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Ulcerative colitis is one of the main gastrointestinal diseases that threaten

human health. This study investigated the effect of Limosilactobacillus

fermentum HFY06 (LF-HFY06) on dextran sulfate sodium (DSS)-induced

murine colitis. The protective effect of LF-HFY06 was evaluated by examining

the length and histopathological sections of colon, related biochemical

indicators, and genes related to inflammation. Direct and microscopic

observations showed that LF-HFY06 increased the length of the colon and

ameliorated the pathological damage induced by DSS. The biochemical

indicators showed that LF-HFY06 enhanced the activities of antioxidant

enzymes total superoxide dismutase (T-SOD) and catalase (CAT) in serum,

while reducing the level of malondialdehyde (MDA). It was also observed

that the serum inflammatory cytokines levels of tumor necrosis factor-α

(TNF-α), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and IL-12 were decreased,

and the anti-inflammatory cytokine IL-10 level was increased. The qPCR

experiment revealed that LF-HFY06 downregulated the mRNA expression

levels of nuclear factor-κB-p65 (Rela), Tnf, Il 1b, Il 6, and prostaglandin-

endoperoxide synthase 2 (Ptgs2) in colon tissues, and upregulated the mRNA

expression of NF-κB inhibitor-α (Nfkbia) and Il 10. These data indicated that LF-

HFY06 inhibited inflammation through the NF-κB signaling pathway to prevent

the occurrence and development of colitis. This research demonstrates that

probiotics LF-HFY06 have the potential to prevent and treat colitis.
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Introduction

Ulcerative colitis is a non-specific inflammatory disease
primarily involving the rectum, colonic mucosa, and submucosa
(Feuerstein et al., 2019). The specific cause of ulcerative colitis is
not completely clear at present, and the main factors affecting its
pathogenesis are genetic and environmental factors, immunity,
and gut microbes (Kaplan, 2015; Liu and Stappenbeck, 2016).
Although the incidence of inflammatory bowel disease (IBD)
in North America and Europe has stabilized in recent years,
its incidence has been rising in the newly industrialized
countries of Africa, Asia, and South America (Seyedian et al.,
2019; Mak et al., 2020). The first-line drugs currently used
in clinical are mainly 5-aminosalicylic acids, glucocorticoids,
biological agents, and immunosuppression. However, the above-
mentioned drugs have the problems of easy recurrence after
drug withdrawal or toxic and side effects caused by long-term
use (Damião et al., 2019; Cohen and Weisshof, 2020). Thus,
it is very important to study new therapeutical alternatives
for the prevention and treatment of IBD. In this context,
probiotic microorganisms have been explored as an alternative
therapeutic approach against intestinal inflammation (Jang
et al., 2019; Hrdı et al., 2020; Barroso et al., 2022).

Probiotics as living microorganisms provide a health benefit
to the host by regulating the intestinal microbiota (Juarez
et al., 2013), inhibiting the colonization of pathogenic bacteria,
regulating immunity, and secreting antibacterial substances
(Kostic et al., 2014; Sonnenburg and Bäckhed, 2016; Bron
et al., 2017; Shen et al., 2018). The most common probiotics
are Limosilactobacillus and Bifidobacterium (Lee et al., 2018;
Robertson et al., 2020; Yadav et al., 2022). A lot of research
shows that the probiotics that can be used for the prevention
and treatment of colitis include Lactiplantibacillus plantarum
(Liu et al., 2011), Lacticaseibacillus rhamnosus (Zocco et al.,
2006), Lactobacillus bulgaricus (Takamura et al., 2011), and
Bifidobacterium (Nishida et al., 2018). They prevent or relieve
colitis through antioxidant, immunomodulatory, and change
the composition of gut microbiota. Therefore, the rational
application of probiotics is an important strategy to prevent and
treat colitis.

Limosilactobacillus fermentum HFY06 (LF-HFY06) is a
potential probiotic strain isolated from yak yogurt, which
was collected from the Aba Tibetan and Qiang Autonomous
Prefecture of Sichuan province. In previous studies, LF-HFY06
has the effect of alleviating CCl4 (carbon tetrachloride)-
induced liver injury and d-galactose-induced oxidative stress
and inflammation in mice (Li et al., 2020, 2021a,b). The
mechanism of LF-HFY06 may be involved in the upregulation
of antioxidant genes (Nrf2, Gclc, Sod1, Sod2, and Cat) expression
and downregulation of inflammation-related genes (Rela, Tnf,
and Ptgs2) expression. In a previous study, we reported the
effect of the synbiotic composed of arabinoxylan and HFY06 on
colitis. However, no comparative study with clinically positive

drugs has been performed to further explain its effect. Based
on the increased incidence of colitis in the above-mentioned
regions, we selected the LF-HFY06 strain that has shown certain
physiological activity to further explore its role in colitis.

Materials and methods

Source of strain

LF-HFY06 was isolated from Hongyuan yak yogurt, a
unique product of Aba Tibetan and Qiang Autonomous
Prefecture in Sichuan, China. NCBI’s Basic Local Alignment
Search Tool (BLAST) was used to identify the experimental
strain LF-HFY06, which has been preserved in the China
General Microbiological Culture Collection Center (CGMCC,
Beijing, China; CGMCC No. 16636).

Bacteria growth conditions

The LF-HFY06 (100 µL) was grown in 5 mL of MRS
broth at 37◦C for 24 h. To prepare the bacteria doses, the
optical density of the bacterial suspension was measured at
595 nm, and its concentration was adjusted to 1× 109 CFU/mL
with normal saline.

Animals and experimental procedure

Animal experiments were approved by the Ethics
Committee of Chongqing Collaborative Innovation Center for
Functional Food (IACUC Number: 201906002B). All mice were
housed at a room temperature of 20–22◦C, 50± 10% humidity,
under a 12 h diurnal light/dark cycle. During the experiment,
the mice were allowed to eat standard rat chow and drink water
freely. After a week of adjustable feeding, the experiment was
performed as shown in Figure 1. Forty male Kunming mice
(Chongqing Medical University, 6 weeks old) were randomly
divided into four groups, namely, a normal group, model group,
LF-HFY06 group (LF-HFY06), and salicylazosulfapyridine
(SASP) group (Chen et al., 2017). The mice in the LF-HFY06
group received intragastric administration of 1.0× 109 CFU/mL
of LF-HFY06 (0.1 mL/10 g) every day for 28 days. From days
1 to 14, the mice in the LF-HFY06 group were treated as
described above, and the other mice were treated with saline
solution (0.1 mL/10 g) by intragastric administration. From
days15 to 21, the mice in the normal group received sterile
distilled water every day, and the other mice were given 5% DSS
(molecular mass, 36–50 kDa; MP Biomedicals, Santa Ana, CA,
United States) solution instead of sterile distilled water. At the
same time, the mice in the SASP group received intragastric
administration of 50 mg/mL (0.1 mL/10 g) SASP (Shandong

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.935792
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-935792 September 6, 2022 Time: 16:44 # 3

Liu et al. 10.3389/fmicb.2022.935792

FIGURE 1

Animal experiment design of this study.

Huimeng Biotech Co., Ltd., Shandong, China). From days 22
to 28, the mice in the normal group and model group received
sterile distilled water, and the mice in LF-HFY06 and SASP
groups received intragastric administration as described above.
On the day 29, the mice were anesthetized with ether for blood
sampling. Afterward, the mice were sacrificed and the colon
section was collected. The blood was centrifuged (4,000 rpm
for 10 min at 4◦C) to obtain the serum. The colon and serum
were kept in an ultra-low temperature refrigerator (−80◦C) for
further testing.

Assessment of disease activity index
score of colitis

The body weight loss, stool consistency, and rectal bleeding
were observed during the modeling period (15–21 days). Each
indicator is scored according to Table 1 and the disease
activity index (DAI) of mice was calculated (Yao et al., 2010).
DAI = (combined score of weight loss, stool consistency, and
bleeding)/3.

Histological analysis

The portion of the colon tissues was processed by
the following procedure: 10% formalin solution fixation,
dehydration, paraffin embedding, sectioning, hematoxylin, and
eosin staining. Finally, the colon sections were fixed in

TABLE 1 Evaluation of disease activity index (DAI) scores.

Score Weight loss Stool consistency Occult/gross bleeding

0 (-) Normal Normal

1 1–5%

2 6–10% Loose Occult bleeding

3 11–15%

4 >15% Diarrhea Gross bleeding

neutral gum, and the pathological changes were examined
by optical microscope (BX43 microscope, Olympus, Tokyo,
Japan). Pathological damage of colon tissue was scored based on
specific criteria shown in Table 2 (Takagi et al., 2011). The total
histological score was the sum of the epithelium and infiltration
scores (total score = E + I), and thus ranged from 0 to 8.

Total-superoxide dismutase, catalase,
and malondialdehyde levels in the
serum of mice

The level of antioxidants markers T-SOD, CAT, and MDA
in serum was performed using conventional biochemical kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China),
according to the recommended instructions.

Cytokines levels

The determination of the serum cytokine levels TNF-α,
IFN-γ, IL-1β, IL-6, IL-12, and IL-10 was processed under the
instructions of the ELISA kit (Beijing Chenglin Biotechnology
Co., Ltd., Beijing, China).

TABLE 2 Evaluation of histological scores.

Epithelium (E) Score Infiltration (I) Score

Normal morphology 0 No infiltration 0

Loss of goblet cells 1 Infiltration around crypt
bases

1

Loss of goblet cells in large areas 2 Infiltration reaching the
muscularis mucosa

2

Loss of crypt 3 Extensive infiltration
reaching the muscularis
mucosa and thickening
of the mucosa with
abundant edema

3

Loss of crypts in large areas 4 Infiltration of the
submucosa

4
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Colonic gene expression analysis

The distal colonic (100 mg) was grounded in 1 mL of
TRIzol reagent (Invitrogen, Carlsbad, CA, United States) to
afford tissue homogenate, and then it was added with 200
µL chloroform. After the mixed solution was centrifuged at
14,000 rpm/min at 4◦C for 15 min, the residue was discarded
and isopropyl alcohol (500 µL) was subsequently added to the
supernatant. The solution was fully mixed and placed at 4◦C
for 15 min, followed by centrifuging at 14,000 rpm/min and
4◦C for 20 min. After discarding the supernatant, the precipitate
was washed with 75% ethanol solution. After centrifugation
once more, the upper water phase was removed, and the RNA
precipitate was dissolved in 20 µL of enzyme-free water. The
concentration and purity of the total RNA were tested via
ultra-microspectrophotometry (Nano-100, All for Life Science,
Hangzhou, Zhejiang, China).

To prepare a cDNA template, 1 µg/µL of RNA solution and
a reverse transcription kit (Tiangen Biotech Co., Ltd., Beijing,
China) were employed according to the instructions. A solution
of cDNA (1 µg/µL, 1 µL) and SYBR Green PCR Master Mix
(10 µL) was added with upstream and downstream primers (1
µL, Table 3) to afford a qPCR reaction solution (Zhou et al.,
2019). Then, amplification was performed using the Applied
Biosystems StepOnePlus Real-Time PCR Instrument (Thermo
Fisher Scientific Co., Ltd., MA, United States). The cycling
parameters were: 95◦C for 90 s, 40 cycles of 95◦C for 30 s, 60◦C
for 30 s, 72◦C for 30 s, then, 95◦C for 30 s, and 55◦C for 35 s.
With β-actin as a housekeeping gene, the 2−1 1 Ct method was
selected to calculate the relative expression of the related gene
(Livak and Schmittgen, 2001).

Statistical analysis

The experimental data analysis was accomplished in SPSS
17.0 (SPSS Inc., Chicago, IL, United States) and GraphPad Prism
7 statistical software (Graph Pad Software Inc., La Jolla, CA,
United States). The mean ± standard deviation was the form to
express the results. Comparisons among groups were obtained
by one-way analysis of variance (ANOVA) followed by Tukey’s
test, in which P < 0.05 indicated a significant difference.

Results

Colon length

Figure 2A shows the general appearance of colon tissue
after the LF-HFY06 treatment. The colon length of mice in the
model group was 7.86± 0.64 cm, which was significantly shorter
compared with the normal group (9.82 ± 0.52 cm) (P < 0.05).

TABLE 3 Sequences of primers used in this study.

name Sequence bp Genbank
accession

no.

Rela Forward:
5′-ATGGCAGACGATGATCCCTAC-3′

167 XM_006501107

Reverse:
5′-CGGAATCGAAATCCCCTCTGTT-3′

Nfkbia Forward:
5′-TGAAGGACGAGGAGTACGAGC-3′

127 XM_003987542

Reverse:
5′-TGCAGGAACGAGTCTCCGT-3′

Tnf Forward:
5′-CTGAACTTCGGGGTGATCGG -3′

122 XM_021149735

Reverse: 5′-
GGCTTGTCACTCGAATTTTGAGA-3′

Il 1b Forward:
5′-GAAATGCCACCTTTTGACAGTG
-3′

116 NM_008361

Reverse:
5′-TGGATGCTCTCATCAGGACAG-3′

Il 6 Forward:
5′-CTGCAAGAGACTTCCATCCAG-3′

131 XM_021163844

Reverse: 5′-
AGTGGTATAGACAGGTCTGTTGG-3′

Il 10 Forward: 5′-
CTTACTGACTGGCATGAGGATCA-3′

101 XM_021175612

Reverse:
5′-GCAGCTCTAGGAGCATGTGG-3′

Ptgs2 Forward:
5′-GGTGCCTGGTCTGATGATG-3′

116 MW395257

Reverse:
5′-TGCTGGTTTGGAATAGTTGCT-3′

Actb Forward:
5′-AACTCCATCATGAAGTGTGA-3′

247 XM_049111166

Reverse:
5′-ACTCCTGCTTGCTGATCGAC-3′

Rela, nuclear factor-κB p65; Nfkbia, NF-κB inhibitor α; Tnf, tumor necrosis factor-α;
Il 1b, interleukin-1β; Il 6, interleukin-6; Il 10, interleukin-10; Ptgs2, prostaglandin-
endoperoxide synthase 2; Actb, beta-actin.

Treatment groups significantly increased the colon length (LF-
HFY06: 9.3 ± 0.64 cm; SASP: 9.28 ± 0.71 cm) when compared
to the model mice group (P < 0.05).

Assessment of disease activity index

During the experimental period, a gradual weight increase
was observed for the animals in the normal group, while
a significant weight loss was observed for the model group.
Treatment with LF-HFY06 and SASP was able to attenuate this
weight loss (Figure 2B). DAI scores of mice in each group
are shown in Figure 2C. There was no significant difference
between the treatment groups and model group on days 15–
16. On day 17, DAI increased significantly in the model group
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FIGURE 2

(A) The general appearance of colon tissue. (B) The degree of
weight loss, a-cMean values with different letters on the same
day indicate a significant difference after Tukey’s test (P < 0.05).
(C) Disease activity index of mice in different groups. a-dMean
values with different letters on the same day indicate a
significant difference (P < 0.05) after two-way ANOVA.

(Figure 2C, P < 0.05), and the increasing trend was faster than
that in the treatment groups. However, no significant difference
was observed in DAI between the treatment groups during the
establishment of the colitis model (days17–20; P > 0.05).

Histological analysis

As shown in Figure 3, the colonic mucosal epithelial
cells in the healthy mice were intact, and the glands were
arranged in an orderly manner. Also, it was obvious that
the crypts were normal with no ulcers. However, the mice
in the model group exhibited severe colonic mucosal erosion,
and the glands were disorderly arranged. Many crypts were
dramatically destroyed and goblet cells were drastically reduced,
accompanied by inflammatory cell infiltration (Figure 3A,
black arrow). After the administration of LF-HFY06 and SASP,
only a few ulcers appeared, and the crypts and the goblet
cells were relatively complete with neatly arranged glands
(Figure 3A, black arrow). The injury in the treatment group
was less severe than that of the model group. Compared to the
model group, the histological score of the treatment group was
significantly lower (P < 0.05). The SASP group had a strikingly
lower histological score than the LF-HFY06 group (P < 0.05;
Figure 3B).

Total-superoxide dismutase, catalase,
and malondialdehyde levels in the
serum of mice

The activities of T-SOD and CAT antioxidant enzymes in
the model mice receiving DSS were significantly decreased,
while the MDA production was significantly increased
compared to those in the healthy mice (P < 0.05; Table 4).
In contrast to the model group, LF-HFY06 and SASP
significantly increased the activities of SOD and CAT,
and significantly reduced the amount of MDA (P < 0.05;
Table 4).

Serum TNF-α, IL-1β, IL-6, IL-12, IFN-γ,
and IL-10 levels in mice

A healthy intestinal barrier is critical for intestinal
health, of which mucosal epithelial cells are an important
part. When intestinal inflammation occurs, intestinal mucosal
epithelial cells exert innate immune function, and thus, IL-
4, IL-6, IL-10, and other cytokines in the tissue participate
in the immune regulation response (Stevens et al., 1992).
The pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-12,
and IFN-γ levels in mice with DSS-induced colitis were
apparently higher than those of mice in the normal group,
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FIGURE 3

(A) Histopathological examination of colon tissue sections. (B) Histological disease score of colon tissue sections in mice of the different groups.

but anti-inflammatory cytokine IL-10 was lower (Table 5,
P < 0.05). In comparison with the DSS model group, the pro-
inflammatory cytokines TNF-α, IL-1β, IL-6, IL-12, and IFN-γ
in the treatment groups showed a decreasing trend, and the
anti-inflammatory factor IL-10 showed an increasing trend
(Table 5, P < 0.05). The results showed that the inhibition of
inflammation of LF-HFY06 was comparable to that obtained
with SASP.

Rela, Nfkbia, Tnf, Il 1b, Il 6, Il 10, and
Ptgs2 mRNA expression levels in
colonic tissue

The NF-κB signaling pathway is closely associated with
the occurrence of inflammation. The mRNA expression levels
of Rela, Tnf, Il 1b, Il 6, and Ptgs2 were all upregulated in
the model group, and the Nfkbia and Il 10 mRNA expression
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TABLE 4 Serum levels of T-SOD, CAT, and MDA in mice of each group.

Group Normal Model SASP LF-HFY06

T-SOD (U/mL) 218± 11a 127± 11b 184± 19c 198± 14c

CAT (U/mL) 57.6± 9.4a 17.9± 3.6b 43.2± 6.2c 35.2± 3.9c

MDA (nmol/mL) 3.8± 1.0a 13.1± 1.9b 6.9± 0.5c 6.8± 1.1c

Values are presented as the mean ± standard deviation (n = 8/group). Normal, mice
were treated with saline; Model, mice were treated with 5% DSS; SASP, mice were treated
with 50 mg/mL of salicylazosulfapyridine + 5% DSS; LF-HFY06, mice were treated with
1.0 × 109 CFU/mL of LF-HFY06 + 5% DSS; a−csignificant difference (P < 0.05) was
indicated by different letters in the same row after Tukey’s test.

TABLE 5 Serum levels of TNF-α.

Group Normal Model SASP LF-HFY06

TNF-α (ng/L) 993± 82a 1,415± 45b 1,168± 82c 1,229± 59c

IL-1β (ng/L) 76.9± 4.9 a 96.6± 6.4b 85.8± 5.8c 84.1± 4.7c

IL-6 (pg/L) 275± 16a 332± 15b 278± 19a 280± 15a

IL-12 (ng/L) 138± 7a 167± 8b 159± 6bc 150± 9c

IFN-γ (ng/L) 841± 76a 1485± 122b 1,206± 67c 1,103± 65c

IL-10 (pg/L) 1,437± 84a 1,014± 113b 1,257± 60c 1,366± 68ac

Values are presented as the mean ± standard deviation (n = 8/group). Normal, mice
were treated with saline; Model, mice were treated with 5% DSS; SASP, mice were treated
with 50 mg/mL of salicylazosulfapyridine + 5% DSS; LF-HFY06, mice were treated with
1.0 × 109 CFU/mL of LF-HFY06 + 5% DSS; a−csignificant difference (P < 0.05) was
indicated by different letters in the same row after Tukey’s test.

were downregulated in contrast to the normal group (Figure 4,
P < 0.05). After using LF-HFY06 and SASP to intervene, the
Rela, Tnf, Il 1b, Il 6, and Ptgs2 mRNA expression was suppressed,
and the mRNA expression of Nfkbia and Il 10 was enhanced
as compared to that in the DSS model group (P < 0.05).
The variation trend revealed that LF-HFY06 may regulate the
expression of inflammatory cytokines via inhibiting the NF-κB
signaling pathway.

Discussion

DSS is a commonly used reagent for colitis modeling
(Strober et al., 2002; Wirtz et al., 2007). DSS induces colonic
inflammation in mice, and the resulting colonic congestion,
edema, thickening of the colon wall, and the formation of
an ulcerated surface will shorten the length of the colon.
Therefore, the length of the colon can directly reflect the
degree of colitis, which is considered to be negatively correlated
with the severity of enteritis (Hu et al., 2021). In the current
study, it was found that the length of the colon was shortened
by DSS. The histopathological observation indicated that DSS
caused the destruction of colonic crypts, as well as injury and
apoptosis of colon cells (Hu et al., 2021). From the colon length
and pathological examination, the intervention of LF-HFY06
alleviated the shortening of the colon length induced by DSS and
assisted in maintaining the structural integrity of the colon. The
results are the same as those of studies that have reported that

lactic acid bacteria alleviated IBD (Vemuri et al., 2017; Amer
et al., 2018).

Excessive activation of oxidative stress is another important
mechanism of ulcerative colitis (Piechota-Polanczyk and
Fichna, 2014). The enhancement of oxidative stress causes
the increase of protein and DNA damage, cell degeneration,
necrosis, and then promotes the occurrence and exacerbation of
colitis (Zhu and Li, 2012). The TNF, NF-κB, and JNK signaling
pathways could be activated by reactive oxygen species (ROS)
to induce apoptosis and aggravate intestinal inflammation
(Blaser et al., 2016). The body’s antioxidant system consists
of enzymatic and non-enzymatic systems (Birben et al., 2012).
The enzymatic antioxidant system includes SOD, CAT, and
glutathione peroxide. SOD is an antioxidant enzyme that can
specifically clear superoxide anions by decomposing it into
harmless H2O and oxygen molecules (Birben et al., 2012). CAT
is an enzyme that catalyzes the decomposition of hydrogen
peroxide into oxygen and H2O (Birben et al., 2012). MDA
is a product of lipid peroxidation, by which nucleic acids
and proteins are further damaged. Under the oxidative stress
associated with colitis, LF-HFY06 could increase the activities of
T-SOD, CAT, and reduce the level of MDA to suppress oxidative
stress.

A complex regulatory network of cytokines is involved in
colitis (Izcue et al., 2009; Chen and Sundrud, 2016). As a
pro-inflammatory cytokine, TNF-α and IL-6 play important
roles in the pathogenesis of ulcerative colitis. They induce the
release of other cytokines, which aggravate the inflammatory
response (Drastich et al., 2011; Billiet et al., 2014; Xiao
et al., 2016). IL-1β can promote chemotactic neutrophils
and other inflammatory cells to enter the related lesions
of the intestine (Mulay et al., 2013). IL-12 is also one of
the strongest NK cell-activating factors, and it stimulates
NK cells to produce a variety of cytokines, such as IFN-
γ, IL-8, and TNF-α (Zelante et al., 2007). Many studies
have shown that the IFN-γ level was increased in intestinal
inflammation, which exerts immunomodulatory effects (Ferrier
et al., 2003). However, IL-10 inhibits inflammation in the
microenvironment of the intestinal tissue. It modulates
the occurrence and development of intestinal inflammation
and maintains the intestinal mucus barrier (Huber et al.,
2011; Shouval et al., 2014). DSS stimulates the production
of inflammatory factors TNF-α, IL-6, IFN-γ, IL-12, IL-1β,
and decreases the levels of anti-inflammatory factor IL-10.
LF-HFY06 evidently suppressed the levels of inflammatory
factors TNF-α, IL-6, IFN-γ, IL-12, and IL-1β. Meanwhile, it
significantly elevated the IL-10 level to inhibit inflammation in
DSS-induced colitis.

As a vital transcription factor during the process of
the body’s immune response, NF-κB binds to its inhibitory
protein IκB in an inactive manner under normal conditions.
It is reported that DSS activates NF-κB by accelerating
the phosphorylation of IκB protein (Onizawa et al., 2009;
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FIGURE 4

The Rela, Nfkbia, Tnf, Il 1b, Il 6, Il 10, and Ptgs2 mRNA expression levels in colon tissues of the different groups. The data are shown as
mean ± standard deviation (n = 8). a-dSignificant difference (P < 0.05) was indicated by different letters after Tukey’s test.

Liu et al., 2016). The activated NF-κB further facilitates
the release of pro-inflammatory factors, causing severe
inflammatory damage to the body (Onizawa et al., 2009;

Liu et al., 2016). At the same time, the induced inflammatory
cytokines, such as IL-6 and TNF-α, promote the expression of
the NF-κB gene to form a positive feedback loop. This triggers
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an excessive immune response in colon tissues and damages
colon mucosa, leading to the occurrence of colitis (Wang et al.,
2003; Hu et al., 2014).

The core role of the NF-κB signaling pathway is to
regulate the balance between inflammatory factors and anti-
inflammatory factors. Studies have reported that Lactobacillus
sp. relieved colitis symptoms via the NF-κB signaling pathway
(Chen et al., 2017; Zhou et al., 2019). COX-2 is an inducible
enzyme and could catalyze arachidonic acid to produce
endogenous prostaglandins, which is coded by Ptgs2 (Lee et al.,
2004). In the current study, the administration of LF-HFY06
suppressed the mRNA expression of Rela and elevated the
mRNA expression of Nfkbia to inhibit the activation of the
NF-κB signaling pathway. Then, the mRNA expression of
pro-inflammatory cytokines, Tnf, Il 1b, Il 6, and Ptgs2 was
suppressed, and that of anti-inflammatory cytokines Il 10 was
elevated in colon tissue. This indicates that LF-HFY06 may
relieve colitis via the inhibition of the NF-κB signaling pathway.

According to literature reports, SASP could be decomposed
into sulfadiazine and 5-aminosalicylic acid in the effect
of intestinal microorganisms. 5-Aminosalicylic acid has
antibacterial, anti-inflammatory, and immunosuppressive
effects (Zheng, 2006). In this study, LF-HFY06 exerts
antioxidant and anti-inflammatory activities by inhibiting
the NF-kB signaling pathway. Tables 4, 5 show that insignificant
differences were emerged between SASP and LF-HFY06 in
regulating the levels of related biochemical indicators. The
qPCR analysis showed that higher mRNA expression of the
anti-inflammatory IL-10 in the SASP group was observed
compared with that of the LF-HFY06 group. However, the
expression of the inflammatory gene Tnf and Il 6 in SASP
group was higher than those of LF-HFY06. There were no
significant differences in other genes. Overall, the ability to
regulate gene expression is approximately equal between SASP
and LF-HFY06.

In recent years, Lactobacillus sp. is used to prevent or
alleviate colitis in mice mainly through immunomodulatory
effects and regulation of the gut microbiome. Limosilactobacillus
fermentum CQPC04 could inhibit oxidative stress and
inflammation in mice with colitis, and its mechanism of it is
to regulate the NF-κB signaling pathway (Zhou et al., 2019).
Limosilactobacillus fermentum HY01 and Limosilactobacillus
fermentum IM12 also inhibited the inflammatory symptoms of
colitis through this pathway (Chen et al., 2017; Lim et al., 2017).
Moreover, it is reported that Limosilactobacillus fermentum
KBL375 could regulate the immune response and increase
the abundance of beneficial microorganisms to change the
composition of gut microbiota, thus achieving the purpose
of alleviating intestinal inflammatory diseases (Jang et al.,
2019). Similarly, Rodríguez-Nogales et al. (2017) reported that
Limosilactobacillus fermentum CECT5716 could counteract
an enrichment in Bacillus and Paenibacillus, together with a
reduction in Cytophaga, achieving an anti-inflammatory effect

in colitis mice. The regulation of antioxidant levels is also one
of the important mechanisms. Chauhan et al. reported that
the antioxidant levels were increased by Limosilactobacillus
fermentum Lf1 to ameliorate colitis (Chauhan et al., 2014).
The mechanism of LF-HFY06 in relieving colitis is similar to
previous studies. LF-HFY06 ameliorates ulcerative colitis
in mice by modulating the NF-κB signaling pathway
to downregulate inflammatory cytokines and upregulate
anti-inflammatory factors.

Also, short fatty acids (mainly butyric acid) produced by
probiotics promote the development of regulatory T cells,
which in turn continuously strengthen the mucosal barrier
(Schirmer et al., 2019). Second, probiotics can also secrete
antibacterial substances, which could inhibit the growth of
intestinal pathogens (Schirmer et al., 2019). Those are the
directions for further in-depth research on LF-HFY06.

Conclusion

In our research, 5% DSS was used to establish a colitis model
in mice. After intervention with LF-HFY06, the colon tissue
damage was significantly alleviated, the antioxidant capacity
was enhanced, and the inflammatory response was inhibited.
The result of qPCR detection showed that LF-HFY06 may
protect against colitis through the NF-κB signaling pathway.
The mechanism of LF-HFY06 was involved in the upregulation
of Nfkbia and Il 10 mRNA expression, and downregulation of
Rela, Tnf, Il 1b, Il 6, and Ptgs2 mRNA expression. However,
its experiments on humans have not been carried out yet. In
future, the mechanism of LF-HFY06 and relevant basic scientific
research will be further analyzed to provide more references for
carrying out clinical trials.
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