-
buffered solution to an isotonic Na+-free solution (144 mM
N-methyl-D-glucamine, 5 mM K+, 1.5 mM Ca2+, 1 mM Mg2+,
137 mM Cl−, 2 mM H2PO4

−, 1 mM SO4
2−, 5.5 mM glucose,

25 mM Hepes, adjusted to pH 7.4) in the absence and presence
of azPC or other chemical agents such as two NHE inhibitors
EIPA (Research Biochemicals Incorporated) at 100 μM and
cariporide (Santa Cruz Biotechnology) at 1 μM and GW9662
at 5 μM and PD98059 at 10 μM. EIPA was used at a con-
centration that significantly inhibited all isoforms of NHE
(32, 64). Cariporide was used at a concentration that signifi-
cantly inhibited NHE1 but not NHE3 in murine cells (64–66).
GW9662 (5 μM) and PD98059 (10 μM) exhibited sufficient
inhibitory activities without affecting the basal NHE activity in
PTs (19, 22). Luminal NHE activity was calculated using the
rate of pHi decrease caused by bath Na+ removal and buffer
capacity.
siRNA treatment in isolated rat PTs

siRNA treatment of isolated rat PTs was performed as
previously described (20, 31). Briefly, freshly isolated rat PTs
were treated with siRNA against PPARγ (AM16708; Invi-
trogen) at 40 nM or scrambled negative control (sc-37007;
Santa Cruz Biotechnology) using Lipofectamine 2000 and
Opti-MEM I Reduced Serum Medium (both from Invitrogen).
The PTs were incubated in DMEM supplemented with 10%
fetal bovine serum at 37 �C overnight, and they were used to
measure NBCe1 activity, luminal NHE activity, and quantita-
tive PCR.
RNA extraction and quantitative PCR analysis

Total RNA was extracted from isolated rat PTs with isogen
II (Nippon Gene), according to the manufacturer’s in-
structions, and first-strand complementary DNA was synthe-
sized using a cDNA Synthesis Kit (Takara), as previously
reported (20). The mRNA expression levels were estimated
using quantitative PCR (Prism 7000; Applied Biosystems) with
TaqMan Gene Expression Master Mix (Applied Biosystems)
and TaqMan Gene Expression Assay kits, Rn00440945_m1 for
rat PPARγ, Rn00580728_m1 for rat CD36, or Rn00667869_m1
for rat β-actin (Applied Biosystems). The mRNA levels were
normalized to β-actin expression levels.
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Western blot analysis

Thin slices of kidney cortex were obtained from rats or
humans, and they were divided into small bundles, as previ-
ously described (22, 67). The kidney samples were incubated in
DMEM at 37 �C under 5% CO2 for 40 min in the presence or
the absence of inhibitors such as 5 μM GW9662 and 10 μM
PD98059, and they were incubated for 15 min in DMEM
containing 0.3 μM azPC. After incubation, the samples were
homogenized in ice-cold buffer A (25 mM Tris–HCl [pH 7.4],
10 mM sodium orthovanadate, 10 mM sodium pyrophosphate,
100 mM sodium fluoride, 10 mM EDTA, 10 mM EGTA, and
1 mM phenylmethylsulfonyl fluoride) (22), and they were
centrifuged at 12,000g for 10 min. The supernatant from each
sample was collected and divided into aliquots containing
equal amounts (approximately 20 μg) of proteins. The samples
were separated using 10% SDS-PAGE, and they were trans-
ferred onto nitrocellulose membranes. After the membranes
were blocked with 5% skim milk in Tris-buffered saline
(137 mM NaCl, 2.68 mM KCl, 25 mM Tris, adjusted to pH
7.4), they were incubated with primary antibodies at 4 �C
overnight, and following this, they were incubated with
horseradish peroxidase (HRP)–conjugated secondary anti-
bodies at room temperature for 1 h. Primary antibodies against
ERK1/2 (9102), phospho-ERK1/2 (Thr202/Tyr204) (9101), and
β-actin (4970) were purchased from Cell Signaling Technol-
ogy, and the primary antibodies against NBCe1 (sc-515543)
and NHE3 (sc-136368) were purchased from Santa Cruz
Biotechnology. HRP-conjugated anti-rabbit IgG antibody
(111-035-003) and HRP-conjugated antimouse IgG antibody
(115-035-003) were purchased from Jackson ImmunoResearch
Laboratories. The protein bands were detected using a
chemiluminescence detection system (ImageQuant LAS 4000
mini; GE Healthcare).

Treatment with SSO in isolated rat PTs

Freshly isolated rat PTs were incubated in DMEM supple-
mented with 10% fetal bovine serum and 200 μM SSO
(Cayman Chemical Company) or an equal volume of dimethyl
sulfoxide at 37 �C under 5% CO2. After overnight incubation,
they were used to measure NBCe1 activity and luminal NHE
activity. SSO was used at a concentration that significantly
inhibited the transport function of CD36 in various cell types
(68, 69).

Rat in vivo experimental protocol

Male Wistar rats weighing 130 to 200 g were randomly
assigned into four groups: ethanol/ethanol (control, n = 6),
GW9662/ethanol (GW9662 only, n = 6), ethanol/azPC (azPC
only, n = 5), and GW9662/azPC (n = 6). After an acclimation
period, the diet was changed from a normal diet (0.5% NaCl) to
a high-salt diet (8% NaCl) (F2Dahl-8.0; Oriental Yeast Co, Ltd)
a week before the experiment. To facilitate the detection of
rapid changes among groups, a high-salt diet was selected
according to a previous report showing that high-salt diet
increased FENa and urine volume (70). Rats were intraperi-
toneally administered with GW9662 (1 mg/kg) or an equal
volume of ethanol (vehicle for GW9662) 24 and 12 h before
the experiment (71). On the day of the experiment, 30 min
after a load of tap water by gavage (10 ml/kg), rats were
intraperitoneally administered with azPC (10 mg/kg; diluted
with half saline) or an equal volume of ethanol diluted with
half saline (vehicle for azPC, 10 ml/kg). Urine was collected for
90 min after azPC or ethanol injection in a metabolic cage. At
the end of the experiment, rats were sacrificed after anesthe-
tization with pentobarbital sodium, and blood and kidney
samples were obtained. Blood and urine data were measured
by SRL Clinical Laboratory Service. FENa and creatinine
clearance were calculated using standard formulas. The
amount of NBCe1 and NHE3 in the kidney cortex was
determined using Western blot analysis.

Statistical analysis

All data are expressed as the mean ± standard error of the
mean. The data were analyzed with JMP Pro 14 software (SAS
Institute) using a Wilcoxon signed-rank test or Kruskal–Wallis
test followed by a Steel test or Steel–Dwass test, as appro-
priate. Statistical significance was set at a p value <0.05.

Data availability

The data supporting the findings of this study are included
within the article and its supporting information.
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information.
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