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Abstract

This review describes dietary fibres originating from a range of foods, particularly in relation to their plant cell walls.
It explores the categorization of dietary fibres into “soluble” or “insoluble”. It also emphasizes dietary fibre
fermentability, in terms of describing how the gastro-intestinal tract (GIT) microbiota respond to a selection of fibres
from these categories. Food is categorized into cereals, legumes, fruits and vegetables. Mention is also made of
example whole foods and why differences in physico-chemical characteristics between “purified” and “non-purified”
food components are important in terms of health. Lastly, recommendations are made as to how dietary fibre
could be classified differently, in relation to its functionality in terms of fermentability, rather than only its solubility.
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Introduction
Dietary fibre (DF) is considered essential for overall hu-
man health. Epidemiological studies have shown that di-
ets which are high in fat, sugar, and salt, and low in DF
(mostly associated with plant-based foods) can predis-
pose the consumer to the many chronic diseases of our
time, such as diabetes [1], obesity [2], cardio-vascular
disease [3], certain cancers [4] and more [5]. Hence, the
current interest by both nutrition professionals and the
public for the inclusion of DF in a healthy diet.
DF is the main non-digestible component of monogas-

tric diets, and is known to influence gastrointestinal
tract physiology. There are three main mechanisms,
whereby it is thought to have this influence. Firstly, by
physical “structuring” of digesta, which is relevant to
feelings of satiety and control of food intake [6]. Sec-
ondly, by modulation of digestive processes such as
those which control transit time, which contribute to the
control of circulating glucose and lipid levels [7], and
lastly, by acting as an energy source for microbial

fermentation, particularly (but not only) in the large in-
testine [8]. These mechanisms relate to characteristics
such as dispersibility in water (water-holding capacity),
viscosity, binding ability, absorptive capacity, faecal bulk-
ing capacity and fermentability [9, 10], which are sum-
marized in Table 1.
In the past, it has been more usual to take a reduction-

ist approach, and use either a purified form of DF such
as cellulose [24–26] or various oligosaccharides [27–30]
amongst others, and/or to examine the response of spe-
cific microbial species to purified fibre components [31,
32]. More recently, it is being realized that while point-
ing in useful directions for the determination of mecha-
nisms by which DF can have its beneficial effects,
particularly from a microbial perspective, it is also clear
that these purified substrates, are not representative of
food as consumed. Therefore, there is increasing litera-
ture, reporting work done with whole foods [18, 19, 33].
However, for this work to be useful, it will still be im-
portant for the test foods/feeds to be extensively
characterised.
In vitro and in vivo methodologies can be used to test hy-

potheses examining effects of specific dietary components
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on physical, chemical and/or biological outcomes under
controlled environmental conditions. In vitro methods usu-
ally involve laboratory-based mimics of one or more of the
environments encountered in the digestive tract including:
stomach [34], small intestine [35], and LI [36]. In vivo stud-
ies on the other hand, require the use of either animal
models, or the test organism(s), and aim to disentangle
mechanisms of action of specific dietary components. In
that context, pigs are often used as a model for humans, as
they share similar patterns of food intake [37], digestion
patterns [38], and comparable (though not identical) gut
microbiology [39, 40]. Ultimately, the best approach would
be to integrate findings from epidemiology, in vivo, in vitro,
and clinical studies, to obtain a comprehensive overview of
the mechanisms and effects of dietary components such as
DF, on final health outcomes [7].
The emphasis of this review, is how the gastro-intestinal

tract (GIT) microbiota responds to a selection of com-
pounds from the categories of “soluble” and “insoluble”
DF. Mention will also be made of example whole foods
and why differences in physico-chemical characteristics
between “purified” and “non-purified” food components
are important in terms of health. The focus will be
on work from both porcine and human studies as
relevant. Lastly, recommendations will also be made
as to how DF could be classified differently, in rela-
tion to its functionality in terms of fermentability, ra-
ther than only its solubility.

Dietary fibre - definition, classification, and sources
At least since the beginning of the twentieth century
[41, 42] “crude fibre” has been used to describe the
plant-derived component of feed and foods, which was
resistant to digestion by mammalian enzymes (particu-
larly in animal nutrition). By the 1950’s, the term “diet-
ary fibre” was adopted, particularly when referring to
human nutrition (e.g. [43]). Since then, there have been

many definitions, as reviewed by Jones [44]. A workable
definition derived from this author ([44] is: “dietary fibre
is an overall description of mainly carbohydrate poly-
mers derived from or contained by (usually) edible
plants, (ranging from DP >3 to >10) which are neither
absorbed within the small intestine, nor hydrolysable by
mammalian digestive enzymes in the small intestine”. In
general, this includes celluloses, hemicelluloses, lignins,
oligosaccharides, pectins, gums and waxes, as well as re-
sistant starches, resistant proteins, and associated com-
pounds such as polyphenols [9]. In the official
definitions listed by Jones [44] further qualifications are
made according to physiological effects, and for guid-
ance for the food industry.
DF has been categorized according to: source, solubil-

ity, fermentability, and physiological effects [10]. In
terms of methods used for the quantification of fibre
within feeds/foods, there have been many methods de-
scribed for both animal [45] and human nutrition [46,
47], though there is often controversy as to the “best”
method for purpose [48–50].
One simple classification which is commonly used, is

to differentiate between “soluble” and “insoluble” fibres
[10], based on the ability to be fully dispersed when
mixed with water [9]. However, polysaccharides classi-
fied as “soluble” may be quite variable in their actual
solubility in water [51]. Both soluble and insoluble DF
share many physical properties including water-binding
capacity, and capacity to bind mineral cations [9]. Their
fermentability however, can vary according to the
physico-chemical properties of each compound [52].
The “soluble” classification of DF typically includes

compounds such as hemicelluloses (e.g. xyloglucans,
galactomannans mixed-linkage glucans), pectins, gums
and mucilages. On the other hand, cellulose, lignin, and
resistant starch are considered to be examples of insol-
uble DF [9]. However, depending on the plant source

Table 1 Dietary fibre- physico-chemical characteristics and relationships to gut effects (modified from [9])

DF characteristic GIT effect Systemic effect References

Water-holding capacity & viscosity Slows gastric emptying;
Changes digesta mixing;
Alteration of digestive enzyme activity;
Stimulates passage rate;

Slows digestion, especially of protein and lipids;
Associated with reduced plasma cholesterol;
Blunting of glycaemic response

[11–13]

Bulking Gastric distension;
Changes in mixing & diffusion;

Decrease food intake; [14, 15]

Adsorption of compounds (e.g. bile
salts, polyphenols & minerals)

Increases bile acid excretion & other
compounds;
Retention of polyphenols until large
intestine;

Blood cholesterol; fermentation of polyphenols; [16, 17]

Encapsulation Plant cell walls encapsulate e.g. starch
granules;

Transport of starch (resistant) to LI for fermentation; [18–21]

Fermentability Increases microbial biomass &
fermentation end-products (e.g. SCFA);
Induces selection of specific microbes;

Energy for colonocytes; influences satiety; faecal
bulking; “colonization resistance” to pathogens;

[22, 23]
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and degree of post-harvest processing, many of these
polymer types can be either soluble or insoluble. All of
these fibres differ in their monosaccharide components
and the glycosidic linkages that connect them together
as shown in Table 2.
In terms of nutritional guidelines, “dietary fibre” is

often considered as a single entity. However, from a
physico-chemical perspective, this one term is known to
include a wide range of different materials. These vary
substantially in their biological and chemical properties,
not only within the plant, but also upon consumption
and behaviour within the GIT.

Plant foods as sources of dietary fibre
Plant cell walls (PCW) are essential to maintain plant
structure and function [8]. They are rich in a range of
polysaccharides and are present in all plant-based foods,
though with different structure and chemistry, depending
on the source (fruit, vegetables, legumes and cereals) [63].
In terms of human nutrition, all of these plant-based foods
are highly relevant. For pigs fed under commercial pro-
duction conditions, the cereals and legumes are most
immediately relevant, though there is increasing inter-
est in using feeds originating from fruit and vegetable
wastes [64]. The amounts and relative proportions of
all of the PCW components vary depending on botan-
ical source, as well as origin, function and maturity of
the plant tissue [65].

Fruits and vegetables
In human dietary recommendations around the world,
fruits and vegetables are recommended to form a sub-
stantial part of the daily diet, given their known
health-promoting properties.

There are many epidemiological studies which have
shown a beneficial link between high fruit and vegetable
intake, and improved health outcomes [66–68]. Not only
are they a rich source of a variety of DF, containing vary-
ing proportions of non-fermentable, slowly and rapidly
fermentable fibres, they also contain a range of poly-
phenolic compounds, and essential vitamins and minerals.
Generally, fruits contain mostly sugars and DF such as

pectin. For example, in addition to dietary fibre (Table 3),
apples contain 6% fructose and 3% sucrose [69] that are
typically available for digestion in the small intestine.
Vegetable foods on the other hand, vary more in terms
of their plant origin than fruits, including leaves, stems,
roots and tubers which vary not only in their DF content
and proportions, but also in terms of their protein, and
secondary metabolite contents [69]. Table 3 shows a
range of fruits and vegetables indicating the variability of
the DF content.
Processing (such as cooking, drying, chopping, or blend-

ing) of fruits and vegetables can lead to significant changes
in the DF content of these foods both in terms of amounts
and functionality. For example, peeling will most likely de-
crease the DF content, while cooking may actually con-
centrate the DF content [69]. However, the type and
proportion of different fibres within the original material
will have the most influence on its functionality in the gut.
So, while many fruits and vegetables are thought to fer-
ment rapidly and may therefore contribute less to faecal
bulking than less fermentable fibres [10], this may be off-
set by the resultant increase in bacterial numbers [70].

Cereals and legumes
Cereal grains are the most widely consumed, and an im-
portant source of energy in global nutrition, both of

Table 2 Structural composition of different dietary fibres (note- “soluble” may indicate “partially soluble” (modified from [9])

DF Solubility Main unit Branch units References

Cellulose Insoluble β- (1,4) Glucose – [53]

Lignin Insoluble Polyphenols Polyphenols [54]

Resistant starches Insoluble Helical amylose 1,6 glucose in amylopectin [55]

Mix-linkage glucans Soluble β- (1,3) glucose – [56–58]

β- (1,4) glucose –

Hemicelluloses
Arabinoxylan
Xyloglucan
Galactomannans

Soluble
Soluble
Soluble

Xylose
Glucose
Mannose

Arabinose
Xylose
Galactose
Glucose

[56]

Pectins Soluble Galacturonic acid with methoxy groups Arabinose
Galactose

[59]

Gums
Guar
Agar

Soluble
Soluble

β −1,4-linked mannose
D-galactose & (3,6) anhydro-L-galactose

Galactose
-

[60]

Non-digestible oligosaccharides
Fructooligosaccharide
Galactooligosaccharide

Soluble
Soluble

D-fructose residues
Galactose, with terminal glucose unit.

-
-

[61, 62]
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humans and monogastric production animals. “Whole
grains” most commonly refer to all components of the
cereal grain, including the endosperm, aleurone, and
pericarp [8] from cereal crops such as rice, wheat, maize,
oats, sorghum, and rye. The DF components of cereal
grains include cellulose, and hemicelluloses such as ara-
binoxylan and mixed-linkage glucans [71].
Globally, legumes are an important source of protein

both in human and animal nutrition. They also provide
energy in the form of carbohydrates, DF, lipids (for legu-
minous oilseeds) as well as some minerals and vitamins
[72]. However, the presence of secondary plant metabo-
lites (anti-nutritional factors) has been perceived as hav-
ing a negative influence on digestibility and final energy
utilization [73]. Their use in animal feeding has in-
creased considerably since the ban, imposed by the
European Commission in 2001, of all animal-based
products in animal feeding [73]. In terms of pig pro-
duction, the DF content of legumes has been reported
as leading to a reduction in digesta passage rate, and
a lower feed intake [74]. The forms of DF present in
legumes can include cellulose, and hemicellulose such
as oligosaccharides including those of the raffinose
family [73].

Table 4 shows a range of cereals and legumes illustrat-
ing the variability of the total DF content within this
food group.

Gut microbiota- activities and communities
The GIT microbiota includes the entire microbial popu-
lation within the GIT, from the mouth to the anus. It in-
cludes bacteria, fungi, viruses and archaea, though most
studies have focussed on the bacteria as, until now, they
have been considered to be most active [75]. In mono-
gastrics, the main site of fermentation is considered to
be the LI [76], though it is slowly being recognized that
while microbial numbers and activity are less in the
stomach and small intestine, the activity occurring here
is also likely to be relevant for overall host health [77].
Any partial gastric or small intestinal fermentation also
has the potential to alter the course of subsequent fer-
mentation in the LI.
The human GIT bacterial community has been classi-

fied into at least seven phyla, of which four are predomin-
ant (usually ~ 98% of the total population). These are the
Firmicutes (58–88%), Bacteroidetes (8.5–28%), Proteobac-
teria (0.1–8%), and Actinobacteria (2.5–5%) [78]. How-
ever, bacterial community profiling from faeces has shown

Table 3 Dietary fibre content of selected fruits and vegetables (modified from NUTTAB, Food Standards Agency Australiaa)

Fruits Total DF, g/100g dry matter Vegetables Total DF, g/100g dry matter

Apple, with peel 16.7 Beetroot 26.7

Cavendish banana 10.1 Broccoli 34.0

Cherries 8.7 Cabbage, white 30.0

Grapefruit 14.5 Carrot 34.2

Mango 9.4 Celery 29.4

Orange 18.0 Cucumber 15.8

Peach 16.1 Iceberg lettuce 33.3

Pear 21.2 Sweetcorn 22.0

Pineapple 13.6 Tomato 20.7

Strawberry 31.6 Zucchini 23.1

Watermelon 6.4
aData from Food Standards Agency Australia NUTTAB Release 2010, Last accessed April 19, 2019 from: http://www.foodstandards.gov.au/science/
monitoringnutrients/nutrientables/nuttab/Pages/default.aspx

Table 4 Dietary fibre content of selected cereals & legumes (modified from NUTTAB, Food Standards Agency Australiaa)

Cereals Total DF, g/100g dry matter Legumes Total DF, g/100g dry matter

Barley, pearled, raw 11.7 Haricot beans 20.8

Millet, raw 9.3 Lentils 15.3

Oats, rolled 9.5 Lima beans 19.6

Rice 3.2 Peas, green, raw 25.6

Wheat flour, wholemeal 11.3 Red kidney beans 21.5

Soybeans 20.1
aData from Food Standards Agency Australia NUTTAB Release 2010, Last accessed April 19, 2019 from: http://www.foodstandards.gov.au/science/
monitoringnutrients/nutrientables/nuttab/Pages/default.aspx
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that as many as 60% of bacterial species are not yet identi-
fied, [78, 79]. Sommer et al. [80], provides an excellent
perspective on how the human intestinal microbiota “re-
silience” is critical in influencing health and disease states,
particularly discussing this concept with regards to diet,
antibiotic or bacteriotherapy-induced perturbations. Fur-
thermore, efforts continue to be made to develop ways to
describe the complex gut microbial landscape across large
human populations and geographies, where the term
entrotypes is once again being revisited and refined by
standardising and controlling the sample processing and
data analysis, as well as providing functional, ecological
and medical contexts [81].

Fermentation of dietary macronutrients
Dietary components remaining undigested at the end of
the small intestine can potentially be fermented within
the LI. Ideally, a wide range of fermentable carbohy-
drates present in the diet can provide both nutritional
and potential health benefits. These include: regular
bowel movements, competition of active bacteria against
potentially pathogenic organisms [82], stimulation of po-
tentially beneficial bacteria [7], production of end-prod-
ucts such as SCFA, and prevention of protein
fermentation, thus avoiding production of potentially toxic
and cancer-promoting metabolites [83]. The full complex-
ity of the gut microbiota and all of its functions, as well as
its effect on its host organism, is only beginning to be
understood, but it is clear that DF, in all its forms, is es-
sential for a healthy digestive tract and host, and that a
significant part of this benefit is microbially-mediated.

Carbohydrates
Bacterial utilisation of fermentable carbohydrates results
predominantly in the production of SCFA such as acetic,
propionic and butyric acids, but a range of other carbox-
ylic acids can also be produced, including lactic acid
[76]. These end-products are generally beneficial for
GIT health [84, 85]. Once produced, the SCFA can have
multiple effects within humans and other mammals, and
are heavily utilised as a source of energy, by both
humans [86] and bacteria [87].
Acetic, propionic and butyric acid consist of two,

three, and four carbon atoms, respectively, and are
the principal products of carbohydrate fermentation
by bacteria in the GIT [88]. Within the LI, SCFA are
important promoters of colonic health as they are in-
volved in the control of colonic mobility, colonic
blood flow and GIT pH, all of which affects nutrient
and electrolyte absorption [76, 89].
Acetic acid is the predominant SCFA in venous blood

[88]. Acetic acid produced in the LI is absorbed across
the GIT epithelium wall into the portal vein, and diffuses
through the peripheral venous system [76]. It has also

been shown to be the principal SCFA fermentation
product of pectin and xylan in the GIT [90]. In addition,
there is evidence to indicate its interaction with the G
protein-coupled FFAR2 receptor which impacts inflam-
mation and the immune response [91].
Although propionic acid can be metabolised from a

range of substrates, including proteins, the most com-
mon metabolic pathway involves fermenting carbohy-
drates [92]. Propionic acid is absorbed into the portal
vein and moves to the liver where it can be metabolised
by hepatocytes [76]. Approximately 90% of propionic
acid absorbed into the portal vein is metabolised in the
liver, of which a substantial proportion is used for gluco-
neogenesis [88], as well as interacting with the immune
system through the FFAR2 receptor [65, 93]. There are
also suggestions that propionate can alter cholesterol
synthesis [94]. It has also been shown to stimulate feel-
ings of satiety, thus influencing food intake [92].
Butyric acid is a major oxidative fuel for colonocytes

(colonic epithelial cells), supplying approximately 60–
70% of their energy requirements [86]. Associated with
this function, it has been shown that butyrate influences
metabolic pathways of the gut by changing cellular
growth and metabolism [94]. By this means, it is thought
that butyric acid is involved in the prevention of colonic
cancer [95, 96].

Proteins
Protein fermentation refers to the bacterial breakdown
of proteins to amino acids, as well as their further
breakdown to ammonia and other potentially toxic
compounds such as indoles, phenols, and amines
[97]. This process normally increases when there is a
shortage of fermentable carbohydrates available to the
gut bacteria as a source of energy. Health benefits of
reduced protein fermentation are related to the re-
duction of ammonia and other nitrogenous, phenolic
and sulphurous compounds in the GIT [98], while in-
creased protein fermentation is considered to be det-
rimental to GIT health [99].
Ammonia (NH3) is the dominant by-product of the fer-

mentation of amino acids in the GIT. Excess protein fer-
mentation can lead to an increase of NH3 and amines.
NH3 then moves from the GIT into the bloodstream and
is detoxified in the liver or muscles, with a large amount
converted to urea and excreted by the kidneys [100]. Pro-
tein fermentation can also lead to end-products such as
branched-chain SCFA, amines, phenols, sulphides and
thiols [94]. With the exception of branched-chain fatty
acids, excessive production of these metabolites has been
linked to several bowel disorders, including colon cancer
[101, 102] and Crohn’s disease [103]. However, if there is a
constant supply of carbohydrates and sufficient saccharolytic
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bacteria, the detrimental effects of these metabolites can be
significantly reduced [94].

Dietary fibre fermentability- physico-chemical effects
The molecular structure of individual forms of purified
DF, the matrix structure, and the particle size of DF can
all affect its availability for bacterial enzymes and the
ability of specific bacterial species to colonize and/or in-
vade fragments of plant tissues [26, 33, 104, 105]

Molecular structure
Dietary fibre includes a wide range of mostly carbohydrate
polymers ranging from soluble polymers (such as pectins
and various oligosaccharides) to insoluble ligno-cellulosic
materials and resistant starch [106] as discussed previ-
ously. Basically, these compounds comprise varying num-
bers of monosaccharide units joined by glycosidic
linkages. They differ according to the composition of the
monosaccharides, the types of linkages, and the presence
(or not) of branches on the backbone structure [107].
From a nutritional perspective, Kumar et al. [107] have
summarised the non-starch polysaccharide (NSP) mole-
cules and their structures present within plants.

Soluble DF
The solubility of polymers depends on several different
factors and molecular properties, such as the conform-
ational entropy [51]. Many polymers while categorized
as being “soluble” are actually poorly soluble in water,
and can either aggregate or phase-separate over time
[51]. This self-association tendency is strongest where

the polymers can form side-by-side ribbon binding or
co-axial multi-stranded helices, and tends to be more
prevalent with less backbone substitution. Broadly
speaking, solubility of polymers seems to improve as
polymer molecular structures become: (i) more
branched and with a greater diversity of linkages, or (ii)
smaller. High molecular weight coupled with solubility
results in thickening of solutions [51]. Within the sol-
uble DF, there are known to be substantial differences in
their fermentabilities, with many of them promoting the
proliferation of health-promoting bacterial species such as
Bifidobacterium, Lactobacillus, and Eubacterium [108].
In an in vivo study where pigs were fed two levels of

BBQ meat (LM and HM), with and without the addition
of AX (−AX and + AX) [22], fluorescence in situ
hybridization (FISH) indicated that the presence of sol-
uble fibre altered the caecal bacterial proportional
counts as shown in Fig. 1. These data suggest that the
presence of AX led to a significant shift in the micro-
biota in the presence of a soluble DF.
Purified soluble oligosaccharides have become very

popular as potential prebiotics [109] partly because they
do not alter the viscosity or texture of foods due to their
low molecular weight, and because they are usually
highly fermentable. However, they may be so readily fer-
mentable that they may be completely utilized by the
end of the terminal ileum [61]. It is to be recommended
therefore, that they be fed in conjunction with more
slowly fermentable DF, which can allow carbohydrate
fermentation to continue in the LI [99]. Oligosaccharides
are also found normally in many plant tissues in the

Fig. 1 Caecal bacterial proportional counts (%) of probe versus diet as observed using FISH. The diets tested were LM-AX (Low meat- no added
arabinoxylan; LM + AX- low meat with added AX; HM-AX- high meat no added AX; HM + AX- high meat with added AX, as described previously
[22]. * indicates a significant change (P < 0.05) in the proportion of bacteria observed using the stated probe as a result of the introduction of AX
to the diet, as calculated using a non-parametric Mann-Whitney test. 1 targets 64% of the order Bacteroidales; 2 targets most members of the
genus Tannerella and the genus Prevotella of the class Bacteriodetes; 3 targets most of the Clostridium histolyticum group (Clostridium cluster I and
II); 4 targets most of the Clostridium coccoides-Eubacterium rectale group (Clostridium cluster XIVa and XIVb); 5 targets
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form of fructans [51]. Plant foods known to contain
fructans include cereal grains, onions, chicory, and
Jerusalem artichoke.
Mixed-linkage β-glucans are non-cellulosic polymers

which occur extensively in cereal grains, particularly bar-
ley, oats and rye [107]. They are generally known to be
soluble [110], and are readily fermented by the GIT
microbiota [106]. Arabinoxylans on the other hand, are
heteroxylans which are abundantly present in the PCW
of cereals and grasses, particularly wheat, and also within
the genus Plantago [107]. Arabinoxylans are generally
highly viscous in aqueous solutions. It is also considered
to be highly fermentable as has been shown in vitro
[106] using an inoculum of pig faeces.
Pectins are structural polysaccharides present within

the primary cell walls of many fruits and vegetables,
which are extractable into a soluble, viscous form. They
have an extremely diverse structure, sharing some com-
mon features such as the presence of galacturonic acid
in the polysaccharide backbone [51]. Previous in vitro
studies using pig faeces have shown pectin to be highly
fermentable, both in the presence of chyme [111] and
also using both adult and unweaned piglet faeces [112].

Insoluble DF
Cellulose is a major structural component of PCW from
almost all plant foods. It is a linear polymer of glucose
units linked by β-(1-4) linkages. It is highly insoluble in
water, and cannot be degraded by human digestive en-
zymes, but is fermented to varying extents by gut bac-
teria particularly in ruminant animals [113], and also in

pigs [25, 114], and humans [115–117]. Within plant cell
walls, cellulose is also cross-linked with otherwise sol-
uble pectin or hemicelluloses, rendering them insoluble.
Using 13C CP/MAS NMR of wet cell wall isolates from
apples, carrots and onions, it is possible to identify the
presence of both pectin (galacturonic acid C-1, 99 ppm)
and cellulose (C-1105 ppm) in a relatively rigid form,
consistent with the two components interacting. The
isolated plant cell walls from apples, carrots and onions
contain cellulose and a fraction of pectin that cannot be
removed by washing and is therefore insoluble, as shown
in Fig. 2.
The cell walls of many plants are also classified as

insoluble, and vary greatly in their ability to be fer-
mented. At one extreme, the soluble and insoluble
fractions of refined cereal flours or food products
made from them, had essentially identical in vitro fer-
mentation behaviour with a porcine faecal inoculum
[118]. Both fractions were mostly composed of AX,
and while the insoluble fraction was difficult to ex-
tract, both had comparable fermentation characteris-
tics once extracted. At the other extreme, the fibrous
vascular tissue present in e.g. mangoes resists in vitro fer-
mentation even after all of the more fleshy tissue around
it (also "insoluble") has been fermented [18]. A further ex-
ample of insoluble fibre is resistant starch from certain
uncooked starch granules [19]. Another type of resistant
starch is that held within plant well walls. For example,
starch within cells in banana, were slow to ferment as they
were unavailable until the cell walls surrounding it had
been fermented [18].

Fig. 2 13C CP/MAS NMR of onion, carrot and apple cell walls. All spectra are from samples with added water. The region from 95 to 110 ppm is
the most diagnostic for polysaccharides as this is the region where the anomeric carbons (C-1) are seen. The peak at 105 ppm is typical of
cellulose and the shoulder at 99 ppm is expected for C-1 of galacturonic acid. The presence of cellulose is also clear from the C-4 peak at 90
ppm. The fact that otherwise soluble galacturonic acid from pectin can be seen in the CP/MAS (‘solid state’) spectrum of wet cell walls, suggests
that the pectin is bound to cellulose rendering it insoluble
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There are therefore examples of insoluble DF that are
rapidly fermented (e.g. from refined flour), slowly fermen-
ted (e.g. resistant starch, wheat bran) or essentially not fer-
mented (e.g. vascular tissue). This provides clear evidence
that equating insoluble fibre with non-fermentable fibre is
no longer a valid premise.

Effects of processing
Fractionation
Modifications of some properties of DF may occur at
the stage of mechanical processing such as the dehulling
and milling of cereals [51] to make flour. Milling dis-
rupts cell wall structure and alters particle size [51].
For example, wheat contains various proportions of

NSP including arabinoxylans and β-glucans, which are
enriched during the milling process to produce flour for
human consumption [119]. In terms of pig production, it
is often wheat by-products, such as wheat bran, and wheat
middlings which are important components of the diet.
Both of these products are higher in DF than the extracted
flour [119]. Wheat bran comprises the pericarp and the
aleurone layer of the grain, and constitutes roughly 10% of
the total weight of the wheat ground to flour. It is known
to have a high level of insoluble lignified fibre, which is
generally resistant to fermentation in the LI [120].

Cooking (baking, toasting, roasting, extrusion etc.)
It is well known that the chemical structure of starches
can be markedly altered by heat treatments [51]. Add-
itionally, cooking of plant tissues can also alter physical
and chemical properties of PCW, such as cell separation
and dissolution of the middle lamella, breakdown of
pectins, and formation of cross-links between food

components [121]. Extrusion cooking has been shown to
actually break PCW bonds, reducing insoluble fibre con-
tent and increasing soluble fibres [121].

Plant tissue structure- the effect of “whole” foods
Raw plant tissues usually retain much of their cell-level
integrity following mastication [121]. Consequently,
there will be less breakdown of PCW in the small intes-
tine, and digesta viscosity will be lower, and less cell
contents will be available for mammalian digestion.
However, upon reaching the LI, microbial fermentation
can lead to a breakdown of the PCW, and consequent
release of the cell contents for further fermentation.
McDougall et al. [121] in an excellent though now

dated review, described this is as a “sequential stripping
away” of components from the PCW, whereby the PCW
components have different roles to deliver the ultimate
beneficial effects of overall DF.
For example, an in vitro study compared fermentability

of chewed banana and mango tissue, and showed that
differences in physical characteristics of the two plant
tissues led to profound differences in the fermentability.
While thick cellulosic vascular structures remained for
the mango post-fermentation, the banana showed sig-
nificant release of the entrapped starch granules, after
the breakdown of the PCW (from 0 to 48 h) [18], though
these still remained intact by 48 h. In the study by
Warren et al gelatinised starch within cell walls of
cooked sorghum grains was still observed at the late
stage of in vitro fermentation. Using solid state 13C CP/
MAS NMR it is possible to calculate the level of starch
molecular order or crystallinity. The molecular order

Fig. 3 13C CP/MAS NMR spectra of cooked sorghum at early, mid- and late stages of in vitro fermentation. The spectrum of cooked sorghum is
dominated by starch. The anomeric carbon (C-1 region) from 90 to 105 ppm is used to calculate the starch molecular order
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was unchanged throughout the fermentation [19], as
shown in Fig. 3.
In contrast, for carrots which were processed to obtain

different particle sizes, larger particles (cell clusters) re-
sulted in faster production of gas, and increased concen-
trations of SCFA after fermentation in vitro with a
porcine faecal inoculum [33]. At least two possibilities
could explain this. Firstly that junctions between cells,
allowed bacteria to attach more readily to cells, allowing
better access to the PCW, or secondly, that in the
smaller particles, pectin between cells had been lost, and
so this fraction was no longer available to be fermented.
Further studies are required to elucidate the mechanism
responsible.

Conclusions
This review describes different DF, particularly those cat-
egorized as being “soluble” or “insoluble”. The emphasis
has been on work describing how the GIT microbiota
(e.g. from pigs) responds to a selection of compounds in
these categories. Some of the characteristics of DF func-
tionality arise directly from their molecular structure as
determinants of the tendency to self-associate (simpler,
less-branched structures) or ferment slowly (complex,
more-branched structures). However, much DF in both
food and feed is in the form of plant tissue pieces. In this
case, the cellular structure results in both insoluble DF
and encapsulation of cellular components, sufficient to
prevent digestion and absorption in the small intestine.
This phenomenon provides a mechanism for intracellu-
lar contents such as starch, protein and secondary me-
tabolites to be made available for fermentation in the LI
after passing through the SI intact. Purified DF, such as
oligo- or polysaccharides extracted from whole plant
foods, are not necessarily representative of those whole
foods, but do provide insights into potential mechanisms
by which DF has its beneficial effects in the gut.
The classification of potentially fermentable carbohy-

drates into soluble and insoluble, while helpful, is no
longer enough for the information required to elucidate
mechanisms by which DF has beneficial effects on
monogastric health. Characteristics such as fermentabil-
ity (including both kinetics of fermentation and
end-products) will undoubtedly make a significant con-
tribution to our understanding of how plant-based
foods/feeds affect overall health in humans and pigs.
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