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Abstract
This study employed machine learning models to quantitatively analyze liver fat content from MRI images for the evaluation 
of liver fibrosis and disease severity in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). A total of 
26 confirmed MAFLD cases, along with MRI image sequences obtained from public repositories, were included to perform 
a comprehensive assessment. Radiomics features—such as contrast, correlation, homogeneity, energy, and entropy—were 
extracted and used to construct a random forest classification model with optimized hyperparameters. The model achieved 
outstanding performance, with an accuracy of 96.8%, sensitivity of 95.7%, specificity of 97.8%, and an F1-score of 96.8%, 
demonstrating its strong capability in accurately evaluating the degree of liver fibrosis and overall disease severity in MAFLD 
patients. The integration of machine learning with MRI-based analysis offers a promising approach to enhancing clinical 
decision-making and guiding treatment strategies, underscoring the potential of advanced technologies to improve diagnostic 
precision and disease management in MAFLD.
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Introduction

Metabolic dysfunction-associated fatty liver disease 
(MAFLD) is one of the most common chronic liver diseases 
worldwide [1–3]. In recent years, the incidence of MAFLD 
has risen significantly due to the increasing prevalence of 
obesity and metabolic syndrome [4–6]. The pathological 
spectrum of MAFLD ranges from simple steatosis (NAFL) 
to non-alcoholic steatohepatitis (NASH), which can ulti-
mately progress to liver fibrosis, cirrhosis, and even hepato-
cellular carcinoma (HCC) [7–9]. MAFLD not only impairs 
patients’ quality of life, but also increases the risk of liver-
related complications and all-cause mortality [10–12]. Liver 
biopsy is currently the gold standard for evaluating liver 
fibrosis. However, it is invasive and limited in routine clini-
cal practice due to sampling variability, procedure-related 

risks, and low patient compliance [13–15]. Consequently, 
there is an urgent need for noninvasive, accurate, and effi-
cient imaging methods to quantitatively assess liver fibrosis 
in MAFLD patients and improve clinical decision-making 
and disease management.

Magnetic resonance imaging (MRI), as a noninvasive 
imaging modality, has been widely utilized in recent years 
for the diagnosis and evaluation of liver diseases [16–18]. 
Multi-sequence MRI techniques—including T1, T2, in-
phase, and out-of-phase imaging—can provide detailed 
information on liver tissue structure and fat content [19, 
20]. However, conventional radiomics approaches often rely 
on manual feature extraction and basic statistical analyses, 
which are time-consuming, labor-intensive, and prone to 
observer bias, leading to limited reproducibility and reli-
ability [21–23]. Furthermore, traditional methods struggle 
with the analysis of high-dimensional, complex imaging 
data, resulting in suboptimal predictive performance and 
generalizability [24]. To address these challenges, advanced 
machine learning (ML) techniques—particularly deep learn-
ing—offer promising solutions for automated image analysis 
and feature extraction [25].
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ML approaches have demonstrated considerable success 
in various medical imaging tasks by learning discriminative 
features from large datasets to support disease prediction and 
classification [26–28]. Among them, the random forest (RF) 
algorithm is a widely used ensemble learning method known 
for its robustness in handling high-dimensional data and its 
effectiveness in feature selection [29–31]. By building mul-
tiple decision trees and aggregating their predictions, the RF 
model enhances classification stability and accuracy [32, 33]. 
In addition, RF models offer good interpretability, allowing 
identification of the most informative features contributing 
to classification outcomes [34, 35]. However, despite these 
advantages, research applying ML—particularly RF—to eval-
uate liver fibrosis in MAFLD remains limited and requires 
further validation [36, 37].

In this study, MRI data from MAFLD patients were col-
lected from publicly available databases, including the Cancer 
Imaging Archive and Liver Imaging Database. The dataset 
included four imaging sequences: T1, T2, in-phase, and out-of-
phase. Based on extracted radiomics features, we constructed 
training and validation datasets to build a classification model 
using the RF algorithm. To enhance performance, key hyper-
parameters—n_estimators and max_depth—were optimized 
through tenfold cross-validation. The model’s classification 
results were then compared with pathological examination 
findings to evaluate diagnostic performance, identify limita-
tions, and guide further model refinement.

The primary aim of this study is to quantitatively assess 
liver fat content using ML-based analysis of MRI images, 
in order to evaluate the degree of liver fibrosis and disease 
severity in MAFLD patients. Specifically, we sought to 
develop an efficient RF model capable of extracting informa-
tive features from multimodal MRI data for accurate disease 
classification. The results demonstrated that the proposed 
model achieved high accuracy, sensitivity, and specificity 
in assessing liver fibrosis, with performance closely aligned 
with that of pathological assessments. These findings sug-
gest that ML-based MRI analysis may serve as a valuable 
noninvasive tool to support clinical diagnosis and therapeu-
tic decision-making in MAFLD, potentially reducing the 
reliance on invasive procedures. Furthermore, this study 
provides preliminary evidence and technical support for 
future large-scale, multicenter research, contributing to the 
advancement of personalized and precise management of 
MAFLD.

Materials and methods

Collection of MRI imaging data

In this study, MRI data of patients diagnosed with MAFLD 
were retrieved from publicly accessible repositories, 

primarily the Cancer Imaging Archive (https://​www.​cance​
rimag​ingar​chive.​net/) and the Liver Imaging Database 
(https://​liver​atlas.​org/). All MRI scans were acquired using 
1.5 Tesla scanners, with an original matrix resolution of 
256 × 256 pixels per image.

Each patient included in the dataset had a complete set of 
four MRI sequences: T1-weighted, T2-weighted, in-phase, 
and opposed-phase images. These sequences were chosen 
due to their common clinical usage in assessing hepatic stea-
tosis, fibrosis, and tissue heterogeneity. Specifically, the in-
phase and opposed-phase sequences are highly sensitive to 
hepatic fat content, the T2-weighted sequence reflects varia-
tions in tissue water content, and the T1-weighted sequence 
enhances tissue contrast. Together, these sequences provide 
complementary information, improving the robustness of 
radiomics-based feature extraction.

In some cases, corresponding histopathological reports 
obtained through percutaneous liver biopsy were available. 
Based on database annotations, the degree of liver fibrosis 
was categorized using a binary classification system: low 
vs. moderate-to-high fibrosis. This labeling was primarily 
derived from FibroScan liver stiffness measurements and 
subsequently mapped to the World Health Organization 
(WHO) grading criteria, where Mild fibrosis = F0–F1 and 
Moderate-to-severe fibrosis = F2–F4.

To support comprehensive analysis, additional clinical 
information was collected, including patient medical his-
tory, laboratory test results, and pathology reports. A rigor-
ous data cleaning and annotation process was implemented 
to ensure dataset integrity and consistency. Samples were 
excluded if they exhibited any of the following: motion 
artifacts, excessive image noise or distortion, and missing 
essential clinical or imaging data. Liver region annotation 
in the MRI images was conducted by experienced radiolo-
gists, ensuring precise region-of-interest (ROI) delineation 
for subsequent feature extraction and model training (Fig. 1).

Note: The study downloaded imaging data of 26 differ-
ent liver fibrosis patients from public datasets, including 
T1, T2, In_Phase, and Op_Phase four imaging states (as 
shown in the four sequences in the figure above). The data 
underwent preprocessing, feature extraction, feature selec-
tion, and model construction to obtain a complete fibrosis 
assessment of the patients, mainly classified as low fibrosis 
and high fibrosis.

Data preprocessing

During the preprocessing stage, all MRI images under-
went a series of standardization procedures, including con-
trast enhancement and resizing to a uniform resolution of 
256 × 256 pixels. To expand the dataset and improve model 
generalizability, data augmentation techniques were applied, 
including image rotation, horizontal and vertical flipping, 

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://liveratlas.org/


Clinical and Experimental Medicine          (2025) 25:275 	 Page 3 of 15    275 

and random cropping. Following preprocessing and aug-
mentation, a total of 312 high-quality images were obtained 
for model development and evaluation (Fig. 2), effectively 
reducing the risk of overfitting.

For image denoising, a 2D Gaussian filter was applied 
using the cv2.GaussianBlur() function in Python, with a 

kernel size of (5, 5) and a standard deviation (σ) of 1.2. 
Histogram equalization was performed via cv2.equalize-
Hist() to improve contrast, gamma correction was applied 
with a gamma value of 1.5, and logarithmic transforma-
tion was implemented using a standard log mapping func-
tion to further enhance feature visibility. All images were 

Fig. 1   Schematic diagram of the research process
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subsequently normalized to a 0–1 scale and converted to 
grayscale with 255 Gy levels, thereby facilitating robust and 
consistent feature extraction. Collectively, these preprocess-
ing steps—combined with data augmentation—substantially 
improved dataset diversity and enhanced the robustness of 
model training.

Feature extraction and selection

Feature extraction and selection were critical steps in con-
structing an effective ML model. Texture analysis was per-
formed using gray-level co-occurrence matrices (GLCM) to 
extract five key radiomic features associated with hepatic fat 
distribution and fibrosis: contrast, correlation, homogeneity, 
energy, and entropy. These features are known to capture 

subtle structural heterogeneities in liver tissue that correlate 
with fat infiltration and fibrotic changes.

Given the potentially high dimensionality of the extracted 
features, feature selection was employed to reduce model 
complexity and enhance performance. The recursive feature 
elimination (RFE) method was used to iteratively train the 
model while removing the least informative features in each 
iteration. This process was repeated until the most represent-
ative features remained. As a result, the initial 20 extracted 
features were reduced to 10 selected features deemed most 
relevant for classification tasks.

Additionally, feature importance was assessed using the 
RF model, which calculates importance scores based on the 
mean decrease in Gini impurity (information gain) across 
all decision trees in the ensemble. These scores provided 
valuable insights into which features contributed most to 

Fig. 2   Schematic diagram of 
data augmentation techniques 
for preprocessing MRI imaging 
data
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the model’s classification performance and also improved 
interpretability.

Model selection and fine‑tuning in ML

Following feature selection, the RF algorithm was selected 
as the primary ML classifier for model development (Fig. 3). 
RF enhances classification and regression accuracy by con-
structing an ensemble of decision trees and aggregating their 
predictive outcomes. Its notable advantages include the abil-
ity to model complex, nonlinear relationships in high-dimen-
sional data, robustness against overfitting, efficient handling 
of missing values and imbalanced datasets, and relatively 
low sensitivity to hyperparameter tuning. Furthermore, 
the RF algorithm offers feature importance scoring, which 
enhances model interpretability and aids in understanding 
the decision-making process. After model selection, hyper-
parameter optimization was performed to improve predictive 
performance and generalizability. We employed grid search 
in conjunction with k-fold cross-validation to systematically 
explore hyperparameter combinations and evaluate model 

performance. Grid search exhaustively tests predefined 
parameter ranges, while cross-validation divides the data-
set into training and validation subsets in iterative cycles to 
ensure robustness. The two most influential hyperparame-
ters—n_estimators (number of trees in the forest) and max_
depth (maximum depth of each tree)—were fine-tuned and 
optimized to n_estimators = 43 and max_depth = 6, which 
yielded the best model performance in our experiments.

While additional hyperparameters such as min_sam-
ples_split, min_samples_leaf, and max_features were also 
explored through preliminary tuning, their contributions to 
model performance were marginal. To maintain model sim-
plicity and interpretability, we retained their default values 
and focused optimization efforts on the two most impactful 
parameters.

In parallel, we conducted preliminary comparisons with 
alternative classification models, including logistic regres-
sion (LR) and convolutional neural networks (CNNs). 
LR showed inferior performance in this small-sample, 
high-dimensional feature context, achieving an area under 
the curve (AUC) of approximately 0.85. CNNs, although 

Fig. 3   Schematic diagram of the MAFLD patient evaluation model based on RF
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powerful for image-based tasks, suffered from overfitting 
due to the limited dataset size and the complexity of end-to-
end training, resulting in unstable test accuracy. Given its 
balanced accuracy, resistance to overfitting, and interpret-
ability, the RF model was ultimately selected as the optimal 
classifier for liver fibrosis classification in this study.

Dataset splitting

To ensure the scientific rigor and fairness of model training 
and evaluation, the dataset was partitioned into training and 
testing subsets. Careful attention was paid to maintaining 
class balance and preventing data leakage during the split-
ting process. A stratified sampling strategy was employed to 
ensure an even distribution of samples representing different 
levels of fibrosis and disease severity across both subsets, 
thereby improving the model’s generalizability and stabil-
ity. The final train-test split ratio was set at 70:30, resulting 
in 218 samples in the training set and 94 samples in the 
testing set, after excluding outlier data. Furthermore, the 
proportions of low fibrosis and moderate-to-severe fibrosis 
cases were maintained at a 1:1 ratio in both subsets. This 
class balance is critical for mitigating classification bias and 
optimizing model performance. The training set was used to 
build and fine-tune the predictive model, while the testing 
set served as an independent evaluation cohort to assess final 
model performance on unseen data.

Model training

Model training was performed using the stratified training 
set. During this process, the cross-entropy loss function was 
selected to quantify the discrepancy between predicted prob-
abilities and actual class labels. The Adam optimizer was 
adopted to accelerate convergence by adaptively adjusting 
the learning rate based on gradient estimates. To ensure 
robustness, we employed tenfold cross-validation during 
training, using cross-entropy as the evaluation metric. Key 
hyperparameters, such as the learning rate and the number 
of estimators, were fine-tuned using grid search. Throughout 
training, model performance was continuously monitored 
on a validation subset, and an early stopping strategy was 
implemented to prevent overfitting. Training was halted 
when no further improvement was observed on the valida-
tion set.

The final model performance was evaluated on the inde-
pendent test set, which was completely isolated from the train-
ing and cross-validation processes. This approach provides an 
unbiased estimate of the model’s generalization ability on pre-
viously unseen data. The RF classifier was implemented using 
the RandomForestClassifier class from the scikit-learn pack-
age (version 1.2.2) in Python 3.9.13. Hyperparameter tuning 
was conducted using GridSearchCV. All data preprocessing 

and model construction were performed in the Python environ-
ment, utilizing the following libraries: NumPy 1.23, Pandas 
1.5, Matplotlib 3.7, and OpenCV 4.7.

Model validation and evaluation

Upon completion of model training, its classification perfor-
mance was evaluated on the independent test set. Evaluation 
metrics included accuracy, sensitivity (recall), specificity, as 
well as the receiver operating characteristic (ROC) curve and 
AUC. Accuracy reflects the overall correctness of the model’s 
predictions. Sensitivity measures the model’s ability to cor-
rectly identify positive cases. Specificity indicates its ability 
to correctly classify negative cases. ROC-AUC provides a 
comprehensive measure of performance across varying clas-
sification thresholds. These metrics collectively offer a robust 
assessment of the model’s predictive effectiveness and gener-
alizability. In addition, for misclassified cases, error analysis 
was performed to identify potential model limitations, which 
in turn informed targeted optimization strategies to enhance 
performance and robustness.

Statistical analysis

All data preprocessing, analysis, and model development were 
conducted using Python in a Jupyter Notebook environment, 
with visualizations produced via Microsoft Visio.

The following Python libraries and statistical methods were 
employed: (1) Pandas: used for efficient data management, 
cleaning, and organization of MRI image paths and associated 
feature datasets. (2) NumPy: applied for data normalization 
and image processing tasks, such as histogram equalization, 
which enhances contrast and standardizes feature scales to 
stabilize model training. (3) Matplotlib: utilized for graphi-
cal representation of data distributions, model performance 
metrics, and feature maps.

To assess classification performance, we employed the fol-
lowing metrics: Confusion matrix: used to compute accuracy, 
precision, recall, and F1-score. ROC curves and AUC: used 
to evaluate the classifier’s performance across various thresh-
olds, offering a holistic view of model discrimination capa-
bility. These statistical tools and evaluation methods ensured 
a comprehensive, scientifically rigorous validation of the RF 
model’s performance in classifying fibrosis severity among 
MAFLD patients.
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Results

Data augmentation enhances the diversity 
of the MRI dataset and improves model training 
robustness

We collected MRI imaging data of MAFLD patients from 
the TCIA and Liver Imaging Database, comprising a total 
of 26 cases. Each case included four image sequences: 
T1-weighted, T2-weighted, in-phase, and opposed-phase 
images. All images were standardized and resized to a con-
sistent resolution of 256 × 256 pixels.

To improve the diversity of the dataset and reduce the risk 
of model overfitting, we applied a series of data augmenta-
tion techniques, including image rotation, flipping, histo-
gram equalization, gamma correction, and logarithmic trans-
formation. After augmentation, the dataset size increased to 
104 cases. These preprocessing steps effectively enhanced 
model robustness by introducing variations that simulate 
real-world imaging heterogeneity. Representative examples 
of images following histogram equalization, gamma correc-
tion, and logarithmic transformation are shown in Fig. 4.

Note: It is evident from Fig. 4 that each data enhancement 
results in different changes, significantly increasing our sam-
ple size and ensuring the model’s performance.

Feature selection and dimensionality reduction 
optimization for improving the accuracy 
of MRI‑based image analysis

We employed texture analysis techniques, including GLCM 
and texture entropy, to extract five key radiomics features—
contrast, correlation, homogeneity, energy, and entropy—
from each of the four MRI sequences. In total, 20 radiom-
ics features were extracted per image. From the 26 patient 
cases, we obtained 518 image samples. After data cleaning, 
which excluded 216 low-quality or incomplete samples, 

312 high-quality samples remained and were included in 
the analysis.

To optimize the model’s performance and reduce dimen-
sionality, we applied RFE for feature selection. This algo-
rithm ranked features based on model-derived importance 
metrics (e.g., weight coefficients or Gini importance) and 
recursively eliminated the least relevant ones. The process 
continued until the top 10 most informative features were 
retained, which substantially reduced model complexity 
while preserving critical information. This dimensional-
ity reduction approach provided several benefits: Enhanced 
model performance: Retaining high-value features improved 
generalizability and predictive accuracy. Improved interpret-
ability: Reducing feature count simplified the model struc-
ture, making it more transparent and easier to interpret. 
Figure 5 illustrates the distribution of sample values for the 
ten selected features. The plots demonstrate clear intergroup 
differences and substantial feature variability, supporting 
their utility in subsequent classification modeling. Figure 6 
displays a correlation heatmap of the selected features. As 
shown, the inter-feature correlations were generally low, 
with several negative correlations observed. This low col-
linearity further supports the appropriateness of the selected 
features for model construction.

Optimization of the RF model and hyperparameter 
tuning improve predictive accuracy

The RF algorithm was selected to construct the classifica-
tion model. To optimize performance, a combination of grid 
search and tenfold cross-validation was used to fine-tune 
key hyperparameters. Incremental parameter adjustment 
identified the optimal configuration: the number of trees 
(n_estimators) was set to 43, and the maximum tree depth 
(max_depth) to 6, significantly enhancing both the model’s 
generalization capacity and predictive accuracy. The hyper-
parameter tuning process is illustrated in Fig. 7.

Fig. 4   Enhancement display of imaging data
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Model training was conducted using the training set, 
with cross-entropy as the loss function and the Adam 
optimizer to accelerate convergence. The training loss 
decreased steadily, indicating effective learning. An early 
stopping strategy was implemented by monitoring perfor-
mance on the validation set in real time, which helped 
prevent overfitting and maintained stable accuracy across 
epochs.

Note: From the above figure, the optimal range for n_esti-
mators is between 20 and 60. Combining with max_depth, 
the best parameter combination is determined as n_estima-
tors = 43 and max_depth = 6.

High‑accuracy RF model demonstrates excellent 
performance in classifying fibrosis severity 
in MAFLD

The trained RF model was evaluated on an independent test 
set to assess its ability to classify liver fibrosis severity in 
MAFLD patients (i.e., mild vs. moderate-to-severe fibro-
sis). The model achieved an accuracy of 96.8%, sensitivity 
of 95.7%, specificity of 97.8%, and an F1-score of 96.8%, 
reflecting its excellent discriminatory power. The confusion 
matrix visualizing classification performance is presented 
in Fig. 8.

Fig. 5   Distribution plot of feature values
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Note: As shown in Fig. 8, the model made only a few 
misclassifications between low- and high-fibrosis cases 
(three instances in total): two high-fibrosis cases were 
predicted as low fibrosis, and one low-fibrosis case was 
predicted as high fibrosis. Further analysis revealed that 
these misclassified samples had feature value distribu-
tions close to the decision boundary between the two 

classes, particularly for the texture entropy and homoge-
neity variables, where their values deviated significantly 
from the respective group medians. Additionally, some 
of these images exhibited relatively low signal-to-noise 
ratios or tissue blurring, which may have compromised 
feature extraction accuracy. This suggests that incorporat-
ing an image quality assessment mechanism or integrating 

Fig. 6   Heatmap of feature cor-
relation

Fig. 7   Selection of the model hyperparameter n_estimators
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multi-timepoint dynamic MRI data may help improve 
future model performance.

Fibrosis-stage labels were based on FibroScan-derived 
liver stiffness measurements consistent with the F-staging 
system (F0-F4), as annotated in the source databases. The 
model’s predicted outputs demonstrated strong concordance 
with FibroScan-based labels, achieving an AUC of 0.97 
(Fig. 9). These findings indicate high potential for the RF 
model as a noninvasive diagnostic tool for assessing liver 

fibrosis in MAFLD patients. Importantly, all performance 
metrics were computed using the independent test set, which 
was entirely excluded from training and cross-validation. 
This approach ensured the objectivity and external validity 
of the reported evaluation results.

Fibrosis assessment in MAFLD patients

In this study, the importance of radiomic features was 
ranked and visualized based on their Gini importance scores 
derived from the RF model. The results showed that the 
energy feature extracted from the T2-weighted sequence, 
the homogeneity feature from T2, and the texture entropy 
feature from T1 had the highest weights in the model’s 
decision-making process, underscoring their critical roles 
in distinguishing between different stages of fibrosis sever-
ity. Gini importance reflects the average information gain a 
feature contributes during node splitting across all decision 
trees in the ensemble. We further analyzed the ten key imag-
ing features retained through the RFE method, which were 
subsequently used for model training (Fig. 10). Detailed 
descriptions of these features are provided in Supplementary 
Table 1. Among them, the T2_energy feature had the high-
est importance score, highlighting its pivotal role in fibrosis 
classification—likely due to the heightened sensitivity of 
T2-weighted imaging to changes in hepatic water content. 
Additionally, the T2_homogeneity and T1_entropy features 
also demonstrated strong discriminative power, suggesting 

Fig. 8   Confusion matrix of model prediction results

Fig. 9   ROC curve of the model
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that both tissue uniformity and microstructural complexity 
are relevant biomarkers in the progression of liver fibrosis. 
Features extracted from the opposed-phase modality, such 
as homogeneity and energy, also contributed substantially to 
the model’s performance. These may reflect signal perturba-
tions in fat–water interface regions, which are commonly 
altered in steatotic and fibrotic tissues.

Overall, these high-importance features captured multidi-
mensional, multimodal textural alterations associated with 
MAFLD-related fibrosis, providing a biological rationale for 
the model’s predictive mechanism.

To validate the predictive accuracy and stability of the 
model based on these features, a regression analysis was 
performed. The results indicated that the model’s predic-
tion errors remained within acceptable limits. Furthermore, 
comparative analysis between the model outputs and clini-
cal assessments of fibrosis severity revealed a high degree 
of correlation (Fig. 11), supporting the model’s reliability 
in real-world diagnostic settings. These findings affirm 
the robust performance of the RF-based evaluation model 
for MAFLD, particularly in assessing fibrosis and disease 
severity.

Early identification of fibrosis is critical for improving 
outcomes. Our results suggest that the model can signifi-
cantly enhance early diagnosis rates of MAFLD, enabling 
timely clinical intervention. Moreover, by facilitating pre-
cise disease stratification and supporting evidence-based 

decision-making, this model offers substantial utility in 
optimizing treatment strategies and improving long-term 
prognosis in MAFLD patients.

Note: (A) Correlation analysis between energy feature 
information extracted from the T2 imaging mode and 
homogeneity feature information extracted from the T2 
imaging mode with the model’s predicted results and the 
actual severity of MAFLD fibrosis; (B) Correlation analy-
sis between energy feature information extracted from the 
T2 imaging mode and texture entropy feature information 
extracted from the T1 imaging mode with the model’s pre-
dicted results and the actual severity of MAFLD fibrosis; (C) 
Correlation analysis between homogeneity feature informa-
tion extracted from the T2 imaging mode and texture entropy 
feature information extracted from the T2 imaging mode 
with the model’s predicted results and the actual severity of 
MAFLD fibrosis.

Discussion

The RF model constructed in this study demonstrated high 
performance in evaluating liver fibrosis and disease sever-
ity in MAFLD patients, achieving an accuracy of 96.8%, 
sensitivity of 95.7%, specificity of 97.8%, and an F1-score 
of 96.8%. Compared with previous studies that employed 
traditional radiomics techniques, our approach significantly 

Fig. 10   Visualization of feature importance



	 Clinical and Experimental Medicine          (2025) 25:275   275   Page 12 of 15

improved both the efficiency and accuracy of MRI image 
analysis by integrating advanced ML algorithms. Earlier 
methods often relied on manual feature extraction and basic 
statistical analyses, which were limited by subjective fea-
ture selection and analytical bias [38–40]. By employing 
automated feature extraction and systematic selection strat-
egies, this study addressed those limitations and provided 
a more objective and reproducible framework for MAFLD 
diagnosis.

Specifically, we utilized GLCM techniques to extract 
five key texture features—contrast, correlation, homogene-
ity, energy, and entropy—from multimodal MRI sequences. 
These features provided a more comprehensive representa-
tion of liver tissue texture characteristics than traditional 
methods, enhancing the diagnostic resolution of imaging 
data. Additionally, RFE was applied for dimensionality 
reduction, significantly improving model efficiency while 
preserving the most predictive variables. Unlike prior stud-
ies where such systematic selection methods were often 
underutilized, our study incorporated RFE to streamline 
model complexity and strengthen interpretability [41–43].

The RF model, a robust ensemble learning method, was 
chosen as the primary classifier due to its proven efficacy in 
handling high-dimensional, heterogeneous imaging datasets 
[44, 45]. Compared to other ML techniques such as support 
vector machines (SVMs) or deep neural networks (DNNs), 
RF models offered superior interpretability, reduced sus-
ceptibility to overfitting, and effective handling of imbal-
anced data distributions [46–48]. Furthermore, RF models 
are computationally efficient, require less parameter tuning, 
and do not necessitate large-scale annotated datasets or high-
performance computing resources—making them practically 
advantageous in clinical settings. While the RF model exhib-
ited excellent performance in this study, we acknowledged 
its limitations and planned to incorporate a broader range of 

algorithms—including XGBoost, CNNs, and transformers—
in future investigations. This comparative strategy aims to 
systematically evaluate model generalizability and optimize 
algorithm selection for various clinical contexts. In contrast 
to prior research that typically focused on a single algorithm, 
our study undertook comparative assessments and ultimately 
identified the RF model as the optimal approach for MAFLD 
fibrosis classification. This not only provided a reliable non-
invasive diagnostic tool, but also laid the groundwork for 
future AI-assisted clinical decision support systems in liver 
disease management.

This study conducted a comprehensive investigation into 
data preprocessing and model optimization, both of which 
are critical yet often underemphasized components in ML 
research. Initially, all MRI images were standardized in 
terms of resolution, contrast, and size to ensure consistency 
and comparability across datasets. Following this, a tenfold 
cross-validation approach was employed to fine-tune two 
key hyperparameters of the RF model—n_estimators and 
max_depth—to determine the optimal parameter configura-
tion. In contrast to prior studies that frequently overlooked 
rigorous preprocessing and hyperparameter tuning, thereby 
compromising model robustness and predictive performance 
[49, 50], our methodical approach significantly enhanced the 
accuracy, reliability, and generalization ability of the model.

Furthermore, this study systematically compared the 
model’s classification outcomes with histopathological find-
ings, revealing a high degree of consistency between the 
two. This concordance underscores the clinical relevance 
and diagnostic utility of ML-based image analysis, support-
ing its role as a noninvasive adjunctive tool for evaluating 
fibrosis and disease severity in MAFLD patients. While 
prior studies have attempted to apply ML to liver imaging, 
they often lacked rigorous external validation or direct com-
parison with pathological standards, limiting their real-world 

Fig. 11   Regression validation based on three key features



Clinical and Experimental Medicine          (2025) 25:275 	 Page 13 of 15    275 

applicability [26, 43, 51]. Despite these promising results, 
one key limitation of the current work is the absence of 
external validation. The model was trained and validated 
exclusively on internal data, which may limit its generaliz-
ability to broader clinical populations. To address this, future 
research will incorporate external datasets derived from 
independent clinical centers or real-world patient cohorts. 
This strategy will enable more robust testing of the mod-
el’s transferability, scalability, and clinical value in diverse 
healthcare settings.

This study demonstrated the potential of combining mul-
timodal MRI imaging with ML algorithms for the accurate 
and noninvasive assessment of liver fibrosis in MAFLD 
patients. The approach not only improves diagnostic effi-
ciency, but also provides a reproducible and interpretable 
framework for clinical decision support. The high accu-
racy and reliability achieved in this study pave the way for 
broader clinical adoption and lay the foundation for extend-
ing this model to other liver pathologies, such as viral hepati-
tis, alcoholic liver disease, and autoimmune liver conditions. 
Thus, the proposed framework holds significant translational 
potential across a wide spectrum of hepatic diseases.

This study successfully performed a quantitative analy-
sis of MRI data from MAFLD patients by developing a RF 
ML model, effectively evaluating the relationship between 
hepatic fat content and the degree of liver fibrosis and dis-
ease severity. The model demonstrated outstanding classifi-
cation performance—achieving high accuracy, sensitivity, 
and specificity—which highlights its strong potential as a 
noninvasive diagnostic tool in clinical practice. Scientifi-
cally, the study contributes novel insights into the applica-
tion of ML in medical image analysis, advancing the inte-
gration of radiomics and artificial intelligence in hepatic 
disease evaluation. Clinically, the model offers an effective, 
noninvasive alternative to traditional pathological assess-
ment, thereby supporting more accurate diagnosis and treat-
ment decision-making while reducing patient burden and 
procedural risks.

In addition, preliminary error analysis revealed that 
misclassifications were primarily attributable to ambigu-
ous texture patterns in borderline cases and variations 
in image quality. To address these issues, future studies 
should pursue two key directions: (1) refining image qual-
ity control and preprocessing pipelines, and (2) incorpo-
rating uncertainty estimation mechanisms or ensemble 
modeling strategies to better quantify classification confi-
dence, particularly for borderline cases. Moreover, due to 
the absence of complete histopathological scoring (e.g., 
METAVIR or NAS criteria) in the dataset, this study relied 
on FibroScan-based liver stiffness measurements as surro-
gate labels. While clinically meaningful, this substitution 
may introduce bias. Future work should integrate standard-
ized histopathological scoring systems to more rigorously 

validate the correspondence between model predictions 
and gold-standard histological findings.

Despite the promising results, several limitations merit 
discussion. First, as a retrospective study using publicly 
available datasets, there were inherent constraints in 
patient selection, image acquisition protocols, and clinical 
follow-up. Potential confounding variables and therapeutic 
interventions could not be fully accounted for, which may 
influence the generalizability of the findings. Second, the 
dataset originated from a relatively limited and homogene-
ous patient population in terms of ethnicity, imaging plat-
forms, and scanning parameters. This restricts the model’s 
applicability to more diverse real-world clinical settings. 
Thus, large-scale, prospective, multicenter studies incor-
porating multi-ethnic and heterogeneous patient cohorts 
are essential to confirm the model’s robustness and broad 
clinical utility.

Although the model demonstrated excellent performance 
on an independent test set and exhibits strong potential for 
clinical deployment, several practical challenges remain. 
Variability in MRI acquisition across institutions—such as 
differences in scanner type, resolution, contrast enhancement 
protocols, and imaging parameters—may adversely affect 
feature extraction and model consistency. Additionally, real-
world implementation requires significant computational 
resources, technical infrastructure, and specialized person-
nel for data preprocessing and deployment, which may pose 
barriers in resource-limited or community-based healthcare 
settings. Addressing these challenges will require the devel-
opment of standardized imaging protocols and lightweight, 
scalable model deployment solutions to facilitate widespread 
adoption.

Looking ahead, future research should prioritize expand-
ing the dataset and increasing its diversity by incorporat-
ing multicenter, multi-regional cohorts across different 
demographic backgrounds. Moreover, exploring advanced 
algorithms such as XGBoost, transformers, or hybrid deep 
learning architectures may further enhance predictive perfor-
mance and robustness. Parallel efforts should aim to simplify 
data preprocessing workflows and reduce computational 
demands, making the system more accessible to primary 
care settings. These advancements may contribute to the 
development of personalized and precision-based diagnostic 
pathways for MAFLD, ultimately improving clinical out-
comes and quality of life for affected patients.
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