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Abstract

This study employed machine learning models to quantitatively analyze liver fat content from MRI images for the evaluation
of liver fibrosis and disease severity in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). A total of
26 confirmed MAFLD cases, along with MRI image sequences obtained from public repositories, were included to perform
a comprehensive assessment. Radiomics features—such as contrast, correlation, homogeneity, energy, and entropy—were
extracted and used to construct a random forest classification model with optimized hyperparameters. The model achieved
outstanding performance, with an accuracy of 96.8%, sensitivity of 95.7%, specificity of 97.8%, and an F1-score of 96.8%,
demonstrating its strong capability in accurately evaluating the degree of liver fibrosis and overall disease severity in MAFLD
patients. The integration of machine learning with MRI-based analysis offers a promising approach to enhancing clinical
decision-making and guiding treatment strategies, underscoring the potential of advanced technologies to improve diagnostic
precision and disease management in MAFLD.
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Introduction

Metabolic dysfunction-associated fatty liver disease
(MAFLD) is one of the most common chronic liver diseases
worldwide [1-3]. In recent years, the incidence of MAFLD
has risen significantly due to the increasing prevalence of
obesity and metabolic syndrome [4-6]. The pathological
spectrum of MAFLD ranges from simple steatosis (NAFL)
to non-alcoholic steatohepatitis (NASH), which can ulti-
mately progress to liver fibrosis, cirrhosis, and even hepato-
cellular carcinoma (HCC) [7-9]. MAFLD not only impairs
patients’ quality of life, but also increases the risk of liver-
related complications and all-cause mortality [10-12]. Liver
biopsy is currently the gold standard for evaluating liver
fibrosis. However, it is invasive and limited in routine clini-
cal practice due to sampling variability, procedure-related
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risks, and low patient compliance [13—15]. Consequently,
there is an urgent need for noninvasive, accurate, and effi-
cient imaging methods to quantitatively assess liver fibrosis
in MAFLD patients and improve clinical decision-making
and disease management.

Magnetic resonance imaging (MRI), as a noninvasive
imaging modality, has been widely utilized in recent years
for the diagnosis and evaluation of liver diseases [16—18].
Multi-sequence MRI techniques—including T1, T2, in-
phase, and out-of-phase imaging—can provide detailed
information on liver tissue structure and fat content [19,
20]. However, conventional radiomics approaches often rely
on manual feature extraction and basic statistical analyses,
which are time-consuming, labor-intensive, and prone to
observer bias, leading to limited reproducibility and reli-
ability [21-23]. Furthermore, traditional methods struggle
with the analysis of high-dimensional, complex imaging
data, resulting in suboptimal predictive performance and
generalizability [24]. To address these challenges, advanced
machine learning (ML) techniques—particularly deep learn-
ing—offer promising solutions for automated image analysis
and feature extraction [25].
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ML approaches have demonstrated considerable success
in various medical imaging tasks by learning discriminative
features from large datasets to support disease prediction and
classification [26-28]. Among them, the random forest (RF)
algorithm is a widely used ensemble learning method known
for its robustness in handling high-dimensional data and its
effectiveness in feature selection [29-31]. By building mul-
tiple decision trees and aggregating their predictions, the RF
model enhances classification stability and accuracy [32, 33].
In addition, RF models offer good interpretability, allowing
identification of the most informative features contributing
to classification outcomes [34, 35]. However, despite these
advantages, research applying ML—particularly RF—to eval-
uate liver fibrosis in MAFLD remains limited and requires
further validation [36, 37].

In this study, MRI data from MAFLD patients were col-
lected from publicly available databases, including the Cancer
Imaging Archive and Liver Imaging Database. The dataset
included four imaging sequences: T1, T2, in-phase, and out-of-
phase. Based on extracted radiomics features, we constructed
training and validation datasets to build a classification model
using the RF algorithm. To enhance performance, key hyper-
parameters—n_estimators and max_depth—were optimized
through tenfold cross-validation. The model’s classification
results were then compared with pathological examination
findings to evaluate diagnostic performance, identify limita-
tions, and guide further model refinement.

The primary aim of this study is to quantitatively assess
liver fat content using ML-based analysis of MRI images,
in order to evaluate the degree of liver fibrosis and disease
severity in MAFLD patients. Specifically, we sought to
develop an efficient RF model capable of extracting informa-
tive features from multimodal MRI data for accurate disease
classification. The results demonstrated that the proposed
model achieved high accuracy, sensitivity, and specificity
in assessing liver fibrosis, with performance closely aligned
with that of pathological assessments. These findings sug-
gest that ML-based MRI analysis may serve as a valuable
noninvasive tool to support clinical diagnosis and therapeu-
tic decision-making in MAFLD, potentially reducing the
reliance on invasive procedures. Furthermore, this study
provides preliminary evidence and technical support for
future large-scale, multicenter research, contributing to the
advancement of personalized and precise management of
MAFLD.

Materials and methods
Collection of MRl imaging data

In this study, MRI data of patients diagnosed with MAFLD
were retrieved from publicly accessible repositories,
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primarily the Cancer Imaging Archive (https://www.cance
rimagingarchive.net/) and the Liver Imaging Database
(https://liveratlas.org/). All MRI scans were acquired using
1.5 Tesla scanners, with an original matrix resolution of
256 X 256 pixels per image.

Each patient included in the dataset had a complete set of
four MRI sequences: T1-weighted, T2-weighted, in-phase,
and opposed-phase images. These sequences were chosen
due to their common clinical usage in assessing hepatic stea-
tosis, fibrosis, and tissue heterogeneity. Specifically, the in-
phase and opposed-phase sequences are highly sensitive to
hepatic fat content, the T2-weighted sequence reflects varia-
tions in tissue water content, and the T1-weighted sequence
enhances tissue contrast. Together, these sequences provide
complementary information, improving the robustness of
radiomics-based feature extraction.

In some cases, corresponding histopathological reports
obtained through percutaneous liver biopsy were available.
Based on database annotations, the degree of liver fibrosis
was categorized using a binary classification system: low
vs. moderate-to-high fibrosis. This labeling was primarily
derived from FibroScan liver stiffness measurements and
subsequently mapped to the World Health Organization
(WHO) grading criteria, where Mild fibrosis = FO-F1 and
Moderate-to-severe fibrosis = F2—-F4.

To support comprehensive analysis, additional clinical
information was collected, including patient medical his-
tory, laboratory test results, and pathology reports. A rigor-
ous data cleaning and annotation process was implemented
to ensure dataset integrity and consistency. Samples were
excluded if they exhibited any of the following: motion
artifacts, excessive image noise or distortion, and missing
essential clinical or imaging data. Liver region annotation
in the MRI images was conducted by experienced radiolo-
gists, ensuring precise region-of-interest (ROI) delineation
for subsequent feature extraction and model training (Fig. 1).

Note: The study downloaded imaging data of 26 differ-
ent liver fibrosis patients from public datasets, including
T1, T2, In_Phase, and Op_Phase four imaging states (as
shown in the four sequences in the figure above). The data
underwent preprocessing, feature extraction, feature selec-
tion, and model construction to obtain a complete fibrosis
assessment of the patients, mainly classified as low fibrosis
and high fibrosis.

Data preprocessing

During the preprocessing stage, all MRI images under-
went a series of standardization procedures, including con-
trast enhancement and resizing to a uniform resolution of
256 %X 256 pixels. To expand the dataset and improve model
generalizability, data augmentation techniques were applied,
including image rotation, horizontal and vertical flipping,


https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://liveratlas.org/

Page3of 15 275

Clinical and Experimental Medicine (2025) 25:275

Preprocessing

Dataset(516 of sample)

uondeIIX7
anjed |

Testing Training i
Feature
Testing selection

Testing
Testing
Training Testing
Random forest—based
Model NAFLD patient
building assessment model

Fig. 1 Schematic diagram of the research process

and random cropping. Following preprocessing and aug-
mentation, a total of 312 high-quality images were obtained
for model development and evaluation (Fig. 2), effectively
reducing the risk of overfitting.

For image denoising, a 2D Gaussian filter was applied
using the cv2.GaussianBlur() function in Python, with a
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kernel size of (5, 5) and a standard deviation (c) of 1.2.
Histogram equalization was performed via cv2.equalize-
Hist() to improve contrast, gamma correction was applied
with a gamma value of 1.5, and logarithmic transforma-
tion was implemented using a standard log mapping func-
tion to further enhance feature visibility. All images were
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Fig.2 Schematic diagram of
data augmentation techniques
for preprocessing MRI imaging
data
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subsequently normalized to a 0-1 scale and converted to
grayscale with 255 Gy levels, thereby facilitating robust and
consistent feature extraction. Collectively, these preprocess-
ing steps—combined with data augmentation—substantially
improved dataset diversity and enhanced the robustness of
model training.

Feature extraction and selection

Feature extraction and selection were critical steps in con-
structing an effective ML model. Texture analysis was per-
formed using gray-level co-occurrence matrices (GLCM) to
extract five key radiomic features associated with hepatic fat
distribution and fibrosis: contrast, correlation, homogeneity,
energy, and entropy. These features are known to capture
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subtle structural heterogeneities in liver tissue that correlate
with fat infiltration and fibrotic changes.

Given the potentially high dimensionality of the extracted
features, feature selection was employed to reduce model
complexity and enhance performance. The recursive feature
elimination (RFE) method was used to iteratively train the
model while removing the least informative features in each
iteration. This process was repeated until the most represent-
ative features remained. As a result, the initial 20 extracted
features were reduced to 10 selected features deemed most
relevant for classification tasks.

Additionally, feature importance was assessed using the
RF model, which calculates importance scores based on the
mean decrease in Gini impurity (information gain) across
all decision trees in the ensemble. These scores provided
valuable insights into which features contributed most to
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the model’s classification performance and also improved
interpretability.

Model selection and fine-tuning in ML

Following feature selection, the RF algorithm was selected
as the primary ML classifier for model development (Fig. 3).
RF enhances classification and regression accuracy by con-
structing an ensemble of decision trees and aggregating their
predictive outcomes. Its notable advantages include the abil-
ity to model complex, nonlinear relationships in high-dimen-
sional data, robustness against overfitting, efficient handling
of missing values and imbalanced datasets, and relatively
low sensitivity to hyperparameter tuning. Furthermore,
the RF algorithm offers feature importance scoring, which
enhances model interpretability and aids in understanding
the decision-making process. After model selection, hyper-
parameter optimization was performed to improve predictive
performance and generalizability. We employed grid search
in conjunction with k-fold cross-validation to systematically
explore hyperparameter combinations and evaluate model
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performance. Grid search exhaustively tests predefined
parameter ranges, while cross-validation divides the data-
set into training and validation subsets in iterative cycles to
ensure robustness. The two most influential hyperparame-
ters—n_estimators (number of trees in the forest) and max_
depth (maximum depth of each tree)—were fine-tuned and
optimized to n_estimators =43 and max_depth =6, which
yielded the best model performance in our experiments.

While additional hyperparameters such as min_sam-
ples_split, min_samples_leaf, and max_features were also
explored through preliminary tuning, their contributions to
model performance were marginal. To maintain model sim-
plicity and interpretability, we retained their default values
and focused optimization efforts on the two most impactful
parameters.

In parallel, we conducted preliminary comparisons with
alternative classification models, including logistic regres-
sion (LR) and convolutional neural networks (CNNs).
LR showed inferior performance in this small-sample,
high-dimensional feature context, achieving an area under
the curve (AUC) of approximately 0.85. CNNss, although
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Fig.3 Schematic diagram of the MAFLD patient evaluation model based on RF
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powerful for image-based tasks, suffered from overfitting
due to the limited dataset size and the complexity of end-to-
end training, resulting in unstable test accuracy. Given its
balanced accuracy, resistance to overfitting, and interpret-
ability, the RF model was ultimately selected as the optimal
classifier for liver fibrosis classification in this study.

Dataset splitting

To ensure the scientific rigor and fairness of model training
and evaluation, the dataset was partitioned into training and
testing subsets. Careful attention was paid to maintaining
class balance and preventing data leakage during the split-
ting process. A stratified sampling strategy was employed to
ensure an even distribution of samples representing different
levels of fibrosis and disease severity across both subsets,
thereby improving the model’s generalizability and stabil-
ity. The final train-test split ratio was set at 70:30, resulting
in 218 samples in the training set and 94 samples in the
testing set, after excluding outlier data. Furthermore, the
proportions of low fibrosis and moderate-to-severe fibrosis
cases were maintained at a 1:1 ratio in both subsets. This
class balance is critical for mitigating classification bias and
optimizing model performance. The training set was used to
build and fine-tune the predictive model, while the testing
set served as an independent evaluation cohort to assess final
model performance on unseen data.

Model training

Model training was performed using the stratified training
set. During this process, the cross-entropy loss function was
selected to quantify the discrepancy between predicted prob-
abilities and actual class labels. The Adam optimizer was
adopted to accelerate convergence by adaptively adjusting
the learning rate based on gradient estimates. To ensure
robustness, we employed tenfold cross-validation during
training, using cross-entropy as the evaluation metric. Key
hyperparameters, such as the learning rate and the number
of estimators, were fine-tuned using grid search. Throughout
training, model performance was continuously monitored
on a validation subset, and an early stopping strategy was
implemented to prevent overfitting. Training was halted
when no further improvement was observed on the valida-
tion set.

The final model performance was evaluated on the inde-
pendent test set, which was completely isolated from the train-
ing and cross-validation processes. This approach provides an
unbiased estimate of the model’s generalization ability on pre-
viously unseen data. The RF classifier was implemented using
the RandomForestClassifier class from the scikit-learn pack-
age (version 1.2.2) in Python 3.9.13. Hyperparameter tuning
was conducted using GridSearchCV. All data preprocessing
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and model construction were performed in the Python environ-
ment, utilizing the following libraries: NumPy 1.23, Pandas
1.5, Matplotlib 3.7, and OpenCV 4.7.

Model validation and evaluation

Upon completion of model training, its classification perfor-
mance was evaluated on the independent test set. Evaluation
metrics included accuracy, sensitivity (recall), specificity, as
well as the receiver operating characteristic (ROC) curve and
AUC. Accuracy reflects the overall correctness of the model’s
predictions. Sensitivity measures the model’s ability to cor-
rectly identify positive cases. Specificity indicates its ability
to correctly classify negative cases. ROC-AUC provides a
comprehensive measure of performance across varying clas-
sification thresholds. These metrics collectively offer a robust
assessment of the model’s predictive effectiveness and gener-
alizability. In addition, for misclassified cases, error analysis
was performed to identify potential model limitations, which
in turn informed targeted optimization strategies to enhance
performance and robustness.

Statistical analysis

All data preprocessing, analysis, and model development were
conducted using Python in a Jupyter Notebook environment,
with visualizations produced via Microsoft Visio.

The following Python libraries and statistical methods were
employed: (1) Pandas: used for efficient data management,
cleaning, and organization of MRI image paths and associated
feature datasets. (2) NumPy: applied for data normalization
and image processing tasks, such as histogram equalization,
which enhances contrast and standardizes feature scales to
stabilize model training. (3) Matplotlib: utilized for graphi-
cal representation of data distributions, model performance
metrics, and feature maps.

To assess classification performance, we employed the fol-
lowing metrics: Confusion matrix: used to compute accuracy,
precision, recall, and F1-score. ROC curves and AUC: used
to evaluate the classifier’s performance across various thresh-
olds, offering a holistic view of model discrimination capa-
bility. These statistical tools and evaluation methods ensured
a comprehensive, scientifically rigorous validation of the RF
model’s performance in classifying fibrosis severity among
MAFLD patients.
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Results

Data augmentation enhances the diversity
of the MRI dataset and improves model training
robustness

We collected MRI imaging data of MAFLD patients from
the TCIA and Liver Imaging Database, comprising a total
of 26 cases. Each case included four image sequences:
T1-weighted, T2-weighted, in-phase, and opposed-phase
images. All images were standardized and resized to a con-
sistent resolution of 256 x 256 pixels.

To improve the diversity of the dataset and reduce the risk
of model overfitting, we applied a series of data augmenta-
tion techniques, including image rotation, flipping, histo-
gram equalization, gamma correction, and logarithmic trans-
formation. After augmentation, the dataset size increased to
104 cases. These preprocessing steps effectively enhanced
model robustness by introducing variations that simulate
real-world imaging heterogeneity. Representative examples
of images following histogram equalization, gamma correc-
tion, and logarithmic transformation are shown in Fig. 4.

Note: It is evident from Fig. 4 that each data enhancement
results in different changes, significantly increasing our sam-
ple size and ensuring the model’s performance.

Feature selection and dimensionality reduction
optimization for improving the accuracy
of MRI-based image analysis

We employed texture analysis techniques, including GLCM
and texture entropy, to extract five key radiomics features—
contrast, correlation, homogeneity, energy, and entropy—
from each of the four MRI sequences. In total, 20 radiom-
ics features were extracted per image. From the 26 patient
cases, we obtained 518 image samples. After data cleaning,
which excluded 216 low-quality or incomplete samples,

Original image

Histogram equalization

312 high-quality samples remained and were included in
the analysis.

To optimize the model’s performance and reduce dimen-
sionality, we applied RFE for feature selection. This algo-
rithm ranked features based on model-derived importance
metrics (e.g., weight coefficients or Gini importance) and
recursively eliminated the least relevant ones. The process
continued until the top 10 most informative features were
retained, which substantially reduced model complexity
while preserving critical information. This dimensional-
ity reduction approach provided several benefits: Enhanced
model performance: Retaining high-value features improved
generalizability and predictive accuracy. Improved interpret-
ability: Reducing feature count simplified the model struc-
ture, making it more transparent and easier to interpret.
Figure 5 illustrates the distribution of sample values for the
ten selected features. The plots demonstrate clear intergroup
differences and substantial feature variability, supporting
their utility in subsequent classification modeling. Figure 6
displays a correlation heatmap of the selected features. As
shown, the inter-feature correlations were generally low,
with several negative correlations observed. This low col-
linearity further supports the appropriateness of the selected
features for model construction.

Optimization of the RF model and hyperparameter
tuning improve predictive accuracy

The RF algorithm was selected to construct the classifica-
tion model. To optimize performance, a combination of grid
search and tenfold cross-validation was used to fine-tune
key hyperparameters. Incremental parameter adjustment
identified the optimal configuration: the number of trees
(n_estimators) was set to 43, and the maximum tree depth
(max_depth) to 6, significantly enhancing both the model’s
generalization capacity and predictive accuracy. The hyper-
parameter tuning process is illustrated in Fig. 7.

Gamma adjustment Logarithmic transformation

Fig.4 Enhancement display of imaging data
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Fig. 5 Distribution plot of feature values

Model training was conducted using the training set,
with cross-entropy as the loss function and the Adam
optimizer to accelerate convergence. The training loss
decreased steadily, indicating effective learning. An early
stopping strategy was implemented by monitoring perfor-
mance on the validation set in real time, which helped
prevent overfitting and maintained stable accuracy across
epochs.

Note: From the above figure, the optimal range for n_esti-
mators is between 20 and 60. Combining with max_depth,
the best parameter combination is determined as n_estima-
tors =43 and max_depth=6.
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High-accuracy RF model demonstrates excellent
performance in classifying fibrosis severity
in MAFLD

The trained RF model was evaluated on an independent test
set to assess its ability to classify liver fibrosis severity in
MAFLD patients (i.e., mild vs. moderate-to-severe fibro-
sis). The model achieved an accuracy of 96.8%, sensitivity
of 95.7%, specificity of 97.8%, and an Fl-score of 96.8%,
reflecting its excellent discriminatory power. The confusion
matrix visualizing classification performance is presented
in Fig. 8.



Clinical and Experimental Medicine (2025) 25:275 Page9of 15 275
Fig.6 Heatmap of feature cor- 1.0
relation T1_correlation_array -8l 0.6 0.3 0.3 . 0.2
2 0.8
e o o 6 N A
T1_entropy_array - 0.3 m il 0.1 05 -H 0.5 m 0.6
T2_contrast_array -[EOvMl EUCE -0.1 -0.4
T2_homogeneity_array - ~02
T2_energy_array - 0.3
- 0.0
In_Phase_entropy_array - 0.3 .m
- —0.2
Opposed_Phase_homogeneity_array - .m 0.5 m 0.5
-0.4
Opposed_Phase_energy_array -
Opposed_Phase_entropy_array - —0.6
1 1 1 1 1 1 [ 1 1 [
> > > > > > > > > >
e & E £ & & g £ £ E
ml m' rvl tul ful tul ru[ rul ml ml
c 3 > 2 3 > G > > >
T 7] = c 7] 5 2 @ S g
= o [} 8 o | ) o | [
s o | \ o | o v |
o E B ~ £ B o £ 0 v
[ S = S b S = @
=R < £ 5 T £
= o o | o
- ~ g 2 3 <
£ = 2 ]
a g_ 3
' Q 2
g o© &
[=]
Q
Q
o
1.00 4
0.98 A
0.96
0.94 A
0.92 A
0.90 A
0.88 A )
T T T T T T
0 20 40 60 80 100

Fig. 7 Selection of the model hyperparameter n_estimators

Note: As shown in Fig. 8, the model made only a few
misclassifications between low- and high-fibrosis cases
(three instances in total): two high-fibrosis cases were
predicted as low fibrosis, and one low-fibrosis case was
predicted as high fibrosis. Further analysis revealed that
these misclassified samples had feature value distribu-
tions close to the decision boundary between the two

classes, particularly for the texture entropy and homoge-
neity variables, where their values deviated significantly
from the respective group medians. Additionally, some
of these images exhibited relatively low signal-to-noise
ratios or tissue blurring, which may have compromised
feature extraction accuracy. This suggests that incorporat-
ing an image quality assessment mechanism or integrating
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Fig.8 Confusion matrix of model prediction results

multi-timepoint dynamic MRI data may help improve
future model performance.

Fibrosis-stage labels were based on FibroScan-derived
liver stiffness measurements consistent with the F-staging
system (FO-F4), as annotated in the source databases. The
model’s predicted outputs demonstrated strong concordance
with FibroScan-based labels, achieving an AUC of 0.97
(Fig. 9). These findings indicate high potential for the RF
model as a noninvasive diagnostic tool for assessing liver

fibrosis in MAFLD patients. Importantly, all performance
metrics were computed using the independent test set, which
was entirely excluded from training and cross-validation.
This approach ensured the objectivity and external validity
of the reported evaluation results.

Fibrosis assessment in MAFLD patients

In this study, the importance of radiomic features was
ranked and visualized based on their Gini importance scores
derived from the RF model. The results showed that the
energy feature extracted from the T2-weighted sequence,
the homogeneity feature from T2, and the texture entropy
feature from T1 had the highest weights in the model’s
decision-making process, underscoring their critical roles
in distinguishing between different stages of fibrosis sever-
ity. Gini importance reflects the average information gain a
feature contributes during node splitting across all decision
trees in the ensemble. We further analyzed the ten key imag-
ing features retained through the RFE method, which were
subsequently used for model training (Fig. 10). Detailed
descriptions of these features are provided in Supplementary
Table 1. Among them, the T2_energy feature had the high-
est importance score, highlighting its pivotal role in fibrosis
classification—Ilikely due to the heightened sensitivity of
T2-weighted imaging to changes in hepatic water content.
Additionally, the T2_homogeneity and T1_entropy features
also demonstrated strong discriminative power, suggesting
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Visualizing Important Features
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Fig. 10 Visualization of feature importance

that both tissue uniformity and microstructural complexity
are relevant biomarkers in the progression of liver fibrosis.
Features extracted from the opposed-phase modality, such
as homogeneity and energy, also contributed substantially to
the model’s performance. These may reflect signal perturba-
tions in fat—water interface regions, which are commonly
altered in steatotic and fibrotic tissues.

Overall, these high-importance features captured multidi-
mensional, multimodal textural alterations associated with
MAFLD-related fibrosis, providing a biological rationale for
the model’s predictive mechanism.

To validate the predictive accuracy and stability of the
model based on these features, a regression analysis was
performed. The results indicated that the model’s predic-
tion errors remained within acceptable limits. Furthermore,
comparative analysis between the model outputs and clini-
cal assessments of fibrosis severity revealed a high degree
of correlation (Fig. 11), supporting the model’s reliability
in real-world diagnostic settings. These findings affirm
the robust performance of the RF-based evaluation model
for MAFLD, particularly in assessing fibrosis and disease
severity.

Early identification of fibrosis is critical for improving
outcomes. Our results suggest that the model can signifi-
cantly enhance early diagnosis rates of MAFLD, enabling
timely clinical intervention. Moreover, by facilitating pre-
cise disease stratification and supporting evidence-based

0.050

0.075 0.100 0.125 0.150 0.175

Feature Importance Score

decision-making, this model offers substantial utility in
optimizing treatment strategies and improving long-term
prognosis in MAFLD patients.

Note: (A) Correlation analysis between energy feature
information extracted from the T2 imaging mode and
homogeneity feature information extracted from the T2
imaging mode with the model’s predicted results and the
actual severity of MAFLD fibrosis; (B) Correlation analy-
sis between energy feature information extracted from the
T2 imaging mode and texture entropy feature information
extracted from the T1 imaging mode with the model’s pre-
dicted results and the actual severity of MAFLD fibrosis; (C)
Correlation analysis between homogeneity feature informa-
tion extracted from the T2 imaging mode and texture entropy
feature information extracted from the T2 imaging mode
with the model’s predicted results and the actual severity of
MAFLD fibrosis.

Discussion

The RF model constructed in this study demonstrated high
performance in evaluating liver fibrosis and disease sever-
ity in MAFLD patients, achieving an accuracy of 96.8%,
sensitivity of 95.7%, specificity of 97.8%, and an F1-score
of 96.8%. Compared with previous studies that employed
traditional radiomics techniques, our approach significantly
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Fig. 11 Regression validation based on three key features

improved both the efficiency and accuracy of MRI image
analysis by integrating advanced ML algorithms. Earlier
methods often relied on manual feature extraction and basic
statistical analyses, which were limited by subjective fea-
ture selection and analytical bias [38—40]. By employing
automated feature extraction and systematic selection strat-
egies, this study addressed those limitations and provided
a more objective and reproducible framework for MAFLD
diagnosis.

Specifically, we utilized GLCM techniques to extract
five key texture features—contrast, correlation, homogene-
ity, energy, and entropy—from multimodal MRI sequences.
These features provided a more comprehensive representa-
tion of liver tissue texture characteristics than traditional
methods, enhancing the diagnostic resolution of imaging
data. Additionally, RFE was applied for dimensionality
reduction, significantly improving model efficiency while
preserving the most predictive variables. Unlike prior stud-
ies where such systematic selection methods were often
underutilized, our study incorporated RFE to streamline
model complexity and strengthen interpretability [41-43].

The RF model, a robust ensemble learning method, was
chosen as the primary classifier due to its proven efficacy in
handling high-dimensional, heterogeneous imaging datasets
[44, 45]. Compared to other ML techniques such as support
vector machines (SVMs) or deep neural networks (DNNGs),
RF models offered superior interpretability, reduced sus-
ceptibility to overfitting, and effective handling of imbal-
anced data distributions [46—48]. Furthermore, RF models
are computationally efficient, require less parameter tuning,
and do not necessitate large-scale annotated datasets or high-
performance computing resources—making them practically
advantageous in clinical settings. While the RF model exhib-
ited excellent performance in this study, we acknowledged
its limitations and planned to incorporate a broader range of
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algorithms—including XGBoost, CNNs, and transformers—
in future investigations. This comparative strategy aims to
systematically evaluate model generalizability and optimize
algorithm selection for various clinical contexts. In contrast
to prior research that typically focused on a single algorithm,
our study undertook comparative assessments and ultimately
identified the RF model as the optimal approach for MAFLD
fibrosis classification. This not only provided a reliable non-
invasive diagnostic tool, but also laid the groundwork for
future Al-assisted clinical decision support systems in liver
disease management.

This study conducted a comprehensive investigation into
data preprocessing and model optimization, both of which
are critical yet often underemphasized components in ML
research. Initially, all MRI images were standardized in
terms of resolution, contrast, and size to ensure consistency
and comparability across datasets. Following this, a tenfold
cross-validation approach was employed to fine-tune two
key hyperparameters of the RF model—n_estimators and
max_depth—to determine the optimal parameter configura-
tion. In contrast to prior studies that frequently overlooked
rigorous preprocessing and hyperparameter tuning, thereby
compromising model robustness and predictive performance
[49, 501, our methodical approach significantly enhanced the
accuracy, reliability, and generalization ability of the model.

Furthermore, this study systematically compared the
model’s classification outcomes with histopathological find-
ings, revealing a high degree of consistency between the
two. This concordance underscores the clinical relevance
and diagnostic utility of ML-based image analysis, support-
ing its role as a noninvasive adjunctive tool for evaluating
fibrosis and disease severity in MAFLD patients. While
prior studies have attempted to apply ML to liver imaging,
they often lacked rigorous external validation or direct com-
parison with pathological standards, limiting their real-world
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applicability [26, 43, 51]. Despite these promising results,
one key limitation of the current work is the absence of
external validation. The model was trained and validated
exclusively on internal data, which may limit its generaliz-
ability to broader clinical populations. To address this, future
research will incorporate external datasets derived from
independent clinical centers or real-world patient cohorts.
This strategy will enable more robust testing of the mod-
el’s transferability, scalability, and clinical value in diverse
healthcare settings.

This study demonstrated the potential of combining mul-
timodal MRI imaging with ML algorithms for the accurate
and noninvasive assessment of liver fibrosis in MAFLD
patients. The approach not only improves diagnostic effi-
ciency, but also provides a reproducible and interpretable
framework for clinical decision support. The high accu-
racy and reliability achieved in this study pave the way for
broader clinical adoption and lay the foundation for extend-
ing this model to other liver pathologies, such as viral hepati-
tis, alcoholic liver disease, and autoimmune liver conditions.
Thus, the proposed framework holds significant translational
potential across a wide spectrum of hepatic diseases.

This study successfully performed a quantitative analy-
sis of MRI data from MAFLD patients by developing a RF
ML model, effectively evaluating the relationship between
hepatic fat content and the degree of liver fibrosis and dis-
ease severity. The model demonstrated outstanding classifi-
cation performance—achieving high accuracy, sensitivity,
and specificity—which highlights its strong potential as a
noninvasive diagnostic tool in clinical practice. Scientifi-
cally, the study contributes novel insights into the applica-
tion of ML in medical image analysis, advancing the inte-
gration of radiomics and artificial intelligence in hepatic
disease evaluation. Clinically, the model offers an effective,
noninvasive alternative to traditional pathological assess-
ment, thereby supporting more accurate diagnosis and treat-
ment decision-making while reducing patient burden and
procedural risks.

In addition, preliminary error analysis revealed that
misclassifications were primarily attributable to ambigu-
ous texture patterns in borderline cases and variations
in image quality. To address these issues, future studies
should pursue two key directions: (1) refining image qual-
ity control and preprocessing pipelines, and (2) incorpo-
rating uncertainty estimation mechanisms or ensemble
modeling strategies to better quantify classification confi-
dence, particularly for borderline cases. Moreover, due to
the absence of complete histopathological scoring (e.g.,
METAVIR or NAS criteria) in the dataset, this study relied
on FibroScan-based liver stiffness measurements as surro-
gate labels. While clinically meaningful, this substitution
may introduce bias. Future work should integrate standard-
ized histopathological scoring systems to more rigorously

validate the correspondence between model predictions
and gold-standard histological findings.

Despite the promising results, several limitations merit
discussion. First, as a retrospective study using publicly
available datasets, there were inherent constraints in
patient selection, image acquisition protocols, and clinical
follow-up. Potential confounding variables and therapeutic
interventions could not be fully accounted for, which may
influence the generalizability of the findings. Second, the
dataset originated from a relatively limited and homogene-
ous patient population in terms of ethnicity, imaging plat-
forms, and scanning parameters. This restricts the model’s
applicability to more diverse real-world clinical settings.
Thus, large-scale, prospective, multicenter studies incor-
porating multi-ethnic and heterogeneous patient cohorts
are essential to confirm the model’s robustness and broad
clinical utility.

Although the model demonstrated excellent performance
on an independent test set and exhibits strong potential for
clinical deployment, several practical challenges remain.
Variability in MRI acquisition across institutions—such as
differences in scanner type, resolution, contrast enhancement
protocols, and imaging parameters—may adversely affect
feature extraction and model consistency. Additionally, real-
world implementation requires significant computational
resources, technical infrastructure, and specialized person-
nel for data preprocessing and deployment, which may pose
barriers in resource-limited or community-based healthcare
settings. Addressing these challenges will require the devel-
opment of standardized imaging protocols and lightweight,
scalable model deployment solutions to facilitate widespread
adoption.

Looking ahead, future research should prioritize expand-
ing the dataset and increasing its diversity by incorporat-
ing multicenter, multi-regional cohorts across different
demographic backgrounds. Moreover, exploring advanced
algorithms such as XGBoost, transformers, or hybrid deep
learning architectures may further enhance predictive perfor-
mance and robustness. Parallel efforts should aim to simplify
data preprocessing workflows and reduce computational
demands, making the system more accessible to primary
care settings. These advancements may contribute to the
development of personalized and precision-based diagnostic
pathways for MAFLD, ultimately improving clinical out-
comes and quality of life for affected patients.
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