

Supporting Information

Photo-Induced Homologation of Carbonyl Compounds for Iterative Syntheses

H. Wang, S. Wang, V. George, G. Llorente, B. König*

Supporting Information

Photo-Induced Homologation of Carbonyl Compounds for Iterative Syntheses

Hua Wang $^{\#a,b}$, Shun Wang $^{\#a}$, Vincent George $^{\#a}$, Gadler Llorente a and Burkhard König *a $^{\#}$ Equal contribution

^aInstitute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

^bDepartment of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, P.R.China

burkhard.koenig@ur.de

Contents

1. General information	S2
2. Starting materials	S4
3. Experimental procedures	S6
4. Optimization details for the reaction conditions	S7
5. Mechanistic studies	S13
6. Characterization of compounds	S19
7. X-ray characterization data	S44
8. Copies of NMR spectra	S46
9. GC spectra	S135
10. References	S138

1. General information

All NMR spectra were recorded at room temperature using a Bruker Avance 300 (300 MHz for ¹H, 75 MHz for ¹³C), or a Bruker Avance 400 (400 MHz for ¹H, 101 MHz for ¹³C) NMR spectrometer. ¹ All chemical shifts are reported in δ-scale as parts per million [ppm] (multiplicity, coupling constant J, number of protons) relative to the solvent residual peaks as the internal standard.² Coupling constants J are given in Hertz [Hz]. Abbreviations used for signal multiplicity: ¹H-NMR: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, and m = multiplet. High resolution mass spectra (HRMS) were obtained from the central analytic mass spectrometry facilities of the Faculty of Chemistry and Pharmacy, Regensburg University, and are reported according to the IUPAC recommendations 2013. All mass spectra were recorded on a Finnigan MAT 95, Thermo Quest Finnigan TSQ 7000, Finnigan MATSSQ 710 A or an Agilent Q-TOF 6540 UHD instrument. GC measurements were performed on a GC 7890 from Agilent Technologies. Data acquisition and evaluation were done with Agilent ChemStation Rev.C.01.04. [35]. Analytical TLC was performed on silica gel coated alumina plates (MN TLC sheets ALUGRAM® Xtra SIL G/UV254). Visualization was done by UV light (254 or 366 nm). If necessary, potassium permanganate was used for chemical staining. Purification by column chromatography was performed with silica gel 60 M (40-63 µm, 230-440 mesh, Merck) on a Biotage® Isolera TM Spektra One device. Photocatalytic reactions were performed with 385 nm LEDs (OSRAM Oslon SSL 80 royal-blue LEDs ($\lambda = 385 \text{ nm} (\pm 15 \text{ nm}), 21 \text{ V}, 700 \text{ mA}$). The sample was irradiated with a LED through the vial's plane bottom side and cooled from the side using custom-made aluminum cooling blocks connected to a thermostat (Figure S1). Gram-scale reactions were in a classic glass tube photochemical reactor setup irradiated from the outside (Figure S2). The glass tube with reaction mixture and LED cooling block were thermostated at 25 °C. UV-Vis and fluorescence measurements were performed with a Varian Cary 100 UV/Vis spectrophotometer and FluoroMax-4 spectrofluorometer, respectively. Commercially available starting materials and solvents were used without further purification.

Figure S1. Photochemical set-up for regular-scale reactions

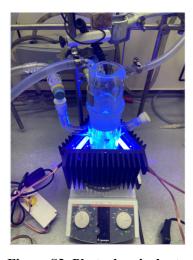


Figure S2. Photochemical set-up for large-scale reactions

2. Starting materials

2.1 Synthesis of N-tosylhydrazones from ketones^[1]

General procedure A-SM

To a stirred solution of tosylhydrazide (10 mmol) in MeOH (10 mL) at 60 °C, aldehyde or ketone (1 eq.) was added dropwise (or portionwise if solid). The reaction progress was monitored by TLC. After the completion of reaction, the reaction mixture was cooled and filtered to remove the solvent. The filtered solid was triturated with hexane/diethyl ether to get the pure N-sulfonylhydrazones.

General procedure B-SM

$$\begin{array}{c|c} OH & K_2CO_3 & OR \\ \hline & R-Br & O \end{array}$$

Step 1: Alkyl Bromides (3.15 mmol, 1.05 equiv.) and K_2CO_3 (4.5 mmol, 1.50 equiv.) were added to a solution of 4-(4-hydroxyphenyl)butan-2-one (3.0 mmol, 1.0 equiv.) in DMF (8.0 mL) in a 20-mL vial under air condition. After stirring at room temperature overnight, the reaction mixture was quenched with water (10 mL), before EtOAc (30 mL) was added. The organic phase was washed with water (3 × 20 mL) and brine (30 mL), and then dried over MgSO₄, filtered, and concentrated in vacuo. Then the crude product was used directly for next step without further purification.

Step 2: To a stirred solution of tosylhydrazide (3 mmol) in MeOH (10 mL) at 60 °C, ketone (1 eq.) from last step was added dropwise (or portionwise if solid). The solution was refluxed at 65 °C for around 30 min along with white solid crashes out, and the reaction was monitored by TLC until the complete consumption of both starting materials. The crude mixture was then purified by flash column chromatography (10% to 50%, EtOAc in petroleum ether) on silica gel.

General procedure C-SM

Tosylhydrazide (0.2 mmol), aldehyde or ketone (0.2 mmol) were dissolved in MeOH (2 mL) at 60 °C. The reaction progress was monitored by TLC. After the completion of the reaction, the reaction mixture was concentrated in vacuo and directly used in the photochemical reaction.

2.2 Synthesis of aldehydes

General procedure D-SM

OHC + Br-R
$$\frac{K_2CO_3 (2.5 \text{ eq.})}{\text{dry DMF, rt}}$$
 R O

Alkyl Bromides (3.15 mmol, 1.05 equiv.) and K_2CO_3 (4.5 mmol, 1.50 equiv.) were added to a solution of 4-hydroxybenzaldehyde (0.37 g, 3.0 mmol, 1.0 equiv.) in DMF (8.0 mL) in a 20-mL vial under air condition. After stirring at room temperature overnight, the reaction mixture was quenched with water (10 mL), before EtOAc (30 mL) was added. The organic phase was washed with water (3 × 20 mL) and brine (30 mL), and then dried over MgSO₄, filtered, and concentrated in vacuo. Then the crude product was purified by flash column chromatography (1% to 3%, EtOAc in petroleum ether) on silica gel to afford the product.

Scheme S1. List of unsuccessful substrates

3. Experimental procedures

3.1 Synthesis of aldehydes from paraformaldehyde with N-tosylhydrazones

General procedure A

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazones (1, 0.2 mmol, 1.0 eq.), Cs_2CO_3 (0.3 mmol, 1.5 eq.), and paraformaldehyde (2, 0.24 mmol, 1.2 eq.) were added. The vial was evacuated and backfilled with N_2 three times. Then dry MeCN (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with EtOAc or Et_2O (3 x 10 mL). The combined organic phase was then washed with H_2O (10 mL) and brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel flash chromatography (gradient eluent: petroleum ether in EtOAc = 1% to 2%, or pentane in diethyl ether = 2% to 3%) to give the desired product.

General procedure B

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazones (1, 0.4 mmol, 2.0 eq.), Cs_2CO_3 (0.3 mmol, 1.5 eq.), and paraformaldehyde (2, 0.2 mmol, 1.0 eq.) were added. The vial was evacuated and back filled with N_2 for three times. Then dry MeCN (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with Et_2O (10 mL *3). The combined organic phase was then washed with H_2O (10 mL) and brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel flash chromatography (gradient eluent: pentane in diethyl ether = 2% to 3%) to give the desired product.

General procedure C

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazones (1q, 0.3 mmol, 1.5 eq.), Cs₂CO₃ (0.3 mmol, 1.5 eq.), and paraformaldehyde (2, 0.20 mmol, 1.0 eq.) were added. The vial was evacuated and back filled with N₂ for three times. Then dry toluene (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the reaction mixture was diluted with EA (3 mL), dodecane was added as an internal standard, followed by water. After shaking for 1 min, the organic layer was separated, and the yield was determined by GC. *Note: we observed that tosylhydrazone 1q decomposed considerably at ambient conditions after several days, and therefore this substrate should be freshly prepared before use.*

General procedure D

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazones (1, 0.2 mmol, 1.0 eq.), Cs₂CO₃ (0.3 mmol, 1.5 eq.), BnEt₃NCl (20.0 μmol, 10 mol%) and paraformaldehyde (2, 0.2 mmol, 1.0 eq.) were added. The vial was evacuated and back filled with N₂ for three times. Then dry CH₂Cl₂ (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with CH₂Cl₂ (10 mL *3). The combined organic phase was then washed with H₂O (10 mL) and brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel flash chromatography to give the desired product.

General procedure E

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazones (1, 0.2 mmol, 1.0 eq.), Cs_2CO_3 (0.3 mmol, 1.5 eq.), and aldehyde (4, 0.24 mmol, 1.2 eq.) were added. The vial was evacuated and back filled with N_2 for three times. Then dry MeCN (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with Et_2O (10 mL *3). The combined organic phase was then washed with H2O (10 mL) and brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel flash chromatography (gradient eluent: pentane in diethyl ether = 2% to 3%) to give the desired product.

General procedure F

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazones (1, 240 μ mol, 1.2 eq.), Cs₂CO₃ (300 μ mol, 1.5 eq.), BnEt₃NCl (20.0 μ mol, 10 mol%), and aldehyde (4, 200 μ mol, 1.0 eq., if solid) were added. The vial was evacuated and back filled with N₂ for three times. Then dry DMSO (200 μ L) and aldehyde (4, 200 μ mol, 1.0 eq., if liquid) were added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with EtOAc (10 mL *3). The combined organic phase was then washed with brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel column chromatography to give the desired product.

4. Optimization details for the reaction conditions

4.1 Optimization details for reaction of tosylhydrazone 1a with paraformaldehyde 2

General procedure:

To a 5 mL snap vial with magnetic stirring bar, tosylhydrazone (1a, 0.2 mmol, 1.0 eq.), Cs_2CO_3 (0.3 mmol, 1.5 eq.), and paraformaldehyde (2, 0.3 mmol, 1.5 eq.) were added. The vial was evacuated and back filled with N_2 for three times. Then dry MeCN (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and EtOAc. Then yields were determined by GC analysis using mesitylene as internal standard.

Table S1. Screening of photocatalysts^a

Entry	Photocatalyst	Yield
1	TBADT (0.2 mol%)	40%
2^c	Eosin Y (5 mol%), 455 nm LED	trace
3^c	$[Ir(dFCF_3ppy)_2dtbpy]PF_6\ (1\ mol\%), 455\ nm\ LED$	trace
4 ^c	Ir(ppy) ₂ dtbpyPF ₆ (1 mol%), 455 nm LED	trace
5 ^c	Mes-Acr ⁺ PF ₆ (5 mol%), 455 nm LED	trace
6^c	fac-Ir(ppy) ₃ (1 mol%), 455 nm LED	22%
7	-	70%

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1a** (0.2 mmol), **2** (0.3 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL MeCN, irradiation with a 385 nm LED (0.5 W) at 25 °C for 20 hours. ^b Yields were determined by GC analysis using mesitylene as an internal standard. ^c Irradiation with a 455 nm LED (0.5 W).

Table S2. Screening of bases^a

Entry	Base	Yield ^b
1	K_2CO_3	n.d.
2	Na ₂ CO ₃	n.d.

•	3	NaHCO ₃	n.d.
4	Į.	K_3PO_4	n.d.
;	5c	CsOAc	trace
(6	DBU	trace
,	Cs_2C	CO ₃ (1.0 eq.)	63%
;	Cs_2C	CO ₃ (2.0 eq.)	68%
)	-	n.d.

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1a** (0.2 mmol), **2** (0.3 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL of MeCN, irradiation with a 385 nm LED at 25 °C for 20 hours, n.d. = not detected. ^b Yields were determined by GC analysis using mesitylene as an internal standard. ^c Cyclohexyl acetate was detected in a 48% yield.

Table S3. Screening of solvents^a

Entry	Solvent	Yield
1	DMF	20%
2	DMSO	5%
3	toluene	50%
4	dioxane	36%
5	THF	20%
6	PhCF ₃	48%
7	PhCl	33%

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1a** (0.2 mmol), **2** (0.3 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL of solvent, irradiation with a 385 nm LED (0.5 W) at 25 °C for 20 hours. ^b Yields were determined by GC analysis using mesitylene as internal standard.

Table S4. Screening of light sources^a

Entry	Light source	Yield
1	365 nm LED (0.5 W)	65%

2	400 nm LED (0.5 W)	trace
3	385 nm LED (3 W)	68%
4	455 nm LED (0.5 W)	n.d.
5	In the dark	n.d.
6^b	In the dark and heating to $110~^{\circ}\text{C}$	n.d.

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1a** (0.2 mmol), **2** (0.3 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL MeCN, irradiation with a 385 nm LED at 25 °C for 20 hours. Yields were determined by GC analysis using mesitylene as the internal standard. ^b Cyclohexene was detected as the major product.

Table S5. Screening of ratio of 1a with 2a

Entry	1a:2	Yield ^b
1	1:1.2	92%
2	1:1	78%
3	1:2	90%
4^c	1:1.2	68%

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1a** (0.2 mmol), **2** (0.3 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL of MeCN, irradiation with a 385 nm LED at 25 °C for 20 hours. ^bYields were determined by GC analysis using mesitylene as internal standard. ^cIrradiation with a 385 nm LED (3 W).

4.2 Optimization details for reaction of tosylhydrazone 1j with paraformaldehyde 2

Table S6. Screening of reaction parameters^a

Entry	Solvent	Base	Yield
1	MeCN	Cs ₂ CO ₃	5%
2	DMSO	Cs ₂ CO ₃	trace
3	DMF	Cs ₂ CO ₃	trace
4	DMAc	Cs_2CO_3	10%
5	dioxane	Cs_2CO_3	trace

6	toluene	Cs_2CO_3	3%
7	MeCN	K_2CO_3	n.d.
8	MeCN	Na ₂ CO ₃	n.d.
9^c	MeCN	CsOAc	trace
10^d	MeCN	Cs_2CO_3	7%
11^e	MeCN	Cs_2CO_3	43%
12 ^f	MeCN	Cs ₂ CO ₃	86%

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1j** (0.2 mmol), **2** (0.24 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL of solvent, irradiation with a 385 nm LED (0.5 W) at 25 °C for 20 hours. ^b Yields were determined by GC analysis using mesitylene as the internal standard. ^c1-phenylethyl acetate was formed in a 65% yield. ^d **1j** (0.24 mmol, 1.2 eq.), **2** (0.20 mmol, 1.0 eq.). ^e**1j** (0.3 mmol, 1.5 eq.), **2** (0.20 mmol, 1.0 eq.).

4.3 Optimization details for reaction of tosylhydrazone 1q with paraformaldehyde 2

Table S7. Screening of reaction conditons^a

Entry	Solvent	Yield
1	DMSO	trace
2	DMAc	1%
3	MeCN	trace
4	toluene	13%
5^c	toluene	29%
6^d	toluene	61%
7^e	toluene	43%
8e	toluene	47%
9^d	PhCF ₃	50%
10^d	DCM	49%
11^d	benzene	36%

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1q** (0.2 mmol), **2** (0.24 mmol), Cs₂CO₃ (0.3 mmol) and photocatalyst in 2 mL of solvent, irradiation with a 385 nm LED (0.5 W) at 25 °C for 20 hours. ^b Yields were determined by GC analysis using *n*-dodecane as internal standard. ^c **1q** (0.24 mmol, 1.2 eq.), **2** (0.20 mmol, 1.0 eq.). ^d **1q** (0.3 mmol, 1.5 eq.), **2** (0.20 mmol, 1.0 eq.). ^e **1q** (0.4 mmol, 2.0 eq.), **2** (0.20 mmol, 1.0 eq.).

Table S8. Screening of reaction conditions

Entry	Solvent	Eq. of 2	Additives / changes	Yield
1	MeCN	1.2		50%
2	MTBE	1.2		33%
3	(CH ₂ Cl) ₂	1.2		59%
4	$(CH_2Cl)_2$	1.0		67%
5	CH ₂ Cl ₂	1.2		66%
6	CH ₂ Cl ₂	1.0		70%
7	CH ₂ Cl ₂	1.2	BnEt ₃ NCl (10 mol%)	71%
8^b	CH ₂ Cl ₂	1.0	BnEt ₃ NCl (10 mol%)	78%
9	CH ₂ Cl ₂	1.2	BnEt ₃ NCl (20 mol%)	66%
10	CH ₂ Cl ₂	1.0	BnEt ₃ NCl (20 mol%)	71%
11	$(CH_2Cl)_2$	1.0	Heating to 60 °C (dark)	n.d.

^a Reaction conditions: Unless otherwise noted, all reactions were carried out with **1t** (0.2 mmol, 1.0 eq.), **2**, Cs₂CO₃ (0.3 mmol, 1.5 eq.) in 2 mL of solvent, irradiation with a 385 nm LED (0.5 W) at 25 °C for 20 hours. Yields of isolated products are given. ^b Epoxide **3t–1** was isolated in a 16% yield.

5. Mechanistic studies

Reaction profile and on/off Experiments

Procedure: Tosylhydrazone **1a** (0.2 mmol, 53.2 mg), Cs_2CO_3 (0.3 mmol, 98 mg), **2** (0.24 mmol, 7.2 mg), and internal standard (dodecane, 20 uL) were added into a 5 mL snap vial equipped with a stirring bar. The vial was evacuated and back filled with N_2 for three times, followed by the addition of MeCN (2 mL) *via* syringe. Then the reaction mixture was irradiated by a 385 nm LED (0.5 W) at 25 °C. An aliquot of the reaction mixture was then taken at the indicated times and analyzed by GC-FID.

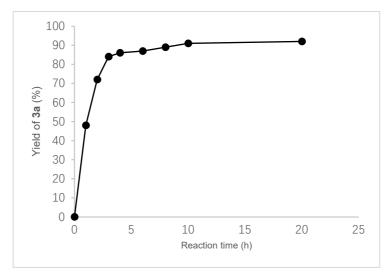


Figure S3. Reaction profile plot

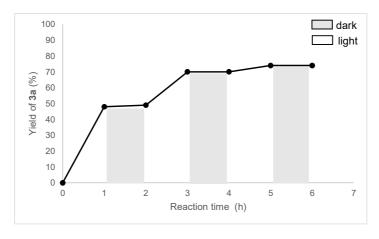
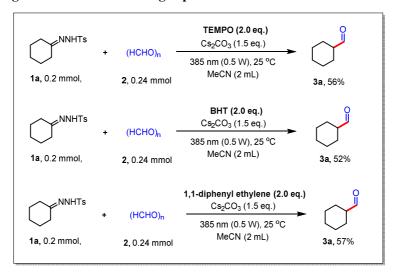
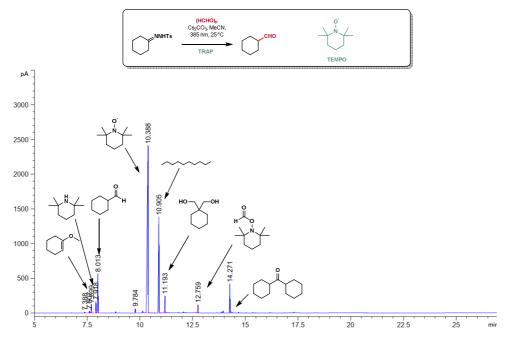
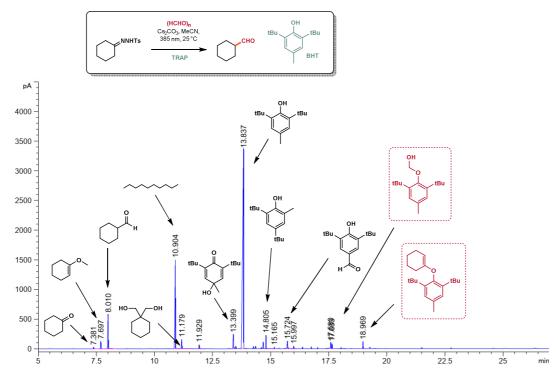




Figure S4. On/off experiments


Radical probing and deuterium labelling experiments

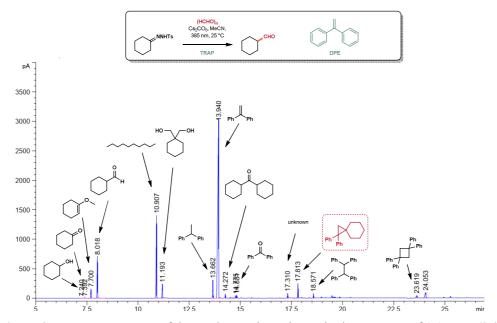
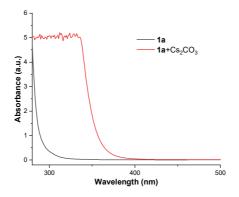
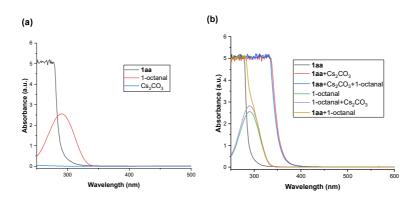

Scheme S2. Radical probing experiments

Figure S5. GCMS spectrum of the crude reaction mixture in the presence of TEMPO (2.0 eq.) after light irradiation (385 nm LED). Results: 93% of TEMPO is left unreacted. No radical trapping products can be observed, only small amounts of deoxygenated and formylated products originated from TEMPO were detected. The addition of TEMPO led to the formation of a considerable amount (~30%) of double insertion product dicyclohexyl ketone).

Figure S6. GCMS spectrum of the crude reaction mixture in the presence of BHT (2.0 eq.) after light irradiation (385 nm LED). Results: 75% of BHT (2.0 eq.) is left unreacted. Small amount of product originated from O-H insertion of BHT with diazo could be detected.


Figure S7. GCMS spectrum of the crude reaction mixture in the presence of 1,1-DPE (2.0 eq.) after light irradiation (385 nm LED). Results: 74% of 1,1-DPE (2.0 eq.) is left unreacted. A small amount of cyclopropanation product originating from carbene trapping by 1,1-DPE could be observed.

Scheme S3. Deuterium labelling experiments


Scheme S4. Semi-pinacol rearrangement experiments. 3-hydroxybutan-2-one-derived tosylhydrazone was synthesized and subjected to the reactions with paraformaldehyde or banzaldehyde, no desired products could be detected under standard conditions. When 2-hydroxy-phenylethanone derived tosylhydrazone was employed, we detected phenylacetaldehyde and styrene oxide in 3% and 2% yield respectively in the presence of Cs_2CO_3 (0.5 eq.). Increasing the amount of Cs_2CO_3 to (1.0 eq.) led to the formation of phenylacetaldehyde in 32% yield and styrene oxide in 2% yield.

Spectroscopic investigations

Optical absorption spectra of the reaction components and their combinations were measured in MeCN. *Note:* considering the poor solubility of paraformaldehyde in MeCN, 1-octanal was selected as the substrate in the UV-vis measurements. The reaction between acetone-derived tosylhydrazone **1aa** and 1-octanal afforded the desired ketone in a 90% yield under the optimized conditions.

Figure S8. UV-vis spectrum of **1a** (0.1 M) in MeCN (black curve). UV-vis spectrum of **1a** (0.1 M)+Cs₂CO₃ (1.5 eq.) in MeCN (red curve).

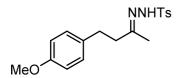
Figure S9. (a) UV-vis spectrum of acetone-derived N-tosylhydrazone **1aa** (0.1 M, black curve), 1-octanal (0.15 M, red curve), Cs₂CO₃ (sat., blue curve) in MeCN. (b) UV-vis spectrum of N-tosylhydrazone **1aa** (0.1 M, black curve), N-tosylhydrazone **1aa** (0.1 M)+Cs₂CO₃ (red curve), N-tosylhydrazone **1aa** (0.1 M)+1-octanal (0.15 M)+Cs₂CO₃ (blue curve), 1-octanal (0.15 M, green curve), 1-octanal (0.15 M)+Cs₂CO₃ (purple curve), and N-tosylhydrazone **1aa** (0.1 M)+1-octanal (0.15 M) (brown curve) in MeCN.

Scheme S5. Trapping of diazo intermediates with *E*-stilbene

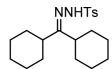
Scheme S5-1. Reaction of (diazomethylene)dibenzene with paraformaldehyde under dark conditions

When E-stilbene was used as potential diazo trapping reagent in the reaction, the desired cyclopropanation process occurred to afford the desired product 8 in 24% yield and cyclohexene (18% yield). It is well-known that diazo species would undergo photolysis to produce carbene

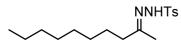
intermediates under light irradiation. ^[2] Therefore, we propose that the diazo formed in our reaction could undergo photolysis to give carbene species and the Bamford-Stevens process to yield alkene in this case. We also showcase that the reaction between diazo and paraformaldehyde could proceed in the dark conditions (Scheme 5-1).


6. Characterization of compounds

(Z)-N'-(2,2-dimethyl-1-phenylpropylidene)-4-methylbenzenesulfonohydrazide


Following **General procedure A-SM** on 5 mmol scale, filtration affored 1.57g (95%) of the title compound as a white solid. ¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (dd, J = 8.3, 1.7 Hz, 2H), 7.44 – 7.35 (m, 3H), 7.32 (d, J = 7.9 Hz, 2H), 6.87 (s, 1H), 6.84 – 6.76 (m, 2H), 2.44 (s, 3H), 1.05 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 165.46, 143.81, 135.30, 131.60, 129.28, 129.18, 127.82, 127.39,38.48, 27.96, 21.55. **HRMS (ESI):** [M+H] + calcd for C₁₈H₃₁N₂O₂₂S 331.1475, found 331.1479.

(Z)-N'-(4-(4-methoxyphenyl)butan-2-ylidene)-4-methylbenzenesulfonohydrazide


¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.0 Hz, 2H), 7.43 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H), 2.74 – 2.70 (m, 2H), 2.50 – 2.46 (m, 2H), 2.44 (s, 3H), 1.74 (s, 3H). ³C NMR (101 MHz, Chloroform-*d*) δ 157.84, 157.46, 157.44, 143.93, 135.41, 133.07, 129.44, 129.17, 128.07, 113.75, 55.19, 40.50, 31.11, 21.58, 16.05. HRMS (ESI): [M+H] $^+$ calcd for $C_{18}H_{23}N_2O_3S$ 347.1424, found 347.1418.

N'-(dicyclohexylmethylene)-4-methylbenzenesulfonohydrazide

¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, J = 8.4 Hz, 2H), 7.48 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.45-2.40 (m, 4H), 2.18-2.11 (m, 1H), 1.78 – 1.52 (m, 10H), 1.34 – 1.12 (m, 10H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.81, 135.24, 129.28, 128.15, 41.40, 31.72, 28.41, 26.36, 25.83, 25.76, 25.71, 21.60. HRMS (ESI): [M+H] + calcd for C₂₀H₃₁N₂O₂S 363.2101, found 363.2105.

(Z)-N'-(decan-2-ylidene)-4-methylbenzenesulfonohydrazide

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.16 (s, 1H), 2.42 (s, 3H), 2.18 (t, J = 7.6 Hz, 2H), 1.74 (s, 3H), 1.42 (p, J = 7.6 Hz, 2H), 1.29 – 1.14 (m, 10H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.58, 143.85, 135.46, 129.41, 128.09, 38.68, 31.84, 29.33, 29.17, 28.95, 25.89, 22.65, 21.58, 15.44, 14.09. HRMS (ESI): [M+H] + calcd for C₁₇H₂₉N₂O₂S 325.1944, found 325.1939.

19

(Z)-4-methyl-N'-(4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2 ylidene)benzenesulfonohydrazide

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.42 (s, 3H), 2.28 – 2.20 (m, 2H), 2.13-2.07 (m, 2H), 1.88 (t, J = 6.4 Hz, 2H), 1.78 (s, 3H), 1.57 – 1.52 (m, 5H), 1.43-1.34 (m, 2H), 0.93 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.95, 136.05, 135.29, 129.98, 129.38, 128.23, 39.72, 39.29, 34.98, 32.72, 28.51, 28.48, 28.43, 24.98, 21.60, 19.76, 19.44, 15.84. HRMS (ESI): [M+H] + calcd for C₂₀H₃₁N₂O₂S 363.2101, found 363.2009.

(Z)-4-methyl-N'-(2-methylpentylidene)benzenesulfonohydrazide

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.4 Hz, 2H), 7.55 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 6.4 Hz, 1H), 2.42 (s, 3H), 2.37-2.30 (m, 1H), 1.34 – 1.20 (m, 2H), 1.16 – 1.07 (m, 2H), 0.97 (d, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.43, 144.04, 135.16, 129.50, 127.95, 36.37, 36.29, 21.56, 19.94, 17.53, 13.89. HRMS (ESI): [M+H] + calcd for C₁₃H₂₀N₂O₂S 269.1318, found 269.1322.

(E)-N'-(3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropylidene)-4-methylbenzenesulfonohydrazide

¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.4 Hz, 2H), 7.69 (s, 1H), 7.29 (dd, J = 8.8, 0.8 Hz, 2H), 7.09 (d, J = 4.2 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.53 (d, J = 1.6 Hz, 1H), 6.47 (dd, J = 8.0, 1.6 Hz, 1H), 5.90 (dd, J = 2.4, 1.2 Hz, 2H), 2.70-2.65 (m, 1H), 2.63 – 2.55 (m, 1H), 2.49 – 2.45 (m, 1H), 2.43 (s, 3H), 0.98 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.94, 147.50, 145.86, 144.06, 135.19, 132.79, 129.52, 127.85, 121.89, 109.32, 108.05, 100.76, 40.05, 38.35, 21.57, 17.00. HRMS (ESI): [M+H] + calcd for $C_{18}H_{20}N_2O_4S$ 361.1217, found 361.1214.

(Z)-N'-(2,2-dimethylpropylidene)-4-methylbenzenesulfonohydrazide

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.23 (s, 1H), 7.06 (s, 1H), 2.43 (s, 3H), 1.01 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.23, 144.04, 129.41, 128.02, 35.13, 27.11, 21.59. HRMS (ESI): [M+H] + calcd for $C_{12}H_{18}N_2O_2S$ 255.1162, found 255.1164.

ethyl 4-(4-(3-methyl-4-oxobutyl)phenoxy)butanoate

Following **General procedure B-SM** on 3.15 mmol scale, purification by flash column chromatography (30% to 50%, EtOAc in petroleum ether) on silica gel afforded 1.04g (78%) of the

title compound as a white solid, Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.40 – 7.29 (m, 3H), 6.97 (d, J = 8.0 Hz, 2H), 6.73 (d, J = 8.0 Hz, 2H), 4.14 (dd, J = 14.0, 7.2 Hz, 2H), 4.00-3.94 (m, 2H), 2.70 (dd, J = 16.0, 8.0 Hz, 2H), 2.55 – 2.43 (m, 7H), 2.12 – 2.07 (m, 2H), 1.74 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.21, 157.52, 157.09, 143.89, 135.42, 133.18, 129.43, 129.15, 128.06, 114.36, 66.69, 60.39, 40.48, 31.12, 30.79, 24.64, 21.56, 16.08, 14.18.

HRMS (ESI): [M+H] + calcd for C₂₃H₃₁N₂O₅S 447.1948, found 447.1951.

(Z)-N'-(4-(4-(3-hydroxypropoxy)phenyl)but an -2-ylidene)-4-methyl benzene sulfon o hydrazide

Following **General procedure B-SM** on 3.15 mmol scale, purification by flash column chromatography (30% to 50%, EtOAc in petroleum ether) on silica gel afforded 0.96g (82%) of the title compound as a white solid, Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 4.10 (t, J = 7.0 Hz, 2H), 3.87 (t, J = 7.0 Hz, 2H), 2.75-2.69 (m, 2H), 2.51-2.44 (m, 5H), 2.05 – 1.91 (m, 3H), 1.91 (s, 1H), 1.74 – 1.73 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.56 (d, J = 5.6 Hz), 156.99, 143.89, 135.40, 133.32, 129.42, 129.18, 128.04, 114.35, 65.78 (d, J = 3.1 Hz), 60.50 (d, J = 4.9 Hz), 40.43, 31.95, 31.10, 21.55, 16.11. HRMS (ESI): [M+H] + calcd for C₂₀H₂₇N₂O₄S 391.1686, found 391.1690.

(Z)-N'-(4-(4-(but-2-yn-1-yloxy)phenyl)butan-2-ylidene)-4-methylbenzenesulfonohydrazide

Following **General procedure B-SM** on 3.15 mmol scale, purification by flash column chromatography (15% to 20%, EtOAc in petroleum ether) on silica gel afforded 0.98g (85%) of the title compound as a white solid, Rf = 0.5 (silica gel, petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.84 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 4.67 (s, 2H), 2.79 (t, J = 8.0 Hz, 2H), 2.57-2.52 (m, 5H), 1.93 (s, 3H), 1.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.54, 156.01, 143.83, 135.36, 133.66, 129.37, 129.07, 127.95, 114.59, 83.50, 74.05, 56.30, 40.36, 31.03, 21.49, 16.11, 3.58.HRMS (ESI): [M+H] + calcd for C₂₁H₂₅N₂O₃S 385.1580, found 385.1578.

(Z)-N'-(4-(allyloxy)phenyl)butan-2-ylidene)-4-methylbenzenesulfonohydrazide

Following General procedure B-SM on 3.15 mmol scale, purification by flash column

chromatography (10% to 15%, EtOAc in petroleum ether) on silica gel afforded 0.93 g (83% yield) of the title compound as a white solid, Rf = 0.5 (silica gel, petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.8 Hz,

2H), 6.77 (d, J = 8.4 Hz, 2H), 6.10 – 6.00 (m, 1H), 5.43-5.37 (m, 1H), 5.29 – 5.26 (m, 1H), 4.51-4.48 (m, 2H), 2.74 – 2.70 (m, 2H), 2.50-2.43 (m, 6H), 1.75 (d, J = 2.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.54, 156.88, 143.92, 135.43, 133.39, 133.28, 129.44, 129.15, 128.07, 117.51, 114.63, 68.81, 40.45, 31.13, 21.58, 16.07.

HRMS (ESI): [M+H] + calcd for $C_{20}H_{25}N_2O_3S$ 373.1580, found 373.1577.

(E)-4-methyl-N'-(4-(4-(pyridin-2-ylmethoxy)phenyl)butan-2-ylidene)benzenesulfonohydrazide

Following **General procedure B-SM** on 3.15 mmol scale, purification by flash column chromatography (25% to 50%, EtOAc in petroleum ether) on silica gel afforded 1.03 g (81% yield) of the title compound as a white solid, Rf = 0.5 (silica gel, petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.49 (m, 2H), 7.78 – 7.65 (m, 4H), 7.26 – 7.20 (m, 3H), 6.94 (d,

TH NMR (400 MHz, CDCl₃) δ 8.61 – 8.49 (m, 2H), 7.78 – 7.65 (m, 4H), 7.26 – 7.20 (m, 3H), 6.94 (d, J = 8.8 Hz, 2H), 6.76-6.74 (d, J = 8.8 Hz, 2H), 4.96 (s, 2H), 2.68-2.62 (m, 2H), 2.42 – 2.35 (m, 5H), 1.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.42, 156.63, 149.29, 148.86, 143.85, 135.49, 135.26, 133.95, 132.65, 129.40, 129.33, 128.06, 123.49, 114.75, 67.57, 40.40, 31.11, 21.56, 16.16.

HRMS (ESI): [M+H] + calcd for C₂₃H₂₆N₃O₃S 424.1689, found 424.1683.

(Z)-N'-(4-(4-(3-chloropropoxy)phenyl)butan-2-ylidene)-4-methylbenzenesulfonohydrazide

Following **General procedure B-SM** on 3.15 mmol scale, purification by flash column chromatography (25% to 50%, EtOAc in petroleum ether) on silica gel afforded 0.83 g (68% yield) of the title compound as a white solid, Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J=8.0 Hz, 2H), 7.71 (s, 1H), 7.31 (d, J=8.0 Hz, 2H), 6.99 (d, J=8.0 Hz, 2H), 6.76 (d, J=8.4 Hz, 2H), 4.07 (t, J=6.0 Hz, 2H), 3.74 (t, J=6.4 Hz, 2H), 2.73 – 2.68 (m, 2H), 2.49-2.44 (m, 5H), 2.27 – 2.19 (m, 2H), 1.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.40, 157.01, 143.94, 135.46, 133.41, 129.46, 129.24, 128.11, 114.45, 64.30, 41.53, 40.47, 32.30, 31.13, 21.59, 16.01. HRMS (ESI): [M+H] + calcd for C₂₀H₂₆ClN₂O₃S 409.1347, found 409.1356.

(Z)-N'-(4-(4-(4-cyanobutoxy)phenyl)butan-2-ylidene)-4-methylbenzenesulfonohydrazide

Following General procedure B-SM on 3.15 mmol scale, purification by flash column

chromatography (15% to 25%, EtOAc in petroleum ether) on silica gel to afford 0.95 g (77% yield) of the title compound as a white solid, Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.47 (s, 1H), 7.31 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 6.74 (d, J = 8.0 Hz, 2H), 4.01-3.95 (m, 2H), 2.74 – 2.70 (m, 2H), 2.49-2.44 (m, 7H), 1.96 – 1.89 (m, 4H), 1.74 (s, 3H). 13 C NMR (101 MHz, CDCl₃) δ 157.53, 156.96, 143.91, 135.44, 133.39, 129.44, 129.25, 128.09, 119.49, 114.34, 66.63, 40.46, 31.13, 28.17, 22.44, 21.58, 16.97, 16.08. HRMS (ESI): [M+H] $^{+}$ calcd for C₂₂H₂₈N₃O₃S 414.1846, found 414.1854.

4-(pyridin-2-ylmethoxy)benzaldehyde

Following **General procedure D-SM** on 3 mmol scale starting from 3-Picolyl chloride hydrochlorid, purification by flash column chromatography (15% to 25%, EtOAc in petroleum ether) on silica gel afforded the title compound as a white solid 0.47 g (73% yield), Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, Chloroform-d) δ 9.89 (s, 1H), 8.69-8.61 (m 2H), 7.85 (d, J = 8.8 Hz, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.36-7.33 (m, 1H), 7.08 (d, J = 8.8 Hz, 2H), 5.16 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 190.65, 163.19, 149.76, 148.95, 135.26, 132.00, 131.53, 130.45, 123.57, 115.03, 67.75. HRMS (ESI): [M+H] ⁺ calcd for C₁₃H₁₂NO₂ 214.0863, found 214.0860.

4-(allyloxy)benzaldehyde

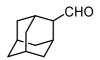
Following **General procedure D-SM** on 3 mmol scale starting from 3-bromoprop-1-ene (0.38 g, 3.15 mmol), purification by flash column chromatography (1% to 3%, EtOAc in petroleum ether) on silica gel afforded the title compound as a white solid 0.40 g (83% yield), Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 30:1).

¹H NMR (400 MHz, Chloroform-*d*) δ 9.88 (s, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.09-6.0 (m, 1H), 5.43 (d, J = 17.2 Hz, 1H), 5.33 (d, J = 10.4 Hz, 1H), 4.62 (d, J = 4.8 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.75, 163.57, 132.25, 131.92, 130.01, 118.31, 114.97, 68.97. HRMS (ESI): [M+H] $^+$ calcd for C₁₀H₁₁O₂ 163.0754, found 163.0753.

4-(but-2-yn-1-yloxy)benzaldehyde

Following **General procedure D-SM** on 3 mmol scale starting from 1-Bromo-2-butyne (0.42 g, 3.15 mmol, purification by flash column chromatography (1% to 3%, EtOAc in petroleum ether) on silica gel afforded the title compound as a white solid 0.45 g (86% yield), Rf = 0.3 (silica gel, petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, Chloroform-d) δ 9.89 (s, 1H), 7.84 (d, J

= 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 4.73 (d, J = 8.4 Hz, 2H), 1.86 (t, J = 2.4 Hz, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 190.79, 162.74, 131.85, 130.29, 115.14, 84.67, 73.07, 56.63, 3.64. HRMS (ESI): [M+H] + calcd for $C_{11}H_{11}O_2$ 175.0754, found 175.0751.

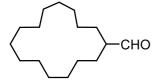

4-(tert-Butyl)cyclohexane-1-carbaldehyde (3b)

Following the general procedure A, the product was obtained as a colorless oil, 17.1 mg, 51% yield, (trans: cis = 3.8:1). ¹H NMR (300 MHz, CDCl₃) δ 9.71 (s, 0.26 H), 9.60 (d, J = 1.8 Hz, 1H), 2.42-2.37 (m, 0.29 H), 2.31-2.24 (m, 0.59 H), 2.18-2.07 (m, 1H), 2.05-1.97 (m, 2H), 1.92-1.86 (m, 2H), 1.73-1.63 (m, 0.77H), 1.57-1.45(m, 1.6H), 1.29-1.15 (m, 2.4H), 1.09-0.90 (m, 6H), 0.85 (s, 9H), 0.79 (s, 2.5H). ¹³C NMR (75 MHz, CDCl₃) δ 205.97, 204.97, 50.51, 47.76, 47.55, 46.47, 32.46, 32.43, 31.75, 29.67, 27.45, 27.35, 26.46, 26.17, 25.44, 24.06. **HRMS** (EI), Calcd. for C₁₁H₂₀O [M]⁺ 168.1509, found, 168.1513.

4-Phenylcyclohexane-1-carbaldehyde (3c)

Following the general procedure A, the product was obtained as a white solid, 32.3 mg, 86% yield (trans: cis = 1:11.2). ¹**H NMR** (300 MHz, CDCl₃) δ 9.79 (s, 0.7H), 9.68 (d, J = 1.8, 0.1H), 7.32-7.25 (m, 2H), 7.24-7.14 (m, 3H), 2.91-2.70 (m, 0.2H), 2.58-2.48 (m, 1.8H), 2.38-2.31 (m, 1.73 H), 2.20-1.93 (m, 0.6 H), 1.85 – 1.67 (m, 4H), 1.57-1.41 (m, 2H). ¹³**C NMR** (75 MHz, CDCl₃) δ 205.50, 146.80, 134.96, 128.35, 126.73, 126.04, 46.24, 43.59, 32.91, 30.61, 26.3, 24.98. **HRMS** (EI), Calcd. for C₁₃H₁₆O [M]⁺ 188.1210, found, 188.1209.

Adamantane-2-carbaldehyde (3d)


Following the general procedure A, the product was obtained as a colorless oil, 24.0 mg, 73% yield. ¹H NMR (300 MHz, CDCl₃) δ 9.73 (s, 1H), 2.42-2.38 (m, 3H), 1.98-1.91 (m, 2H), 1.89-1.83 (m, 2H), 1.80-1.61 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 206.01, 56.55, 37.79, 36.99, 33.48, 28.11, 27.87, 27.44. HRMS (EI) Calcd. for C₁₁H₁₆O [M]⁺: 164.1201. Found: 164.1209. HRMS (EI) Calcd. for C₁₁H₁₆O [M]⁺: 164.1201. Found: 164.1209.

Cyclododecanecarbaldehyde (3e)

Following the general procedure A, the product was obtained as a colorless oil, 28.2 mg, 72% yield.

¹H NMR (300 MHz, CDCl₃) δ 9.63 (d, J = 1.5 Hz, 1H), 2.44-2.35 (m, 1H), 1.70-1.59 (m, 2H), 1.57-1.44 (m, 2H), 1.42-1.29 (m, 18H). ¹³C NMR (75 MHz, CDCl₃) δ 205.41, 47.71, 23.72, 23.58, 23.52, 23.45, 23.33, 22.30. HRMS (EI), Calcd. for C₁₃H₂₄O [M]⁺ 196.1827, found, 196.1819.

Cyclopentadecanecarbaldehyde (3f)

Following the general procedure A, the product was obtained as a colorless oil, 20.0mg, 42% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 9.61 (d, J = 1.8 Hz, 1H), 2.33-2.24 (m, 1H), 1.74-1.61 (m, 2H), 1.57-1.44 (m, 2H), 1.43-1.28 (m, 24H). ¹³C NMR (75 MHz, CDCl₃) δ 205.32, 50.20, 27.07, 26.70, 26.67, 26.60, 26.49, 26.38, 24.82. **HRMS** (EI) Calcd. for C₁₆H₃₀O[M]⁺: 238.2291. Found: 238.2293.

tert-Butyl 4-formylpiperidine-1-carboxylate (3g)

Following the general procedure A, the product was obtained as a yellowish oil, 14.5 mg, 34% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 9.65 (d, J = 1.2 Hz, 1H), 4.00-3.95 (m, 2H), 2.96-2.87 (m, 2H), 2.46 - 2.35 (m, 1H), 1.93-1.85 (m, 2H), 1.61-1.48 (m, 2H), 1.45 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 202.99, 154.65, 79.72, 47.99, 28.39, 25.13. **HRMS** (ESI) Calcd. for C₁₁H₂₀NO₃⁺ [M+H]⁺: 214.1438. Found: 214.1434.

Methyl 2-(4-((2-formylcyclopentyl)methyl)phenyl)propanoate (3i)

Following the general procedure A, the product was obtained as a yellowish oil, 27.9 mg, 51% yield. 1 H NMR (300 MHz, CDCl₃) δ 9.44 (d, J = 2.4 Hz, 1H), 7.22-7.18 (m, 2H), 7.14-7.10 (m, 2H), 3.73-3.63 (m, 4H), 2.76-2.58 (m, 2H), 2.49-2.34 (m, 2H), 1.90-1.54 (m, 5H), 1.47 (d, J = 7.2 Hz, 3H), 1.39-1.32 (m, 1H). 13 C NMR (75 MHz, CDCl₃) δ 203.59, 175.05, 139.35, 138.28, 129.14, 127.41, 57.20, 51.96, 44.93, 42.87, 40.41, 32.40, 26.19, 24.54, 18.52. **HRMS** (EI): Calcd. For $C_{17}H_{22}O_3$ [M] $^{+}$: 274.1563, Found: 274.1558. *Note: the stereochemistry of this product was not assigned due to NMR signal overlap*.

2-(4-Isobutylphenyl)propanal (3k)

Following the general procedure B, the product was obtained as a colorless oil, 23.9 mg, 63% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 9.68 (d, J = 1.5 Hz, 1H), 7.18-7.11 (m, 4H), 3.64-3.58 (m, 1H), 2.48 (d, J = 7.2 Hz, 2H), 1.92-1.82 (m, 1H), 1.44 (d, J = 7.2 Hz, 3H), 0.93 (s, 3H), 0.91 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 201.16, 140.97, 134.80, 129.75, 127.97, 52.58, 44.96, 30.14, 22.31, 14.51. **HRMS** (EI): Calcd. For C₁₃H₁₈O [M]⁺: 190.1358, Found: 190.1349.

3-Methyl-2-phenylbutanal (31)

Following the general procedure A, the product was obtained as a colorless oil, 14.3 mg, 44% yield. 1 H NMR (300 MHz, CDCl₃) δ 9.71 (d, J = 3.3 Hz, 1H), 7.40-7.27 (m, 3H), 7.21-7.17 (m, 2H), 3.18 (dd, J = 9.3, 3.3 Hz, 1H), 2.50-2.34 (m, 1H), 1.05 (d, J = 6.6 Hz, 3H), 0.77 (d, J = 6.6 Hz, 3H). 13 C NMR (75 MHz, CDCl₃) δ 201.13, 135.45, 129.29, 128.87, 127.44, 66.82, 28.75, 21.16, 20.01. HRMS (EI) Calcd. for $C_{11}H_{14}O$ [M] $^{+}$: 162.1045. Found: 162.1046. Spectroscopic results agree with preciously reported data. $^{[5]}$

3,3-Dimethyl-2-phenylbutanal (3m)

Following the general procedure A, the product was obtained as a colorless oil, 14.8 mg, 42% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 10.01 (d, J = 3.3 Hz, 1H), 7.39-7.27 (m, 3H), 7.24-7.20 (m, 2H), 3.29 (d, J = 3.3 Hz, 1H), 1.03 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ 202.27, 135.20, 130.35, 128.29, 127.26, 68.34, 34.55, 28.18. **HRMS** (ESI) Calcd. for [M+NH₄]⁺: 194.1539. Found: 194.1538. Spectroscopic results agree with previously reported data. ^[6]

2-Cyclohexyl-2-phenylacetaldehyde (3n)

Following the general procedure A, the product was obtained as a colorless oil, 22.6 mg, 56% yield. 1 H NMR (300 MHz, CDCl₃) δ 9.70 (d, J = 3.6 Hz, 1H), 7.39-7.26 (m, 3H), 7.20-7.16 (m, 2H), 3.25 (dd, J = 9.6, 3.6 Hz, 1H), 2.18-2.05 (m, 1H), 1.89-1.71 (m, 2H), 1.69-1.61 (m, 2H), 1.46-1.25 (m, 2H), 1.24-1.00 (m, 3H), 0.87-0.74 (m, 1H). 13 C NMR (75 MHz, CDCl₃) δ 201.21, 135.19, 129.29, 128.85, 127.37, 65.82, 38.12, 31.77, 30.15, 26.20, 26.04, 26.00. HRMS (EI) Calcd. for $C_{14}H_{18}O$ [M] $^{+}$: 202.1352. Found: 202.1352. Spectroscopic results agree with preciously reported data. $^{[6]}$

2-Methyldecanal (3s)

Following the general procedure D, the product was obtained as a colorless oil, 25.4 mg, 75% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 9.60 (d, J = 2.0 Hz, 1H), 2.36-2.27 (m, 1H), 1.74-1.63 (m, 1H), 1.37 – 1.26 (m, 13H), 1.07 (d, J = 7.2 Hz, 3H), 0.88 – 0.85 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 205.32, 46.29, 31.82, 30.50, 29.60, 29.38, 29.20, 26.91, 22.62, 14.05, 13.28. **HRMS** (ESI): Calcd. For [M+NH₄]⁺: 188.2009, Found: 188.2007.

4-(4-Methoxyphenyl)-2-methylbutanal (3t)

Following the general procedure D, the product was obtained as a colorless oil, 30.0 mg, 78% yield. Following the general procedure A with **1j** (8 mmol), the product was obtained as a colorless oil, 675.8 mg, 44% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 9.62 (d, J = 1.6 Hz, 1H), 7.12-7.08 (m, 2H), 6.85-6.82 (m, 2H), 3.79 (s, 3H), 2.68-2.55 (m, 2H), 2.42-2.32 (m, 1H), 1.68-1.59 (m, 1H), 1.14 (d, J = 6.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 204.89, 157.95, 133.37, 129.28, 113.88, 55.24, 45.57, 32.38, 32.12, 13.32. **HRMS** (EI): Calcd. For C₁₂H₁₆O₂ [M]⁺: 192.1145, Found: 192.1150.

2-(4-Methoxyphenethyl)-2-methyloxirane (3t-1)

Following the general procedure E, the byproduct was obtained as a colorless oil, 6.2 mg, 16% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 2.68 – 2.62 (m, 2H), 2.62 – 2.56 (m. 2H), 1.90 (ddd, J = 13.8, 9.1, 6.9 Hz, 1H), 1.79 (ddd, J = 13.8, 9.1, 6.7 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 133.7, 129.3, 129.2, 113.9, 113.9, 56.7, 55.3, 54.0, 38.8, 30.5, 21.0.

2-methyl-4-(4-(pyridin-2-ylmethoxy)phenyl)butanal (3u)

Following the general procedure D, the product was obtained as a colorless oil, 35 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, J = 2.0 Hz, 1H), 8.67 – 8.56 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.32 (dd, J = 8.0, 4.8 Hz, 1H), 7.10 (d, J = 8.4, 2H), 6.89 (d, J = 8.8 Hz, 2H), 5.05 (s, 2H), 2.65 – 2.57 (m, 2H), 2.38 – 2.32 (m, 1H), 2.07-1.97 (m, 1H), 1.67-1.58 (m, 1H), 1.13 (dd, J = 7.2, 2.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.78, 156.71, 149.21, 148.80, 135.30, 134.16, 132.68, 129.40, 123.49, 114.80, 67.53, 45.52, 32.27, 32.09, 13.30. **HRMS (ESI):** [M+H]⁺ calcd for C₁₇H₂₀NO₂ 270.1489, found 270.1489.

4-(4-(allyloxy)phenyl)-2-methylbutanal (3v)

Following the general procedure D, the product was obtained as a colorless oil, 24 mg, 55% yield. ¹H NMR (400 MHz, Chloroform-d) δ 9.61 (d, J = 1.6 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.10 (m, 1H), 5.44 – 5.26 (m, 2H), 4.53-4.50 (m, 2H), 2.68-2.54 (m, 2H), 2.41-2.32 (m, 1H), 2.04-1.98 (m, 1H), 1.68 – 1.59 (m, 1H), 1.14 (d, J = 6.8 Hz, 3H). ¹³C **NMR (101 MHz, Chloroform-d)** 8 204.84, 156.97, 133.56, 133.41, 129.25, 117.52, 114.74, 68.84, 45.56, 32.33, 32.12, 13.31. **HRMS (ESI):** [M+H]⁺ calcd for $C_{14}H_{19}O_{2}$ 219.1380, found 219.1383.

4-(4-(but-2-yn-1-yloxy)phenyl)-2-methylbutanal (3w)

Following the general procedure D, the product was obtained as a colorless oil, 33 mg, 72% yield. ¹H NMR (400 MHz, Chloroform-d) δ 9.61 (d, J = 2.0 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 4.62 (d, J = 2.4 Hz, 2H), 2.68 – 2.54 (m, 2H), 2.41 – 2.32 (m, 1H), 2.07-1.98 (m, 1H), 1.86 (s, 3H), 1.68-1.58 (m, 1H), 1.14 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 204.81, 156.20, 133.96, 129.22, 114.80, 83.55, 74.11, 56.42, 45.53, 32.29, 32.11, 13.29, 3.65. HRMS (ESI): [M+H]⁺ calcd for C₁₅H₁₉O₂ 231.1380, found 231.1378.

4-(4-(3-chloropropoxy)phenyl)-2-methylbutanal (3x)

Following the general procedure D, the product was obtained as a colorless oil, 32 mg, 63% yield. ¹H NMR (400 MHz, Chloroform-d) δ 9.61 (d, J = 2.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 4.09 (t, J = 6.2 Hz, 2H), 3.74 (t, J = 6.4 Hz, 2H), 2.68-2.55 (m, 2H), 2.39 – 2.32 (m, 1H), 2.25-2.19 (m, 2H), 2.07-1.98 (m, 1H), 1.68-1.59 (m, 1H), 1.14 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 204.84, 157.06, 133.64, 129.31, 114.50, 64.26, 45.53, 41.53, 32.34, 32.28, 32.10, 13.30. HRMS (ESI): [M+H] $^+$ calcd for C₁₄H₂₀ClO₂ 255.1146, found 255.1137.

4-(4-(3-hydroxypropoxy)phenyl)-2-methylbutanal (3y)

Following the general procedure D, the product was obtained as a colorless oil, 20 mg, 42% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.60 (d, J = 2.0 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 4.10 (t, J = 6.0 Hz, 2H), 3.85 (t, J = 6.0 Hz, 2H), 2.67 – 2.54 (m, 2H), 2.39-2.31 (m, 1H), 2.06 – 1.96 (m, 3H), 1.79 – 1.58 (m, 2H), 1.13 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 204.89, 157.11, 133.61, 129.30, 114.49, 65.82, 60.53, 45.54, 32.34, 32.10, 31.97, 13.30. HRMS (ESI): [M+H] $^+$ calcd for C₁₄H₂₁O₃ 237.1485, found 237.1493.

Ethyl 4-(4-(3-methyl-4-oxobutyl)phenoxy)butanoate (3z)

Following the general procedure D, the product was obtained as a colorless oil, 31 mg, 53% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.61 (d, J = 2.0 Hz, 1H), 7.08 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 2.0 Hz, 2H), 4.17-4.11 (m, 2H), 3.98 (t, J = 6.2 Hz, 2H), 2.66 – 2.49 (m, 4H), 2.40-2.31 (m, 1H), 2.13 – 1.98 (m, 3H), 1.67 – 1.61 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H), 1.14 (d, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 204.86, 173.25, 157.22, 133.47, 129.28, 114.50, 66.75, 60.40, 45.57, 32.38, 32.13, 30.83, 24.68, 14.21, 13.32. HRMS (ESI): [M+H] $^+$ calcd for C₁₇H₂₅O₄ 293.1747, found 293.1752.

5-(4-(3-methyl-4-oxobutyl)phenoxy)pentanenitrile (3aa)

Following the general procedure D, the product was obtained as a colorless oil, 30 mg, 58% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.61 (d, J = 2.0 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.99-3.96 (m, 2H), 2.67 – 2.54 (m, 2H), 2.46 – 2.33 (m, 3H), 2.07 – 1.84 (m, 5H), 1.67-1.58 (m, 1H), 1.13 (d, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 204.79, 157.03, 133.64, 129.32, 119.47, 114.40, 66.61, 45.52, 32.32, 32.08, 28.16, 22.43, 16.94, 13.30. HRMS (ESI): [M+H] $^+$ calcd for C₁₆H₂₂NO₂ 260.1465, found 260.1456.

2-Benzylbutanal (3ab)

Following the general procedure D, the product was obtained as a colorless oil, 25.6 mg, 79% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 9.68 (d, J = 2.7 Hz, 1H), 7.32-7.15 (m, 5H), 3.04-2.97 (m, 1H), 2.76-2069 (m, 1H), 2.65-2.52 (m, 1H), 1.76-1.50 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 204.71, 138.91, 128.92, 128.48, 126.32, 54.79, 34.53, 21.52, 11.30. **HRMS** (EI) Calcd. for C₁₁H₁₄O [M]⁺: 162.1045. Found: 162.1047. Spectroscopic results agree with previously reported data. ^[3]

2-Benzyl-3-phenylpropanal (3ac)

Following the general procedure D, the product was obtained as a colorless oil, 23.4 mg, 53% yield. 1 H NMR (400 MHz, CDCl₃) δ 9.73 (d, J= 1.2 Hz, 1H), 7.32-7.27 (m, 4H), 7.24-7.14 (m, 6H), 3.03-2.85 (m, 3H), 2.81-2.73 (m, 2H). 13 C NMR (101 MHz, CDCl₃) δ 204.03, 138.62, 129.83, 129.05, 128.63, 128.37, 126.55, 54.88, 34.94. HRMS (EI) Calcd. for $C_{16}H_{16}O$ [M] $^{+}$: 224.1196. Found: 224.1195. Spectroscopic results agree with previously reported data. $^{[3]}$

2-Methyl-3,3-diphenylpropanal (3ad)

Following the general procedure D, the product was obtained as a colorless oil, 39.0 mg, 87% yield. **H NMR** (300 MHz, CDCl₃) δ 9.59 (d, J = 3.0 Hz, 1H), 7.34-7.25 (m, 8H), 7.23-7.16 (m, 2H), 4.09 (d, J = 11.1 Hz, 1H), 3.38-3.26 (m, 1H), 1.05 (d, J = 6.9 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 204.20, 142.17, 142.04, 128.80, 128.73, 128.11, 127.97, 126.79, 126.71, 53.35, 50.11, 13.61. **HRMS** (EI): Calcd. For $C_{16}H_{16}O$ [M]⁺: 224.1196, Found: 224.1199. Spectroscopic results agree with previously reported data.^[4]

2,2-Dicyclohexylacetaldehyde (3ae)

Following the general procedure D, the product was obtained as a colorless oil, 31.6 mg, 76% yield. Following the general procedure E starting from cyclohexananone (0.8 mmol), the product was obtained as a colorless oil, 36.8 mg, 41% yield over 2 steps. ¹H NMR (300 MHz, CDCl₃) δ 9.65 (d, J = 4.8 Hz, 1H), 1.87-1.63 (m, 13H), 1.32-1.12 (m, 6H), 1.06-0.91 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 207.77, 63.06, 35.44, 31.21, 30.00, 26.54, 26.45, 26.39. HRMS (ESI) Calcd. for [M+NH₄]⁺: 226.2165. Found: 226.2164.

2-Methyl-4-(2,6,6-trimethylcyclohex-1-enyl)butanal (3ag)

Following the general procedure D, the product was obtained as a colorless oil, 34.7 mg, 84% yield. 1 **H NMR** (300 MHz, CDCl₃) δ 9.64 (d, J = 1.2 Hz, 1H), 2.41-2.29 (m, 0.8H), 2.07-1.95 (m, 2H), 1.92 – 1.87 (m, 2H), 1.82-1.69 (m, 1H), 1.60 - 1.52 (m, 5H), 1.49-1.37 (m, 3H), 1.13 (d, J = 6.9 Hz, 3H), 0.98 (s, 3H), 0.97 (s, 3H). 13 **C NMR** (75 MHz, CDCl₃) δ 205.07, 136.60, 127.53, 47.16, 39.72, 34.87, 32.70, 30.99, 28.57, 26.05, 19.84, 19.44, 13.17. **HRMS** (EI): Calcd. For C₁₄H₂₄O [M]⁺: 208.1822, Found: 208.1827. Spectroscopic results agree with preciously reported data. ${}^{[7]}$

6-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-methylhexanal (3ah)

Following the general procedure D, the product was obtained as a yellowish oil, 27.6 mg, 48% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 9.57 (d, J = 2.1 Hz, 1H), 7.49 (d, J = 0.7 Hz, 1H), 3.98-3.93 (m, 5H), 3.52 (s, 3H), 2.37-2.25 (m, 1H), 1.79-1.58 (m, 3H), 1.46-1.32 (m, 3H), 1.05 (d, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 205.05, 155.15, 151.35, 148.64, 141.38, 107.53, 46.09, 40.90, 33.49, 29.96, 29.58, 27.86, 24.17, 13.19. **HRMS** (EI): Calcd. For C₁₄H₂₄O [M]⁺: 208.1822, Found: 208.1827. **HRMS** (ESI): Calcd. For [M+H]⁺: 293.1608, Found: 293.1610.

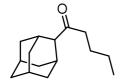
1-(4-Methoxyphenyl)-3-methyloctan-4-one (5c)

30

Following the general procedure E, the product was obtained as a colorless oil, 32.6 mg, 60% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 7.08 (d, J = 8.1 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 3.78 (s, 3H), 2.56-2.37 (m, 4H), 2.03-1.91 (m, 1H), 1.64-1.48 (m, 3H), 1.36-1.21 (m, 3H), 1.10 (d, J = 6.9 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 214.64, 157.81, 133.82, 129.21, 113.78, 55.23, 45.58, 40.89, 34.71, 32.53, 25.78, 22.40, 16.48, 13.89. **HRMS** (EI): Calcd. For C₁₆H₂₄O₂ [M]⁺: 248.1776, Found: 248.1773.

1-(4-Methoxyphenyl)-3-methylundecan-4-one (5d)

Following the general procedure E, the product was obtained as a colorless oil, 32.6 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.09-7.07 (m, 2H), 6.84-6.81 (m, 2H), 3.79 (s, 3H), 2.57-2.47 (m, 3H), 2.45-2.33 (m, 2H), 2.01-1.92 (m, 1H), 1.63-1.51 (m, 3H), 1.34-1.21 (m, 8H), 1.10 (d, J = 7.0 Hz, 3H), 0.92-0.83 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 214.69, 157.82, 133.83, 129.22, 113.79, 55.23, 45.57, 41.19, 34.71, 32.53, 31.68, 29.26, 29.10, 23.68, 22.60, 16.48, 14.05. **HRMS** (EI): Calcd. For C₁₉H₃₀O₂ [M]⁺: 290.2240, Found: 290.2249.


1-(4-Phenylcyclohexyl)propan-1-one (5e)

Following the general procedure E, the product was obtained as a colorless oil, 26 mg, yield = 60% (d.r.>20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.21-7.15 (m, 3H), 2.67-2.65 (m, 1H), 2.59 – 2.48 (m, 3H), 2.23 – 2.19 (m, 2H), 1.78-1.62 (m, 6H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 214.03, 147.00, 128.32, 126.94, 125.93, 46.01, 43.53, 33.47, 30.39, 26.96, 8.08. HRMS (EI): Calcd. For C₁₅H₂₀O [M]⁺: 215.1514, Found: 216.1518.

1-(4-Phenylcyclohexyl)butan-1-one (5f)

Following the general procedure E, the product was obtained as a colorless oil, 23 mg, 50% yield (d.r.>20:1). 1 **H NMR** (300 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 2.64-2.62 (m, 1H), 2.59 – 2.51 (m, 1H), 2.46 (t, J = 7.2 Hz, 2H), 2.26 – 2.18 (m, 2H), 1.77 – 1.57 (m, 8H), 0.93 (t, J = 7.5 Hz, 3H). 13 **C NMR** (75 MHz, CDCl₃) δ 213.56, 146.96, 128.26, 126.88, 125.87, 46.17, 43.49, 42.28, 30.32, 26.81, 17.34, 13.83. **HRMS** (EI): Calcd. For C₁₆H₂₂O [M]⁺: 230.1665, Found: 230.1669.

1-(Adamantan-2-yl)pentan-1-one (5g)

Following the general procedure E, the product was obtained as a colorless oil, 13.2 mg, 30% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.48-2.34 (m, 4H), 2.04-1.71 (m, 11H), 1.61-1.50 (m, 4H), 1.36-1.23 (m, 2H), 0.90 (t, J = 0.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 213.18, 57.02, 39.43, 38.45, 37.31, 33.31, 29.21, 27.67, 27.51, 26.02, 22.47, 13.94. HRMS (EI): Calcd. For C₁₅H₂₄O [M]⁺: 220.1822, Found: 220.1826.

1-Cyclopropyl-4-(4-methoxyphenyl)-2-methylbutan-1-one (5h)

Following the general procedure E, the product was obtained as a colorless oil, 23.3 mg, 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 3.79 (s, 3H), 2.73-2.64 (m, 1H), 2.55 (t, J = 8.0 Hz, 2H), 2.09-1.99 (m, 1H), 1.97-1.91 (m, 1H), 1.69-1.60 (m, 1H), 1.17 (d, J = 6.8 Hz, 3H), 1.02-0.99(m, 2H), 0.87-0.84 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 214.18, 157.78, 133.92, 129.24, 113.76, 55.20, 46.44, 34.81, 32.51, 19.07, 16.28, 10.72, 10.70. **HRMS** (EI): Calcd. For C₁₅H₂₀O₂ [M]⁺: 232.1458, Found: 232.1460.

1-Cyclopentyl-4-(4-methoxyphenyl)-2-methylbutan-1-one (5i)

Following the general procedure E, the product was obtained as a colorless oil, 20.3 mg, 50% yield. **¹H NMR** (400 MHz, CDCl₃) δ 7.08 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.79 (s, 3H), 3.00-2.92 (m, 1H), 2.69-2.60 m, 1H), 2.55-2.47 (m, 2H), 2.02-1.93 (m, 1H), 1.78-1.66 (m, 6H), 1.61-1.54 (m, 3H), 1.11 (d, J = 6.8 Hz, 3H). (101 MHz, CDCl₃) δ 217.09, 157.78, 133.93, 129.18, 113.76, 55.23, 49.97, 45.14, 34.79, 32.62, 29.49, 29.33, 26.08, 26.03, 16.67. **HRMS** (ESI): Calcd. For C₁₇H₂₅O₂⁺ [M+H]⁺: 261.1849, Found: 261.1850.

Cyclohexyl(4-phenylcyclohexyl)methanone (5j)

Following the general procedure E, the product was obtained as a colorless oil, 26.5 mg, 49% yield (d.r.>20:1). 1 H NMR (400 MHz, CDCl₃) δ 7.22-7.18 (m, 2H), 7.13-7.07 (m, 3H), 2.72-2.70 (m, 1H), 2.55-2.47 (m, 2H), 2.08-2.04 (m, 2H), 1.71-1.57 (m, 10H), 1.35-1.12 (m, 5H). 13 C NMR (101 MHz, CDCl₃) δ 216.75, 128.25, 126.93, 125.83, 48.21, 44.27, 43.43, 30.30, 28.98, 26.86, 25.85, 25.76. HRMS (ESI): Calcd. For $C_{19}H_{30}NO^{+}$ [M+NH₄]+: 288.2322, Found: 288.2322.

2-Methyl-1-(4-phenylcyclohexyl)pentan-1-one (5k)

Following the general procedure E, the product was obtained as a colorless oil, 24.3 mg, 47% yield. (d.r.>20:1). 1 H NMR (300 MHz, CDCl₃) δ 7.31 – 7.14 (m, 5H), 2.83-2.75 (m, 2H), 2.61-2.52 (m, 1H), 2.16 – 2.09 (m, 2H), 1.81 – 1.60 (m, 7H), 1.33 – 1.19 (m, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.93 – 0.88 (m, 3H). 13 C NMR (75 MHz, CDCl₃) δ 217.77, 146.99, 128.26, 126.94, 125.85, 45.10, 43.37, 43.29, 35.74, 30.32, 30.17, 26.91, 26.57, 20.67, 17.16, 14.20. **HRMS** (EI): Calcd. For C₁₈H₂₆O [M]⁺: 258.1978, Found: 258.1980.

3-(Benzo[d][1,3]dioxol-5-yl)-1-cyclobutyl-2-methylpropan-1-one (5l)

Following the general procedure E, the product was obtained as a colorless oil, 30 mg, 61% yield. 1 H NMR (400 MHz, CDCl₃) δ 6.69 (d, J = 7.6 Hz, 1H), 6.61 (d, J = 1.6 Hz, 1H), 6.56 (dd, J = 8.0, 1.7 Hz, 1H), 5.90 (d, J = 0.8 Hz, 2H), 3.28-3.19 (m, 1H), 2.90-2.85 (m, 1H), 2.78-2.70 (m, 1H), 2.46-2.41 (m, 1H), 2.24-2.15 (m, 1H), 2.08-1.83 (m, 4H), 1.77-1.68 (m, 1H), 1.03 (d, J = 7.2 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 214.57, 147.46, 145.79, 133.68, 121.82, 109.25, 108.04, 100.73, 46.30, 44.62, 38.79, 24.16, 24.00, 17.61, 16.62. **HRMS** (EI): Calcd. For C₁₅H₁₈O₃ [M]⁺: 246.1251, Found: 246.1246.

3-(Benzo[d][1,3]dioxol-5-yl)-1-cyclopentyl-2-methylpropan-1-one (5m)

Following the general procedure E, the product was obtained as a colorless oil, 34.9 mg, 67% yield. 1 **H NMR** (400 MHz, CDCl₃) δ 6.69 (d, J = 7.6 Hz, 1H), 6.62-6.56(m, 2H), 5.90 (q, J = 1.6 Hz, 2H), 2.91-2.79 (m, 3H), 2.48-2.42 (m, 1H), 1.72-1.49 (m, 8H), 1.06 (d, J = 6.8 Hz, 3H). 13 **C NMR** (101 MHz, CDCl₃) δ 216.38, 147.45, 145.78, 133.75, 121.87, 109.31, 108.03, 100.73, 50.70, 47.78, 38.98, 28.77, 28.67, 25.96, 25.85, 16.85. **HRMS** (EI): Calcd. For C₁₆H₂₀O₃ [M]⁺: 260.1407, Found: 260.1405.

1-(Benzo[d][1,3]dioxol-5-yl)-2,4-dimethyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hexan-3-one (5n)

Following the general procedure E, the product was obtained as a colorless oil, 40 mg, 54% yield (d.r. = 2.6:1). ¹H NMR (400 MHz, CDCl₃) δ 6.72-6.58 (m, 3H), 5.92-5.88 (m, 2H), 2.92-2.84 (m, 2H), 2.50 - 2.43 (2, 2H), 1.90-1.78 (m, 4H), 1.60-1.51 (m, 6H), 1.40-1.36 (m, 2H), 1.08-1.05 (m, 5H), 0.97-0.87 (m,

8H). ¹³C **NMR** (101 MHz, CDCl₃) δ 217.36, 217.16, 147.47, 145.84, 145.82, 136.77, 136.73, 133.80, 133.69, 127.29, 127.16, 121.98, 121.92, 109.41, 109.35, 108.10, 108.07, 100.77, 100.74, 47.64, 47.55, 46.76, 46.71, 39.76, 39.74, 39.00, 38.95, 34.87, 34.80, 33.00, 32.92, 32.68, 28.58, 28.51, 28.48, 28.44, 26.74, 26.62, 19.73, 19.70, 19.46, 17.05, 16.73, 16.06, 15.84. **HRMS** (EI): Calcd. For C₂₄H₃₄O₃ [M]⁺:370.2503, Found: 370.2492.

3-(Benzo[d][1,3]dioxol-5-yl)-1-cycloheptyl-2-methylpropan-1-one (50)

Following the general procedure E, the product was obtained as a colorless oil, 23 mg, 40% yield. 1 H NMR (400 MHz, CDCl₃) δ 6.71-6.69 (d, J = 7.6 Hz,1H), 6.63-6.57 (m, 2H), 5.92-5.91 (m, 2H), 2.92-2.83 (m, 2H), 2.49-2.41 (m, 2H), 1.69-1.25 (m, 12H), 1.05 (d, J = 6.4 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 217.24, 147.48, 145.82, 133.82, 121.93, 109.38, 108.09, 100.77, 51.79, 47.22, 39.21, 29.59, 29.21, 28.27, 26.63, 26.51, 17.07. **HRMS** (EI): Calcd. For $C_{18}H_{24}O_{3}$ [M] $^{+}$: 288.1720, Found: 288.1713.

1-(Benzo[d][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-2,4-dimethylhexan-3-one (5p)

Following the general procedure E, the product was obtained as a colorless oil, 28.3 mg, 40% yield (d.r.=1.3:1). 1 H NMR (300 MHz, CDCl₃) δ 7.07 – 6.95 (m, 2H), 6.85 – 6.78 (m, 2H), 6.71 – 6.54 (m, 3H), 5.90 (s, 1H), 5.88 (q, J = 1.5 Hz, 1H), 3.80 (s, 1.3H), 3.78 (s, 1.7H), 2.91 – 2.82 (m, 2H), 2.54 – 2.40 (m, 3H), 2.34 (t, J = 8.1 Hz, 1H), 1.97 – 1.71 (m, 1H), 1.57 – 1.36 (m, 1H), 1.07-1.03 (m, 4.5H), 0.89 (d, J = 6.9 Hz, 1.5H). 13 C NMR (101 MHz, CDCl₃) δ 217.28 (s), 217.01, 157.80, 157.75, 147.50, 147.46, 145.88, 145.83, 133.79, 133.73, 133.70, 129.16, 129.08, 122.01, 121.92, 113.76, 113.71, 109.43,109.34, 108.10, 108.06, 100.76, 55.21, 47.52, 47.27, 45.15, 45.11, 38.98, 38.91, 34.16, 32.52, 32.24, 17.07, 16.82, 16.17, 15.81. HRMS (ESI): Calcd. For $C_{22}H_{27}O_4^+$ [M+H]+: 355.1904, Found: 355.1906.

1-(Cyclohex-3-en-1-yl)-4-(4-methoxyphenyl)-2-methylbutan-1-one (5q)

Following the general procedure E, the product was obtained as a colorless oil, 16.1 mg, 50% yield (d.r.=1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.10-7.05 (m, 2H), 6.85-6.80 (m, 2H), 5.70-5.69 (m, 2H), 3.79 (s, 3H), 2.79-2.65 (m, 2H), 2.54-2.48 (m, 2H), 2.22-1.93 (m, 5H), 1.88-1.83 (m, 1H), 1.63-1.52 (m, 2H), 1.12 (d, 1.8 Hz, 1.5H). 1.11 (d, 1.8 Hz, 1.5H). 1.5H). 1.5H). 1.5H). 1.5H). 1.5H). 1.5H). 1.5H). 1.5H). 1.5H, 1

Cyclohex-3-en-1-yl(4-phenylcyclohexyl)methanone (5r)

Following the general procedure E, the product was obtained as a colorless oil, 40.2 mg, 75% yield (d.r.>15:1). Following the general procedure A with **4e** (6 mmol), the product was obtained as a colorless oil, 1.126g, 70% yield (d.r.>15:1). ¹H NMR. (400 MHz, CDCl₃) δ 7.31 - 7.26 (m, 2H), 7.22 - 7.15 (m, 3H), 5.74-5.67 (m, 2H), 2.90 - 2.83 (m, 2H), 2.61-2.53 (m, 1H), 2.22 - 2.08 (m, 6H), 2.02 - 1.84 (m, 2H), 1.77 - 1.63 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 216.48, 146.93, 128.26, 126.91, 126.51, 125.87, 125.64, 44.42, 43.91, 43.44, 30.31, 30.28, 27.57, 26.92, 26.82, 25.19, 24.86. **HRMS** (ESI): Calcd. For $C_{19}H_{28}NO^+$ [M+NH₄]+: 286.2165, Found: 286.2171.

8-Chloro-1-(4-methoxyphenyl)-3-methyloctan-4-one (5s)

Following the general procedure E, the product was obtained as a colorless oil, 34.3 mg, 59% yield. ¹**H NMR** (300 MHz, CDCl₃) δ 7.10-7.05 (m, 2H), 6.85-6.80 (m, 2H), 3.78 (s, 3H), 3.59-3.49 (m, 2H), 2.59-2.35 (m, 5H), 2.03-1.91 (m, 1H), 1.82-1.65 (m, 4H), 1.64-1.51 (m, 1H), 1.11 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 213.79, 157.82, 133.62, 129.21, 113.78, 55.21, 45.53, 44.67, 40.07, 34.62, 32.47, 31.98, 20.90, 16.45. **HRMS** (EI): Calcd. For C₁₆H₂₃O₂Cl [M]⁺: 282.1381, Found: 282.1386.

10-Hydroxy-1-(4-methoxyphenyl)-3,6,10-trimethylundecan-4-one (5t)

Following the general procedure E, the product was obtained as a colorless oil, 29.4 mg, 44% yield (d.r.=1:1). 1 H NMR (300 MHz, CDCl₃) δ 7.10-7.05 (m, 2H), 6.84-6.79 (m, 2H), 3.78 (s, 3H), 2.53-2.48 (m, 2H), 2.46-2.18 (m, 2H), 2.08-1.89 (m, 2H), 1.63-1.49 (m, 2H), 1.46-1.26 (m, 6H), 1.20 (d, J = 0.9 Hz, 6H), 1.08 (d, J = 6.9 Hz, 3H), 0.88 (d, J = 3.0 Hz, 1.5 H), 0.86 (d, J = 3.0 Hz, 1.5 H). 13 C NMR (75 MHz, CDCl₃) δ 214.34, 214.30, 157.74, 133.77, 133.75, 129.18, 113.81, 113.75, 70.92, 55.19, 48.70, 48.66, 45.88, 45.84, 43.87, 37.32, 37.29, 34.60, 34.46, 32.49, 32.45, 29.27, 29.12, 28.63, 23.82, 21.64, 19.89, 19.83, 16.32, 16.25. HRMS (ESI): Calcd. For $C_{21}H_{38}NO_{3}^{+}$ [M+NH₄]⁺: 252.2846, Found: 252.2846.

1,3-Phenylenebis(cyclohexylmethanone) (5u)

Following the general procedure E, starting from hydrazone (0.4 mmol) and isophthalaldehyde (0.2 mmol), the product was obtained as a white solid, 33.4 mg, 56% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.48 (t, J = 2.1 Hz, 1H), 8.11 (dd, J = 7.8, 1.8 Hz, 2H), 7.56 (t, J = 7.8 Hz, 1H), 3.35-3.25 (m, 2H), 1.92-1.82 (m, 8H), 1.77-1.71 (m, 2H), 1.57 – 1.24 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 203.25, 136.68,

132.20, 128.99, 127.92, 45.69, 29.33, 25.89, 25.74. **HRMS** (EI): Calcd. For $C_{20}H_{26}O_2$ [M]⁺:298.1927, Found: 298.1920.

(5S,8R,9S,10S,13S,14S,17S)-3-(4-Chlorobenzoyl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl acetate (5v)

Following the general procedure E, the product was obtained as a white solid, 45.7 mg, 50% yield (d.r.>20:1). 1 H NMR (300 MHz, CDCl₃) δ 7.90 – 7.84 (m, 2H), 7.45 – 7.39 (m, 2H), 4.62-4.56 (m, 1H), 3.29 – 3.17 (m, 1H), 2.21 – 2.08 (m, 1H), 2.03 (s, 3H), 1.84 – 1.40 (m, 12H), 1.38 – 1.23 (m, 5H), 1.14 – 0.91 (m, 4H), 0.83 (s, 3H), 0.77 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ 202.44, 171.24, 139.11, 134.59, 129.65, 128.87, 82.80, 54.43, 50.75, 46.30, 46.03, 42.57, 37.89, 36.89, 36.04, 35.21, 31.54, 28.53, 27.46, 24.76, 23.45, 21.17, 20.42, 12.29, 12.08. HRMS (ESI) Calcd. For [M+H] $^{+}$:457. 2504, Found 457.251.

Methyl 4-(cyclohexanecarbonyl)benzoate (5w)

Following the general procedure E, the product was obtained as a white solid, 26.1 mg, 53% yield. 1 H NMR (300 MHz, CDCl₃) δ 8.13-8.09 (m, 2H), 7.99-7.95 (m, 2H), 3.94 (s, 3H), 3.30-3.20 (m, 1H), 1.92-1.70 (m, 5H), 1.52-1.27 (m, 5H). 13 C NMR (75 MHz, CDCl₃) δ 203.38, 166.28, 139.69, 133.49, 129.80, 128.12, 52.42, 45.96, 29.23, 25.86, 25.73. HRMS (EI): Calcd. For $C_{15}H_{18}O_{3}$ [M] $^{+}$:246.1256, Found: 246.1255. Spectroscopic results agree with preciously reported data. $^{[8]}$

Cyclohexyl(4-chlorophenyl)methanone (5x)

Following the general procedure E, the product was obtained as a white solid, 24.4 mg, 55% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.90-7.86 (m, 2H), 7.44-7.41 (m, 2H), 3.23-3.16 (m, 1H), 1.90 -1.82 (m, 4H), 1.77-1.70 (m, 1H), 1.51-1.21 (m, 6H). 13 C NMR (101 MHz, CDCl₃) δ 202.58, 139.10, 134.61, 129.68, 128.87, 45.62, 29.34, 25.88, 25.78. HRMS (EI): Calcd. For $C_{13}H_{15}OCl$ [M] $^{+}$:222.0806, Found: 222.0805. Spectroscopic results agree with preciously reported data. $^{[8]}$

Cyclohexyl (2-fluoro-3-methoxyphenyl) methanone (5y)

Following the general procedure E, the product was obtained as a white solid, 34.4 mg, 73% yield. ¹H **NMR** (300 MHz, CDCl₃) δ 7.37-7.32 (m, 1H), 7.23-7.17 (m, 2H), 4.02 (s, 3H), 3.26-3.16 (m, 1H), 2.09 -2.02 (m, 2H), 1.94-1.75 (m, 3H), 1.58-1.33 (m, 5H). ¹³C **NMR** (75 MHz, CDCl₃) δ 203.05 (d, J = 3.5 Hz), 151.10 (d, J = 253.0 Hz), 148.12 (d, J = 11.9 Hz), 127.04 (d, J = 11.5 Hz), 124.14 (d, J = 4.4 Hz), 121.23 (d, J = 2.4 Hz), 116.39 (d, J = 2.5 Hz), 56.52, 50.30 (d, J = 5.9 Hz), 28.79, 26.01, 25.82. ¹⁹F **NMR** (282 MHz, CDCl₃) δ -135.60. **HRMS** (EI): Calcd. For C₁₄H₁₇O₂F [M]⁺: 236.1207, Found 236.1206. **cyclohexyl(pyridin-3-yl)methanone (5z)**

Following the general procedure E, the product was obtained as a colorless oil, 15 mg, 40% yield. ¹H NMR (400 MHz, Chloroform-d) δ 9.14 (s, 1H), 8.75 (d, J = 4.2 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.42 – 7.39 (m, 1H), 3.25-3.19 (m, 1H), 1.91 – 1.73 (m, 5H), 1.55-1.25 (m, 5H). ¹³C NMR (101 MHz, Chloroform-d) δ 202.55, 153.15, 149.70, 135.68, 131.49, 123.66, 46.06, 29.13, 25.82, 25.68. HRMS (ESI): [M+H] $^+$ calcd for C₁₂H₁₆NO 190.1226, found 190.1230.

(4-(allyloxy)phenyl)(cyclohexyl)methanone (5aa)

Following the general procedure E, the product was obtained as a colorless oil, 17.1 mg, 35% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.93 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 6.10-6.00 (m, 1H), 5.42 (d, J = 17.2 Hz, 1H), 5.31 (d, J = 10.4 Hz, 1H), 4.60 (d, J = 5.2 Hz, 2H), 3.25-3.18 (m, 1H), 1.88 – 1.71 (m, 5H), 1.54 – 1.24 (m, 5H). ¹³C NMR (101 MHz, Chloroform-d) δ 202.41, 162.19, 132.54, 130.45, 129.35, 118.13, 114.40, 68.84, 45.29, 29.53, 25.96, 25.89. HRMS (ESI): [M+H] $^+$ calcd for $C_{16}H_{21}O_2$ 245.1536, found 245.1542.

(4-(but-2-yn-1-yloxy)phenyl)(cyclohexyl)methanone (5ab)

Following the general procedure E, the product was obtained as a colorless oil, 244.6 mg, 48% yield. ¹**H NMR (400 MHz, Chloroform-d)** δ 7.93 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 4.70 (s, 2H), 3.24-3.18 (m, 1H), 1.88 – 1.70 (m, 8H), 1.54 – 1.21 (m, 5H). ¹³**C NMR (101 MHz, Chloroform-d)** δ 202.39, 161.35, 130.36, 129.65, 114.52, 84.35, 73.32, 56.46, 45.30, 29.50, 25.94, 25.87. **HRMS (ESI):** [M+H] $^+$ calcd for C₁₇H₂₁O₂ 257.1536, found 257.1534.

cyclohexyl(4-(pyridin-2-ylmethoxy)phenyl)methanone (5ac)

Following the general procedure E, the product was obtained as a colorless oil, 30 mg, 51% yield. ¹H NMR (400 MHz, Chloroform-d) δ 8.65 (d, J = 35.2 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 7.6 Hz, 1H), 7.34 (s, 1H), 7.00 (d, J = 8.4 Hz, 2H), 5.13 (s, 2H), 3.24-3.17 (m, 1H), 1.87 – 1.70 (m, 5H), 1.53 – 1.22 (m, 5H). ¹³C NMR (101 MHz, Chloroform-d) δ 201.38, 160.88, 134.35, 129.57, 128.86, 113.50, 66.67, 44.35, 28.51, 24.95, 24.88. HRMS (ESI): [M+H] ⁺ calcd for C₁₉H₂₂NO₂ 296.1645, found 296.1650.

(4-Chlorophenyl)(cyclododecyl)methanone (5ad)

Following the general procedure E, the product was obtained as a white solid, 43.4 mg, 71% yield. 1 H NMR (300 MHz, CDCl₃) δ 7.90-7.86 (m, 2H), 7.46-7.42 (m, 2H), 3.52-3.44 (m, 1H), 1.74-1.57 (m, 4H), 1.47-1.25 (m, 18H). 13 C NMR (75 MHz, CDCl₃) δ 202.99, 139.07, 135.37, 129.60, 128.92, 42.19, 26.41, 23.94, 23.67, 23.37, 22.47. HRMS (EI): Calcd. For $C_{19}H_{27}OC1$ [M] $^{+}$:306.1744, Found: 306.1734.

1-(4-Chlorophenyl)-4-(4-methoxyphenyl)-2-methylbutan-1-one (5ae)

Following the general procedure E, the product was obtained as a white solid, 24.4 mg, 49% yield. 1 H NMR (300 MHz, CDCl₃) δ 7.80 – 7.75 (m, 2H), 7.42 – 7.38 (m, 2H), 7.07 – 7.02 (m, 2H), 6.84 – 6.79 (m, 2H), 3.79 (s, 3H), 3.44-3.33 (m, 1H), 2.61-2.56 (m, 2H), 2.18-2.05 (m, 1H), 1.76 – 1.64 (m, 1H), 1.21 (d, J = 6.9 Hz, 3H). 13 C NMR (75 MHz, CDCl₃) δ 202.88, 157.87, 139.25, 134.75, 133.54, 129.67, 129.37, 128.87, 113.78, 55.24, 39.53, 35.30, 32.42, 17.10. HRMS (EI) Calcd. For C₁₈H₁₉O₂Cl [M]⁺:302.1074, Found: 302.1075.

1-(4-Chlorophenyl)-2-methyldecan-1-one (5af)

Following the general procedure E, the product was obtained as a white solid, 25.8 mg, 46% yield. 1 H NMR (300 MHz, CDCl₃) δ 7.91-7.86 (m, 2H), 7.46-7.41 (m, 2H), 3.45-3.34 (m, 1H), 1.83-1.72 (m, 1H), 1.48-1.37 (m, 1H), 1.30-1.23 (m, 12H), 1.18 (d, J = 6.6 Hz, 3H), 0.89-0.84 (m, 3H). 13 C NMR (75 MHz, CDCl₃) δ 203.32, 139.19, 135.02, 129.66, 128.90, 40.61, 33.67, 31.82, 29.69, 29.41, 29.22, 27.35, 22.63, 17.11, 14.08. HRMS (EI) Calcd. For $C_{17}H_{25}OC1$ [M] $^{+}$:280.1588, Found: 280.1591.

2-Cyclopropyl-1-phenylpropan-1-one (5ag)

38

Following the general procedure E, the product was obtained as a colorless oil, 18.2 mg, 52% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.01 (M, 2H), 7.58 – 7.53 (M, 1H), 7.48 – 7.44 (m, 2H), 2.80 (dq, J = 7.0, 7.6 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H), 1.12 – 1.03 (m, 1H), 0.59 – 0.53 (m, 1H), 0.50 – 0.44 (m, 1H), 0.23 – 0.14 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 204.14, 136.95, 132.81, 128.55, 128.30, 45.11, 17.12, 14.58, 4.35, 3.41. This compound is commercially available (CAS number: 69096-84-0).

1-(Benzo[d][1,3]dioxol-5-yl)-2,5-dimethyloctan-3-one (5ah)

Following the general procedure F, the product was obtained as a colorless oil, 35.1 mg, 64% yield (d.r. = 1:1). Purification was achieved by silica column chromatography (PE/EtOAc = 30:1). ¹**H NMR** (400 MHz, CDCl₃) δ 6.70 (d, J = 7.9 Hz, 1H), 6.63 (d, J = 1.6 Hz, 1H), 6.58 (dd, J = 7.9, 1.6 Hz, 1H), 5.91 (s, 2H), 2.88 (dd, J = 13.5, 7.3 Hz, 1H), 2.75 (dqd, J = 14.1, 7.0, 2.5 Hz, 1H), 2.45 (ddd, J = 13.5, 7.3, 2.9 Hz, 1H), 2.30 (ddd, J = 31.7, 16.4, 5.8 Hz, 1H), 2.15 (ddd, J = 30.8, 16.4, 7.7 Hz, 1H), 2.01 – 1.89 (m, 1H), 1.32 – 1.07 (m, 4H), 1.05 (d, J = 6.9 Hz, 3H), 0.85 (td, J = 7.2, 2.2 Hz, 3H), 0.80 (dd, J = 6.6 1.5 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 214.2, 214.2, 147.7, 147.7, 146.0, 146.0, 133.8, 133.8, 122.1, 109.5, 109.5, 108.3, 100.9, 49.8, 49.8, 48.7, 48.7, 39.3, 39.3, 38.9, 38.8, 28.7, 28.6, 20.2, 20.2, 20.0, 16.6, 14.3, 14.3. **HRMS** (ESI) Calcd. For [M+H]⁺: 277.1798, Found 277.1799.

12-Hydroxy-4,8,12-trimethyltridecan-6-one (5ai)

Following the general procedure F, the product was obtained as a colorless oil, 37.0 mg, 72% yield (d.r. = 1:1). Purification was achieved by silica column chromatography (PE/EtOAc = 4:1). ¹**H NMR** (400 MHz, CDCl₃) δ 2.38 – 2.32 (m, 2H), 2.22 – 2.14 (m, 2H), 2.07 – 1.94 (m, 2H), 1.65 (br, 1H), 1.46 – 1.11 (m, 16H), 0.89 – 0.86 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 211.3, 211.2, 71.1, 51.1, 51.1, 51.0, 51.0, 44.1, 39.4, 39.3, 37.5, 37.5, 29.5, 29.4, 29.2, 29.2, 29.1, 29.0, 21.8, 21.8, 20.2, 20.2, 20.0, 20.0, 14.3. **HRMS** (ESI) Calcd. For [M+NH4]⁺: 274.2741, Found 274.274.

1-(2-Fluoro-3-methoxyphenyl)-3-methylhexan-1-one (5aj)

Following the general procedure F, the product was obtained as a colorless oil, 14.2 mg, 30% yield. Purification was achieved by silica column chromatography (PE/EtOAc = 9:1).

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 1H), 7.15 – 7.08 (m, 2H), 3.91 (s, 3H), 2.96 (ddd, J =

16.1, 5.6, 2.9 Hz, 1H), 2.74 (ddd, J = 16.1, 8.0, 2.9 Hz, 1H), 2.18 – 2.06 (m, 1H), 1.39 – 1.17 (m, 4H), 0.93 (d, J = 6.7 Hz, 3H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 214.2, 214.2, 147.7, 147.7, 146.0, 146.0, 133.8, 133.8, 122.1, 109.5, 109.5, 108.3, 100.9, 49.8, 49.8, 48.7, 48.7, 39.3, 39.3, 38.9, 38.8, 28.7, 28.6, 20.2, 20.2, 20.0, 16.6, 14.3. ¹⁹F **NMR** (377 MHz, CDCl₃) δ -133.93. **HRMS** (EI+) Calcd. For [M]⁺: 238.13636, Found 238.13622.

1-(Benzo[d][1,3]dioxol-5-yl)-10-hydroxy-2,6,10-trimethylundecan-4-one (5ak)

Following the general procedure F, the product was obtained as a colorless oil, 42.2 mg, 61% yield (d.r. = 1:1). Purification was achieved by silica column chromatography (PE/EtOAc = 5:2).

¹H NMR (400 MHz, CDCl₃) δ 6.71 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 1.5 Hz, 1H), 6.58 (d, J = 7.9, 1.5 Hz, 1H), 5.91 (s, 2H), 2.48 (dd, J = 13.8, 6.2 Hz, 1H), 2.41 – 2.28 (m, 3H), 2.28 – 2.11 (m, 3H), 2.03 – 1.93 (m, 1H), 1.71 (br, 1H), 1.45 – 1.09 (m, 12H), 0.90 – 0.84 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 210.8, 210.8, 147.6, 145.9, 134.4, 122.1, 109.6, 108.1, 100.9, 71.06, 51.0, 51.0, 50.0, 49.9, 44.0, 43.0, 43.0, 37.5, 37.4, 31.3, 31.3, 29.5, 29.3, 29.2, 29.1, 21.8, 21.8, 20.0, 20.0, 19.9, 19.9. HRMS (ESI) Calcd. For [M+H]*:349.2373, Found 349.237.

4-(Benzo[d][1,3]dioxol-5-yl)-1-(cyclohex-3-en-1-yl)-3-methylbutan-1-one (5al)

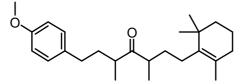
Following the general procedure F, the product was obtained as a colorless oil, 29.2 mg, 51% yield (d.r. = 1:1). Purification was achieved by silica column chromatography (PE/EtOAc = 15:1).

¹H NMR (400 MHz, CDCl₃) δ 6.72 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 1.3 Hz, 1H), 6.59 (d, J = 7.9, 1.3 Hz, 1H), 5.91 (s, 2H), 5.73 – 5.61 (m, 2H), 2.59 – 2.46 (m, 2H), 2.46 – 2.25 (m, 4H), 2.25 – 1.99 (m, 4H), 1.95 – 1.83 (m, 1H), 1.60 – 1.45 (m, 1H), 0.88 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 213.4, 213.4, 147.6, 145.9, 134.5, 134.5, 126.8, 126.7, 125.6, 125.5, 122.1, 109.6, 108.1, 100.9, 47.4, 47.4, 47.1, 43.0, 43.0, 31.2, 31.2, 27.0, 26.8, 24.9, 24.9, 24.8, 24.6, 19.9. HRMS (ESI) Calcd. For [M+H]⁺: 287.1642, Found 287.1641.

2,2,6,10-Tetramethylundec-9-en-4-one (5am)

Following the general procedure F, the product was obtained as a colorless oil, 22.6 mg, 50% yield. Purification was achieved by silica column chromatography (PE/EtOAc = 50:1).

¹H NMR (400 MHz, CDCl₃) δ 5.10 – 5.06 (m, 1H), 2.39 – 2.16 (m, 4H), 2.04 – 1.90 (m, 3H), 1.68 (s, 3H), 1.59 (s, 3H), 1.35 – 1.25 (m, 1H), 1.21 – 1.12 (m, 1H), 1.01 (s, 9H), 0.88 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 211.0, 131.6, 124.6, 55.6, 52.7, 37.1, 31.1, 29.9, 29.0, 25.9, 25.6, 19.9,


17.8. **HRMS** (ESI) Calcd. For [M+H]⁺: 225.2213, Found 225.2213.

1-(Benzo[d][1,3]dioxol-5-yl)-2,5,5-trimethylhexan-3-one (5an)

Following the general procedure F, the product was obtained as a colorless oil, 25.4 mg, 48% yield. Purification was achieved by silica column chromatography (PE/EtOAc = 30:1).

¹H NMR (400 MHz, CDCl₃) δ 6.71 (d, J = 7.8 Hz, 1H), 6.63 (d, J = 1.6 Hz, 1H), 6.58 (dd, J = 7.8, 1.6 Hz, 1H), 5.91 (s, 2H), 2.87 (dd, J = 13.5, 6.9 Hz, 1H), 2.72 (dq, J = 13.9, 7.0 Hz 1H), 2.42 (dd, J = 13.5, 7.5 Hz, 1H), 2.24 (dd, J = 34.9, 15.4 Hz, 2H), 1.02 (d, J = 6.9 Hz, 3H), 0.96 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 214.1, 147.7, 146.0, 133.8, 122.1, 109.5, 108.3, 100.9, 54.5, 49.8, 38.8, 31.1, 29.8, 16.3. HRMS (ESI) Calcd. For [M+H]⁺: 263.1642, Found 263.1641.

1-(4-Methoxyphenyl)-3,5-dimethyl-7-(2,6,6-trimethylcyclohex-1-en-1-yl)-heptan-4-one (5ao)

Following the general procedure G using dihydro-β-inone (0.4 mmol), the product was obtained as a colorless oil, 43.5 mg, 29% yield over 2 steps (d.r.=3.9:1). Following the general procedure F using 4-(4-methoxyphenyl)butan-2-one (0.4 mmol), the product was obtained as a colorless oil, 38.3 mg, 26% yield over 2 steps (d.r.=3.9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.12 - 7.05 (m, 2H), 6.85 – 6.79 (m, 2H), 3.78 (s, 2.4H), 3.78 (s, 0.6H), 2.70 – 2.60 (m, 1H), 2.59 – 2.46 (m, 2H), 2.09 – 1.81 (m, 5H), 1.63 – 1.52 (m, 8H), 1.43 – 1.26 (m, 4H), 1.15 – 1.03 (m, 5H), 1.02 – 0.94 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 217.75, 217.65, 157.91, 157.81, 136.77, 133.91, 129.20, 129.18, 129.11, 127.37, 127.34, 113.88, 113.80, 113.79, 55.24, 45.88, 45.83, 44.67, 44.63, 39.78, 34.91, 34.61, 34.56, 33.50, 33.43, 32.72, 32.65, 32.59, 28.61, 28.56, 28.53, 26.86, 26.82, 19.78, 19.75, 19.53, 19.49, 16.61, 16.55, 16.51, 16.43. HRMS (ESI) Calcd. For [M+NH₄] $^+$:388.3210, Found 388.3209.

2-(4-(4-Methoxyphenyl)butan-2-yl)hexanal (3ai)

Following the general procedure G using (4-methoxyphenyl)butan-2-one (0.4 mmol), the product was obtained as a colorless oil, 27.7 mg, 26% yield over 2 steps (d.r.=1.3:1). ¹H NMR (400 MHz, CDCl₃) δ 9.63 (d, J = 3.2 Hz, 0.4 H), 9.60 (d, J = 2.8 Hz, 0.5 H), 7.08 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 2.70-2.61 (m, 1H), 2.55-2.46 (m, 1H), 2.21-2.14 (m, 1H), 1.96-1.82 (m, 1H), 1.74-1.60 (m, 2H), 1.55-1.36 (m, 2H), 1.32-1.25 (m, 4H), 1.02 (d, J = 6.8 Hz, 1.3 H), 0.95 (d, J = 6.8 Hz, 1.7 H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.01, 205.75, 157.78, 134.12, 134.07, 129.17, 113.81, 56.87, 56.79, 55.24, 36.52, 36.15, 33.15, 32.60, 32.44, 32.36, 30.10, 29.92, 25.95, 24.55, 22.83, 22.75, 16.83, 16.25, 13.89. HRMS (EI) Calcd. For $C_{17}H_{26}O_{2}[M]^{+}$:262.1933, Found 262.1926.

4-(4-Methoxyphenyl)-2-methylbutanal-1,2-d2

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazone (1t, 0.2 mmol, 1.0 eq.), Cs_2CO_3 (0.3 mmol, 1.5 eq.), and paraformaldehyde-d2 (2b, 0.24 mmol, 1.2 eq.) were added. The vial was evacuated and back filled with N_2 for three times. Then dry MeCN (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with Et_2O (10 mL *3). The combined organic phase was then washed with H_2O (10 mL) and brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel flash chromatography (gradient eluent: petroleum ether in EtOAc = 2% to 3%), to give the desired product as a colorless oil, 24.8 mg, 64% yield, overall deuterium content >98%. 1H NMR (400 MHz, $CDCl_3$) δ 7.12-7.08 (m, 2H), 6.85-6.82 (m, 2H), 3.79 (s, 3H), 2.67-2.55 (m, 2H), 2.40-2.32 (m, 0.03H), 2.06-1.98 (m, 1H), 1.661.59 (m, 1H), 1.13 (m, 3H). ^{13}C NMR (101 MHz, $CDCl_3$) δ 204.61 (t, J = 26.0 Hz), 157.91, 133.34, 129.25, 113.84, 55.20, 32.16 (d, J = 19.9 Hz), 31.74, 13.19.

HRMS (EI): Calcd. For C₁₂H₁₄O₂D₂ [M]⁺: 194.1276, Found: 194.1270.

1,2-Diphenylspiro[2.5]octane (8)

To a 5 mL snap vial with a magnetic stirring bar, tosylhydrazone (1a, 0.2 mmol, 1.0 eq.), and Cs₂CO₃ (0.3 mmol, 1.5 eq.) were added. The vial was evacuated and back filled with N₂ for three times. Then a solution of E-stilbene (0.4 mmol, 2.0 eq.) in MeCN (2 mL) was added by syringe, and the mixture was irradiated with a 385 nm LED at 25 °C. After 20 h, the mixture was quenched with water and extracted with Et₂O (10 mL *3). The combined organic phase was then washed with H₂O (10 mL) and brine, dried over sodium sulfate, concentrated under vacuum. The residue was purified by silica gel flash chromatography (gradient eluent: petroleum ether in EtOAc =2% to 3%), to give the desired product as a colorless oil, 23 mg, yield = 24%. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 5H), 2.42 (s, 2H), 1.41 – 1.29 (m, 4H), 1.23 (dd, J = 6.7, 4.2 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 139.14, 128.99, 127.90, 125.75, 33.72, 33.52, 32.45, 26.22, 25.16. HRMS (EI) calcd for C₂₀H₂₂ [M]⁺:262.1722 found: 262.1718 *Note: The product was contaminated with cis-stilbene, the yield has been calculated taking this into account.*

7. X-ray characterization data

X-ray crystal structure of 5v (CCDC 2210656)

The XRD data of 5v indicated that the 4-chloro-benzoyl group is anti to the methyl group in 4-position of the ketone. The detail of the obtained data is available as a crystallographic information file (CIF), which is available from CCDC (2210656). The crystal data are shown in Table S9.

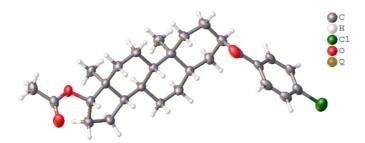


Table S9. Crystal data and structure refinement for 5v

Crystal Data. C₂₈H₃₇O₃Cl, M_r = 457.02, orthorhombic, $P2_12_12_1$ (No. 19), a = 7.1817(2) Å, b = 10.2410(2) Å, c = 33.2457(6) Å, $a = b = g = 90^{\circ}$, V = 2445.15(9) Å³, T = 123.00(10) K, Z = 4, Z' = 1, m(Cu K_a) = 1.586, 21249 reflections measured, 4307 unique (R_{int} = 0.0589) which were used in all calculations. The final wR_2 was 0.1117 (all data) and R_1 was 0.0397 ($I \ge 2 s(I)$).

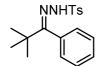
Compound	V106
Formula	C ₂₈ H ₃₇ O ₃ Cl
$D_{calc.}$ / g cm $^{ ext{-}3}$	1.241
<i>m</i> /mm ⁻¹	1.586
Formula Weight	457.02
Colour	clear colourless
Shape	block-shaped
Size/mm ³	0.14×0.11×0.09
T/K	123.00(10)
Crystal System	orthorhombic
Flack Parameter	-0.008(19)
Hooft Parameter	-0.017(8)
Space Group	$P2_12_12_1$
a/Å	7.1817(2)
$b/ m \AA$	10.2410(2)
c/Å	33.2457(6)
$a/^{\circ}$	90
<i>b</i> /°	90
$g/^{\circ}$	90
$V/\text{Å}^3$	2445.15(9)
Z	4
Z'	1
Wavelength/Å	1.54184
Radiation type	Cu K _a
$Q_{min}/^{\circ}$	4.518
$Q_{max}/^{\circ}$	66.899
Measured Refl's.	21249
Indep't Refl's	4307
Refl's $I \ge 2 s(I)$	3978
$R_{ m int}$	0.0589
Parameters	292
Restraints	0
Largest Peak	0.165
Deepest Hole	-0.329
GooF	1.100
- (11 1)	

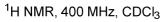
 wR_2 (all data)

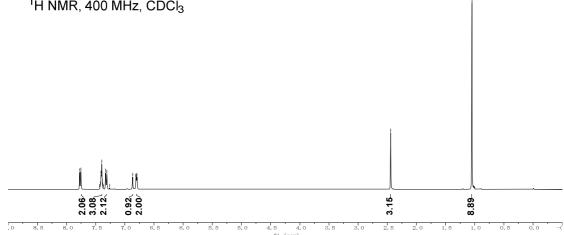
 R_I (all data)

 wR_2

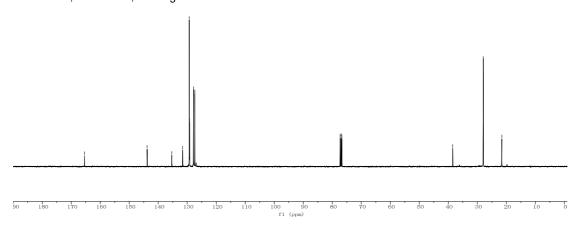
 R_I

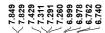

0.1117


0.1088

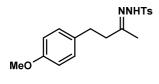

0.0435 0.0397

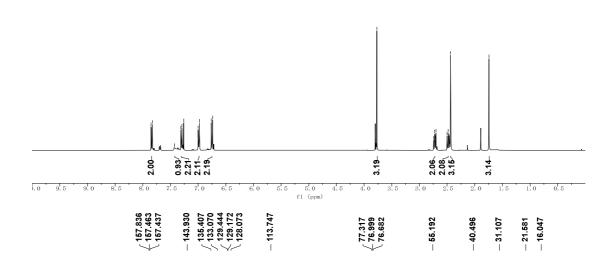
8. Copies of NMR spectra

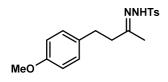


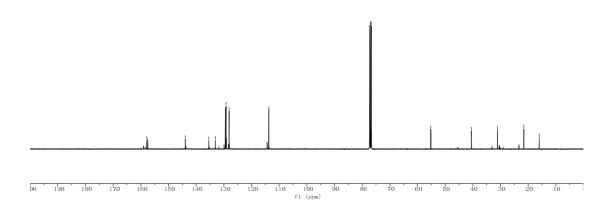


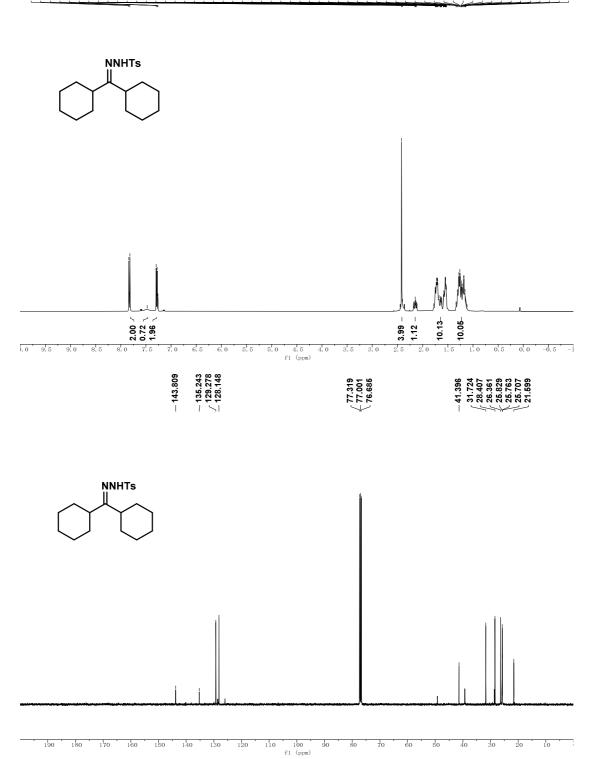
143.81 135.30 131.60 129.28 129.18 127.82 -- 27.96 -- 21.55

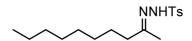


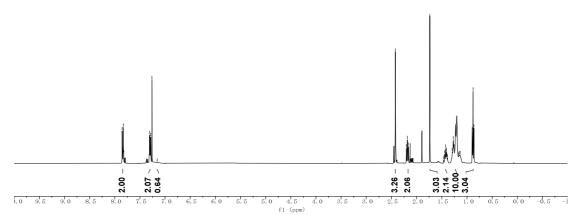

 $^{13}\text{C NMR}$, 101 MHz, CDCl $_3$

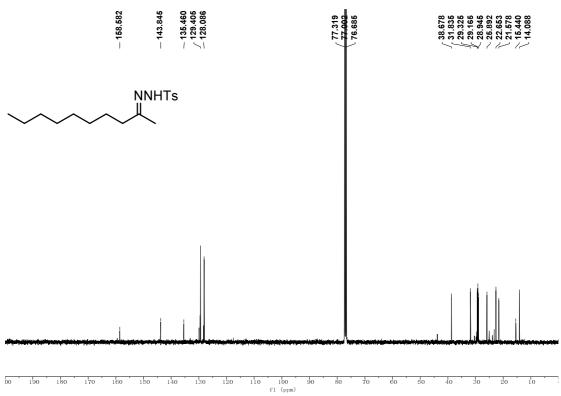


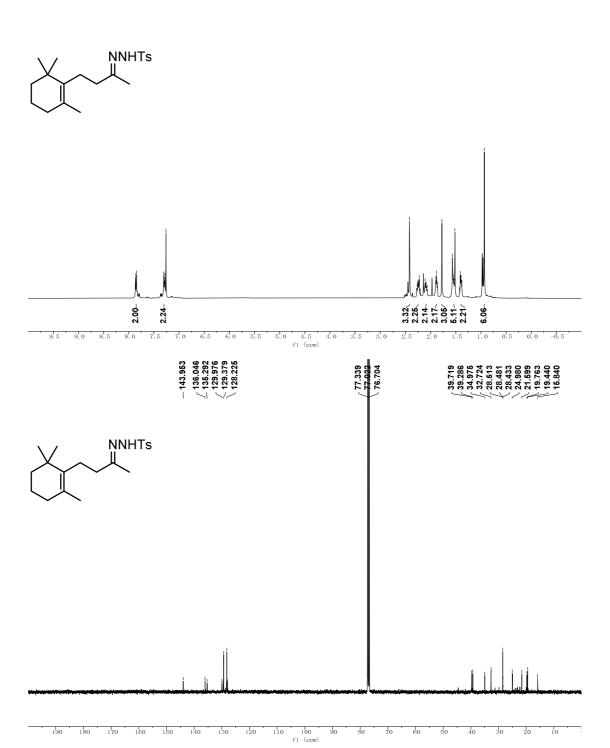


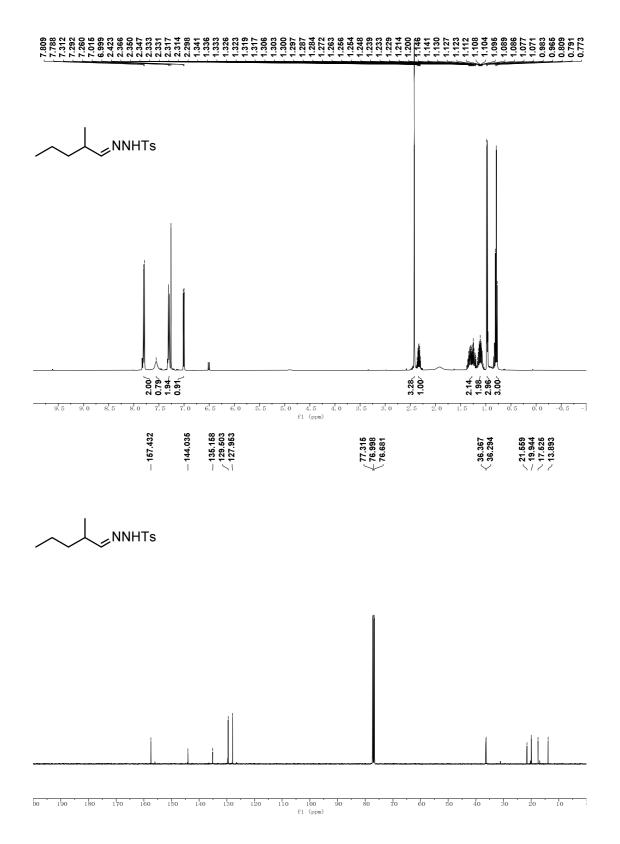

2.770 2.742 2.724 2.702 2.702 2.450 2.451 2.461 2.461 2.461 2.461 2.461 2.461

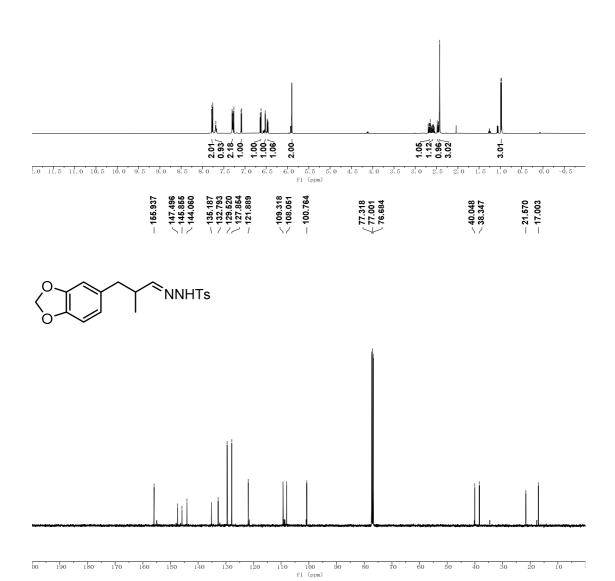


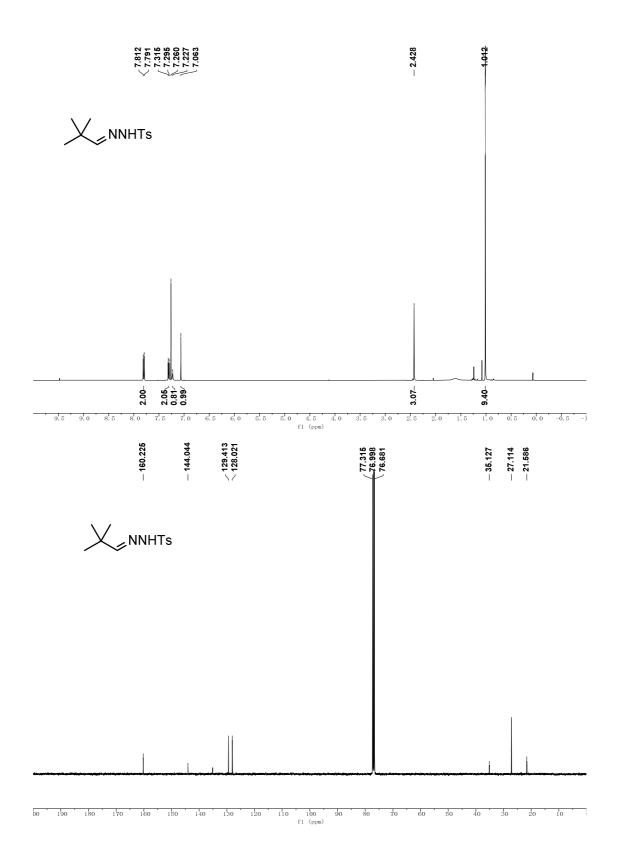


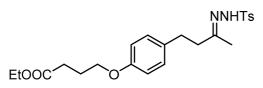


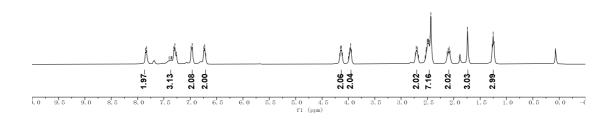






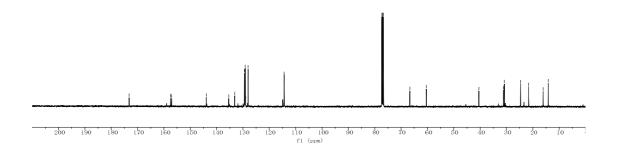

7.866 7.284 7.2304 7.2304 7.220 2.257 2.257 2.257 2.257 2.254 2.254 2.254 2.254 2.204 2.204 2.204 2.208 2.099 2.098 2.098 2.098 2.098 1.887 1.887 1.887 1.766 1.776 1.541 1.54

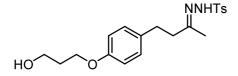

7.779 7.7788 7.3084 7.308 7.280 7.280 7.280 7.280 7.280 7.280 7.280 7.280 6.642 6.64



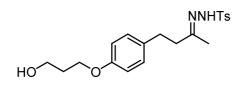
7.850 7.399 7.365 7.347 7.347 7.292 7.263 6.983 6.983 6.744 6.725

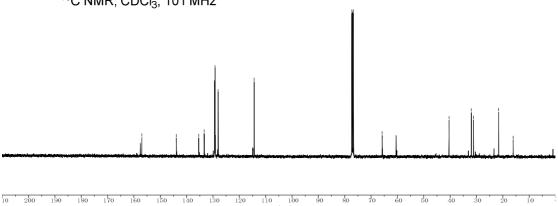
4.166 4.148 4.113 3.396 3.397 3.397 3.397 3.397 2.691 2.671

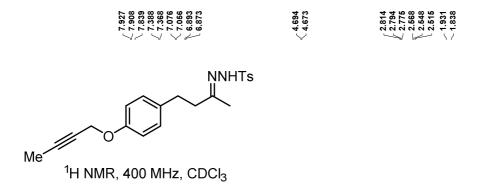

¹H NMR 400 MHz, CDCl₃

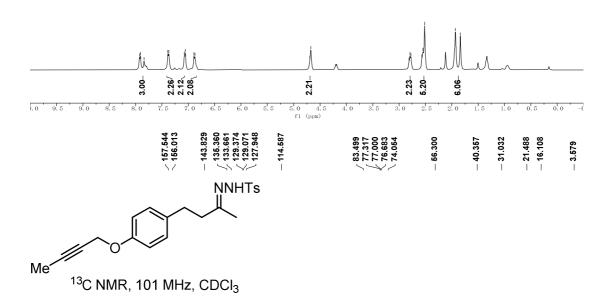


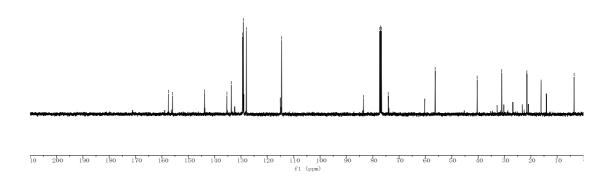

 $^{13}\mathrm{C}$ NMR 101 MHz, CDCl₃


4.127 4.105 4.105 4.105 4.010

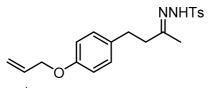

 ^{1}H NMR, CDCl $_{3}$, 400 MHz

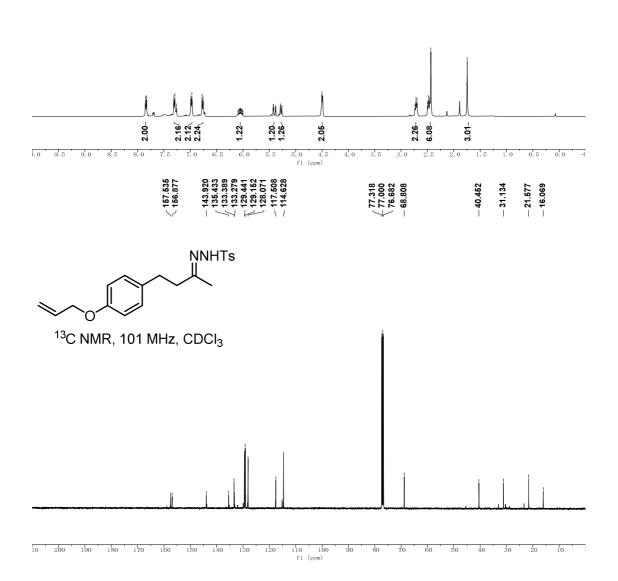






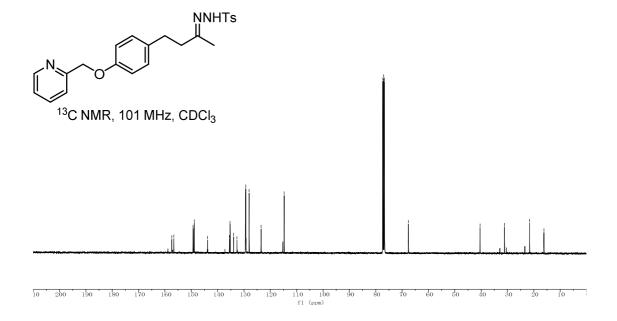
 $^{13}\!\text{C NMR},\,\text{CDCl}_{3},\,\text{101 MHz}$





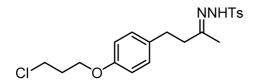
7.855 7.7843 7.7843 7.7823 7.7823 7.7823 7.7823 7.7823 7.7823 6.986 6.986 6.986 6.082 6.082 6.082 6.082 6.083 6.08

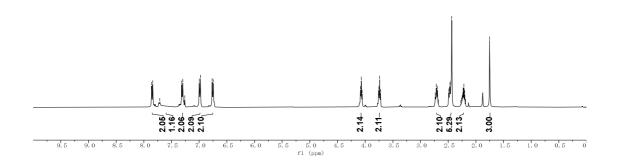
 $^{1}\mathrm{H}\ \mathrm{NMR},\,400\ \mathrm{MHz},\,\mathrm{CDCI}_{3}$

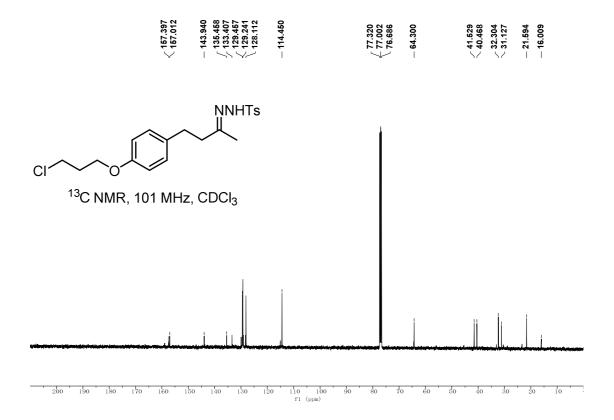

8.608 8.603 8.603 8.603 8.498 8.498 8.498 8.486 7.771 7.776

2.675 2.656 2.636 2.424 2.408 2.402 2.386 2.346 1.678

 1 H NMR, 400 MHz, CDCl $_{3}$

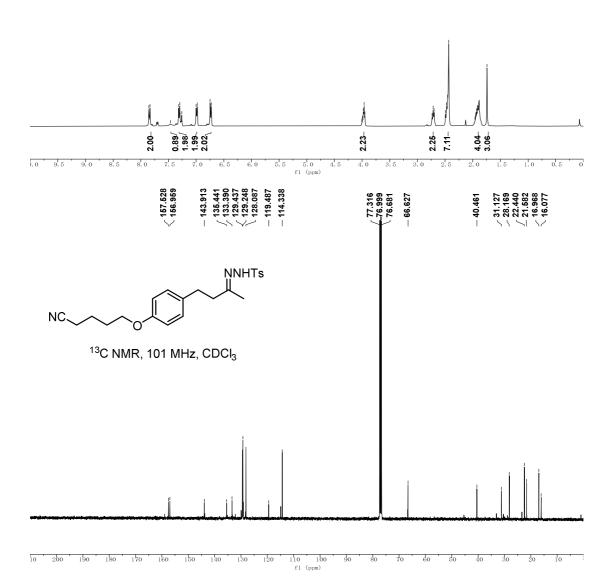

5.0 f1 (ppm)

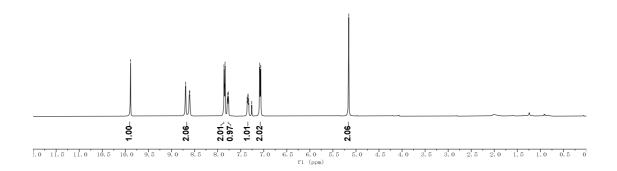


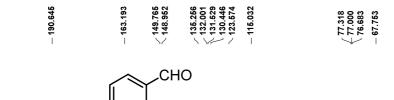

7.859 7.839 7.711 7.716 7.296 7.260 6.998 6.766 6.766

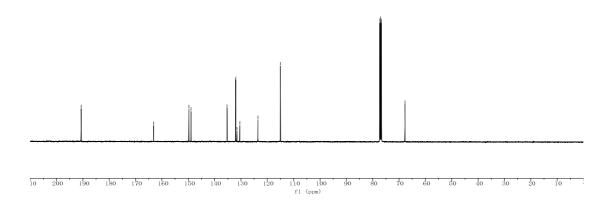
4.084 4.069 3.765 3.765 3.739 3.733 3.723 3.723 2.749 2.490 2.490 2.490 2.490 2.247 2.272

¹H NMR, 400 MHz, CDCl₃



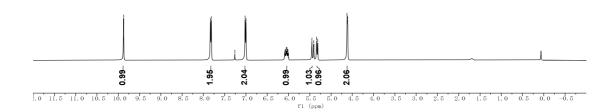

2.736 2.392 3.392 3.392 3.393 3.343 2.736 2.436 2.456 1.363

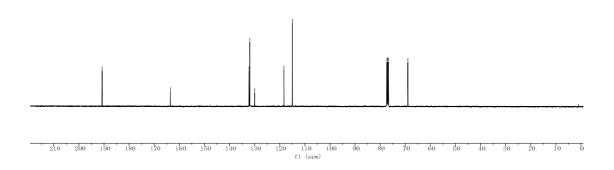

¹H NMR, 400 MHz, CDCl₃



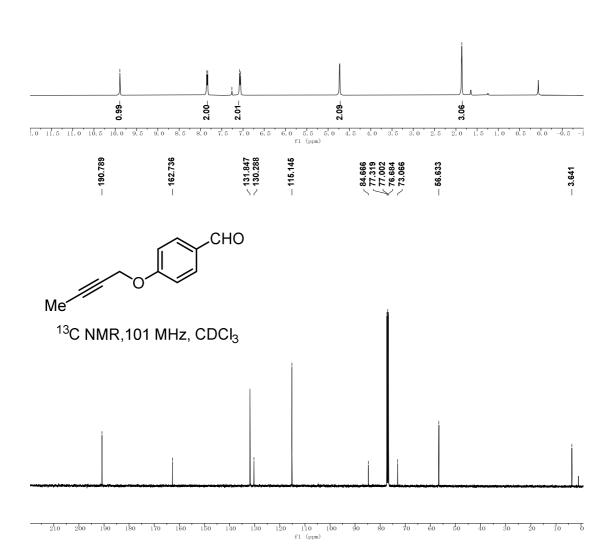
8.694 8.614 8.614 7.786 7.786 7.767 7.767 7.767 7.368 7.339 7.326 7.326 7.326 7.326 7.326 7.326 7.339 7.326

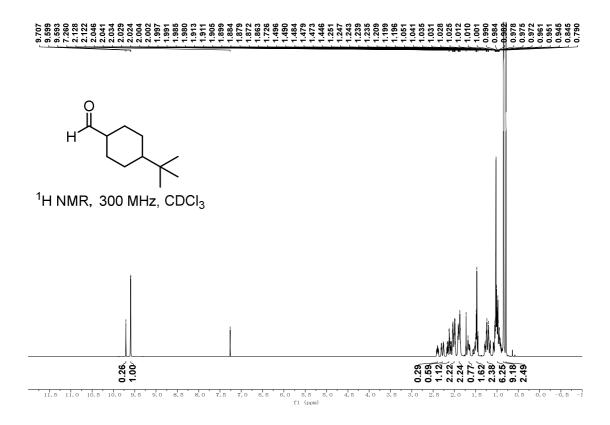
 ^{1}H NMR, 400 MHz, CDCl $_{3}$

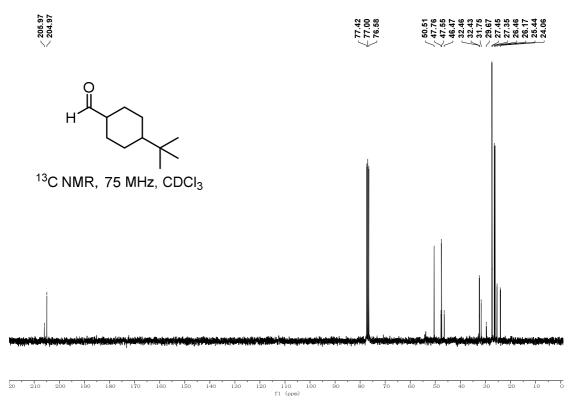


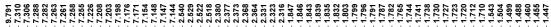

7.837 7.815 7.816 7.019 6.094 6.081 6.083 6.063 6.063 6.025 6.025 6.025 6.039 6.045 6.039 6.045 6.039 6.039 6.039 6.039 6.031

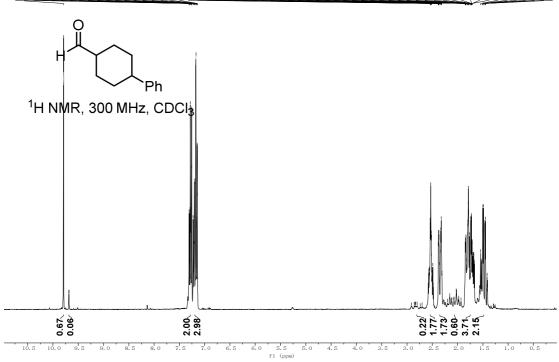
 $^{1}\text{H NMR},\,400~\text{MHz},\,\text{CDCl}_{3}$

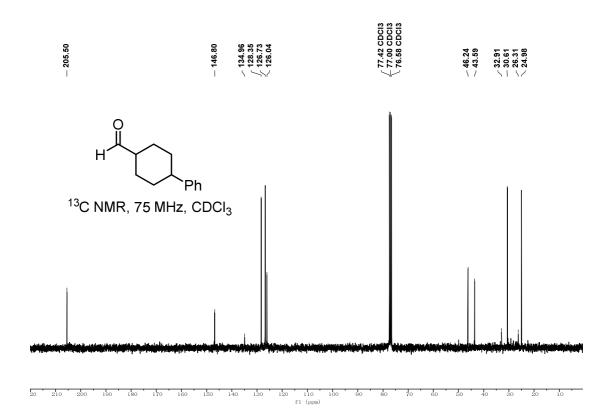


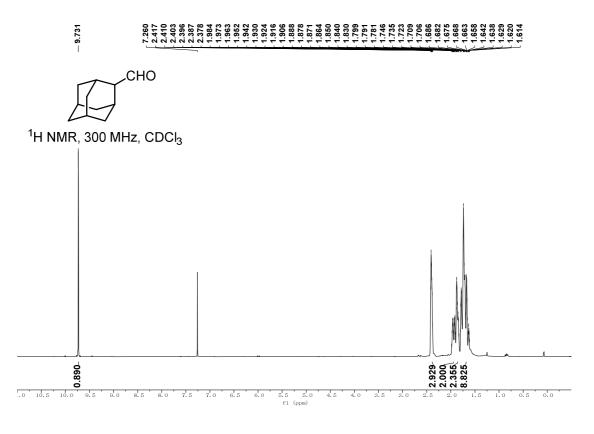

 13 C NMR, 101 MHz, CDCl $_3$

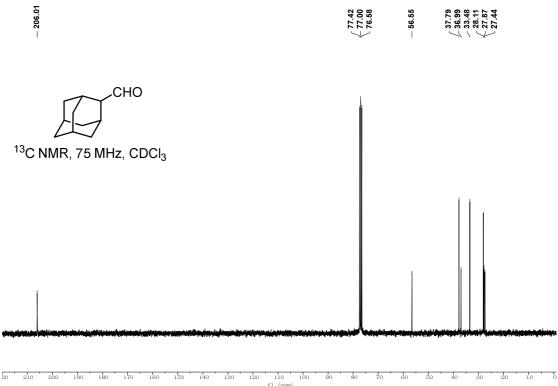


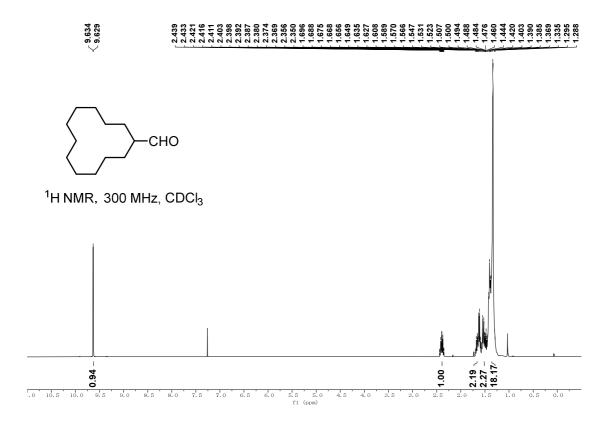


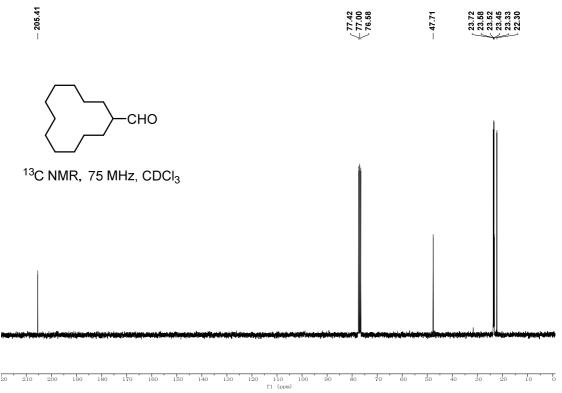

 $^{1}\mathrm{H}\ \mathrm{NMR},\ \mathrm{400}\ \mathrm{MHz},\ \mathrm{CDCl_{3}}$

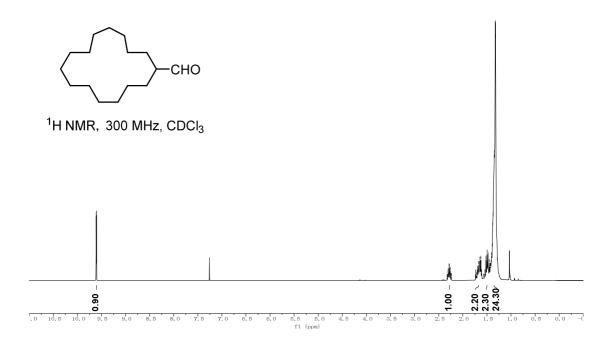


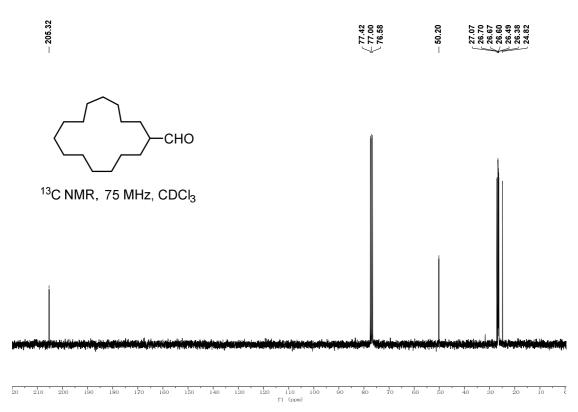


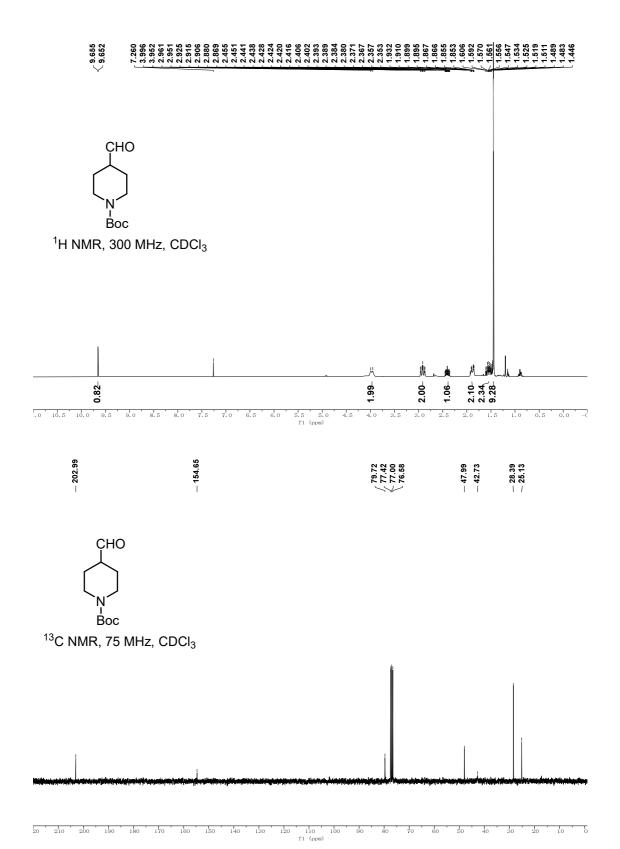


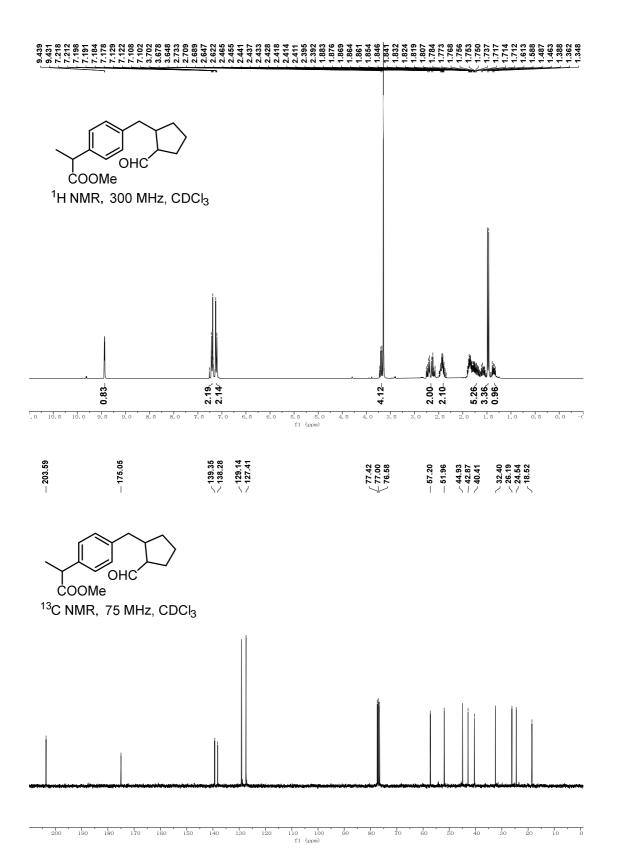




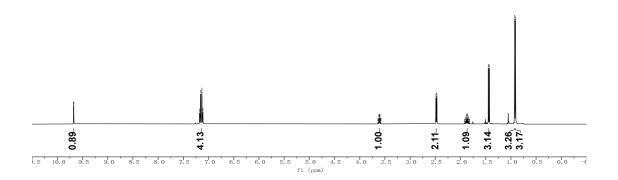


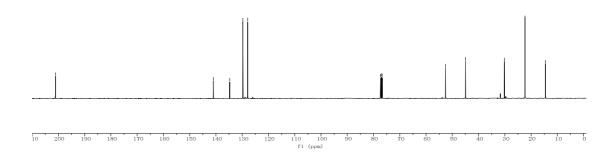




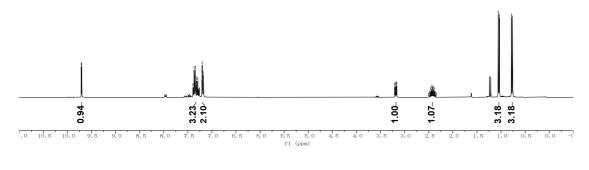


9.609 9.602 7.260 2.328 2.328 2.239 2.239 2.239 2.239 2.239 2.239 2.239 2.239 2.239 2.239 2.249 2.239 1.739 1.739 1.739 1.659 1.669 1.669 1.673 1.749 1.



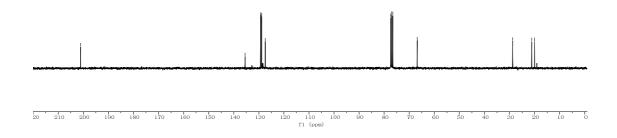


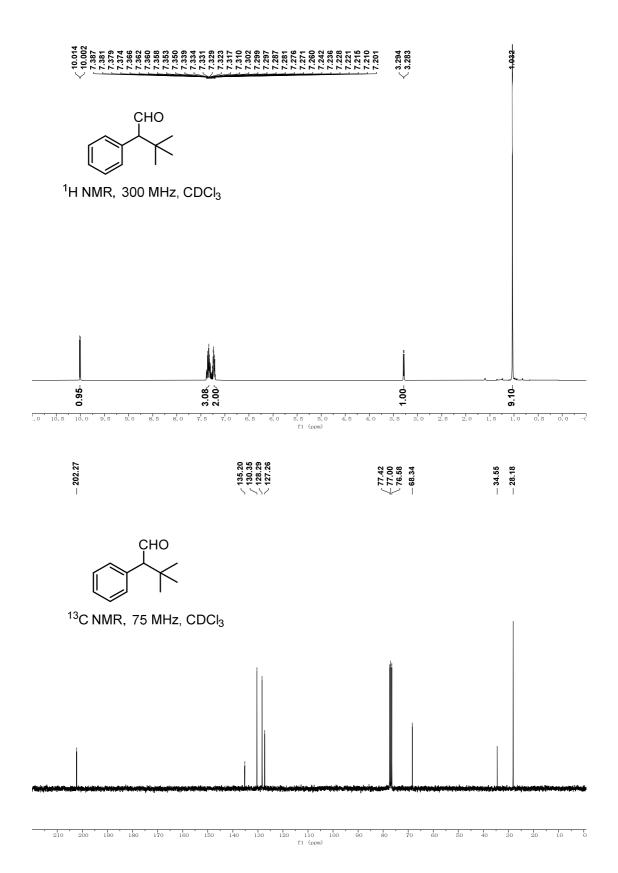
¹H NMR, 400 MHz, CDCl₃



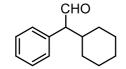
¹³C NMR, 101 MHz, CDCl₃

¹H NMR, 300 MHz, CDCl₃

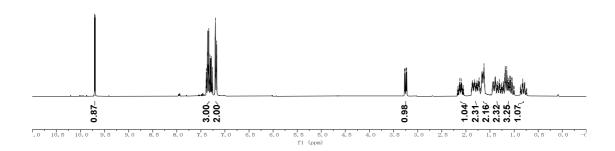


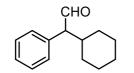

-201.13

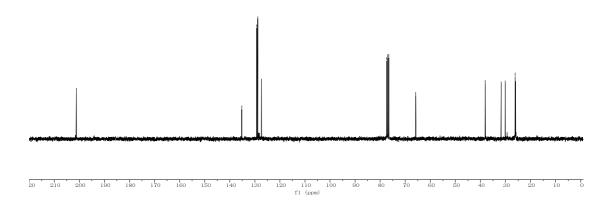
7 135.45 7 129.29 ✓ 128.87 7 127.44

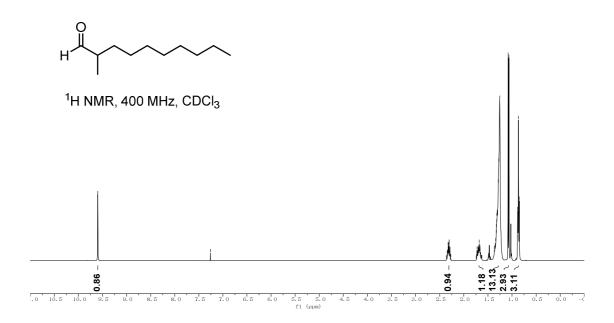

77.42 77.00 76.58 – 66.82 -28.75< 21.16< 20.01

¹³C NMR, 75 MHz, CDCl₃

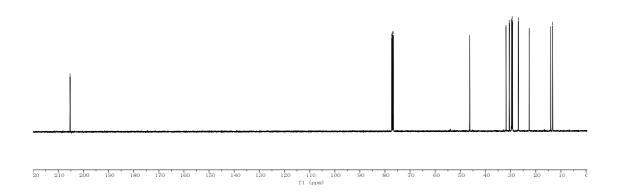


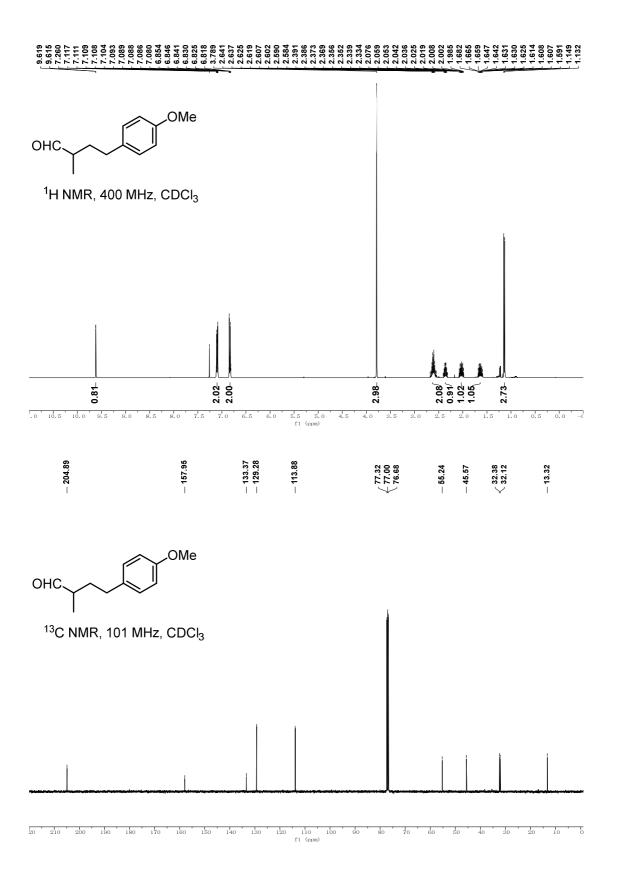

9.706 9.706 7.389 7.389 7.389 7.389 7.389 7.389 7.330 7.330 7.330 7.330 7.330 7.330 7.330 7.330 7.330 7.3000 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.3000 7.3


 $^{1}\text{H NMR},\,300\,\text{MHz},\,\text{CDCl}_{3}$

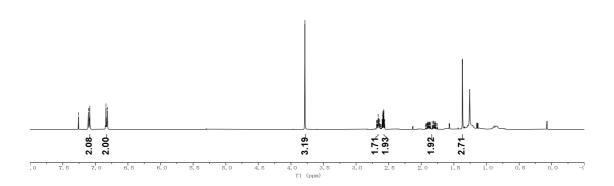

- 201.21 - 201.21 - 129.29 - 129.29 - 127.37 - 177.42 - 77.00 - 65.82 - 65.82 - 65.82 - 65.82 - 65.82

 13 C NMR, 75 MHz, CDCl $_3$

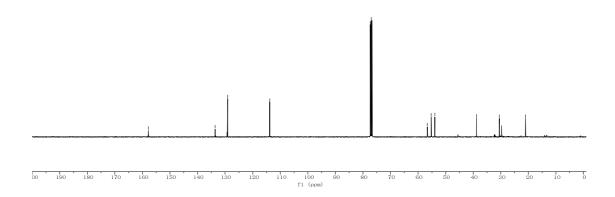

9.600 9.596 2.359 2.359 2.325 2.325 2.325 2.325 2.326 2.326 2.327 2.229 1.726 1.735 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.737 1.737 1.737 1.738 1.737 1.738 1.



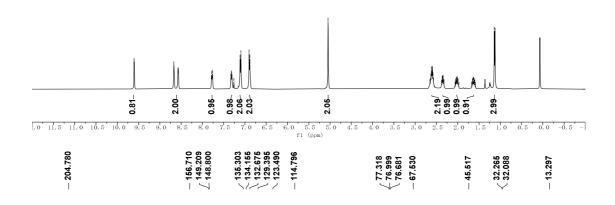
- 206.32 77.32 77.00 76.68 - 46.29 - 46.29 - 29.20 - 29.20 - 22.91 - 14.05

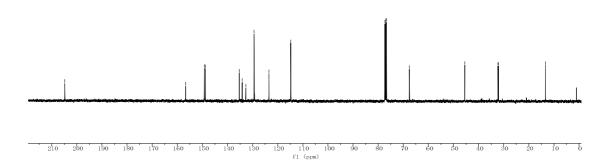

 $H^{\bigcup_{i=1}^{n}}$

 $^{13}\mathrm{C}$ NMR, 101 MHz, CDCl₃

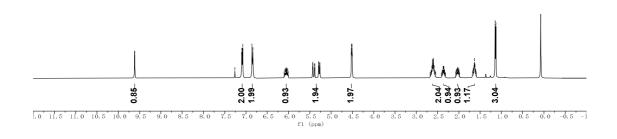


 $^{1}\text{H NMR},\,400\,\text{MHz},\,\text{CDCI}_{3}$

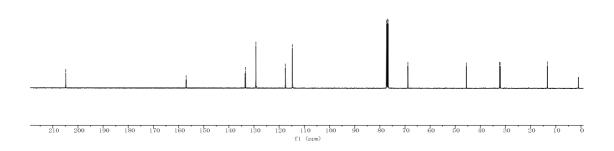


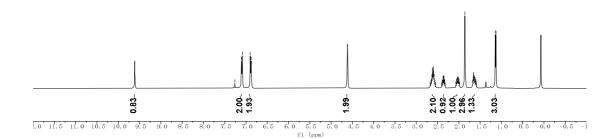

- 157.84
- 133.62
- 129.12
- 129.12
- 113.82
- 77.32
- 76.68
- 56.69
- 56.24
- 55.24
- 30.51

 $^{13}\text{C NMR},\,101\,\text{MHz},\,\text{CDCl}_3$

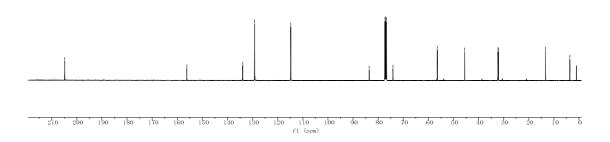


9.9.605 9.9

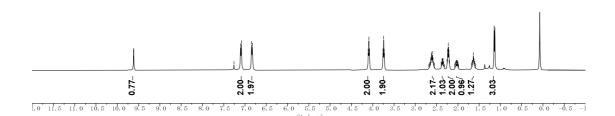



9 616 79612 7.078 6.083 6.063 6.060 6.060 6.060 6.060 6.060 6.020



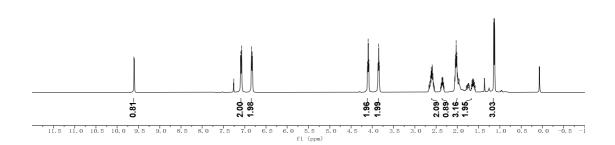


9.616 9.617 7.1060 7.1060 7.1060 7.1066 6.839 6.839 6.839 6.839 7.086 7.

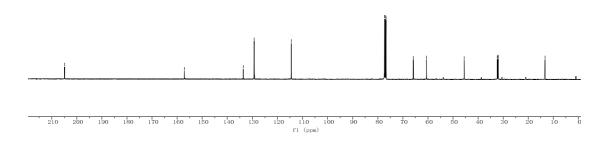


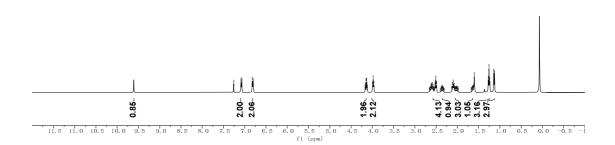
9.617 7.106 6.827 7.108 6.827 7.085 6.827 7.085 6.827 7.085 7.095 7.005

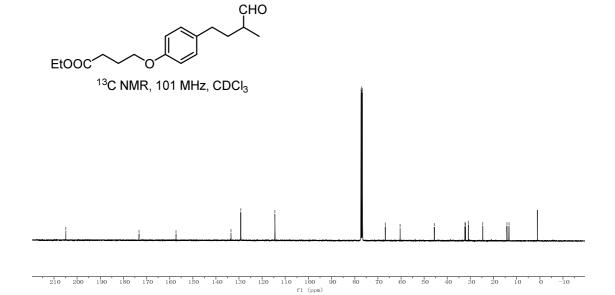
¹H NMR, 400 MHz, CDCl₃


- 204.844
- 157.056
- 153.643
- 129.313
- 129.313
- 129.313
- 129.313
- 14.497
- 44.534
- 41.531
- 13.303

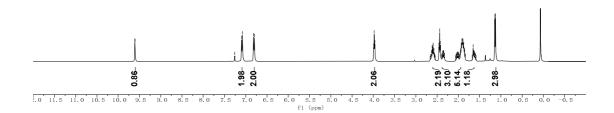
 13 C NMR, 101 MHz, CDCl $_3$

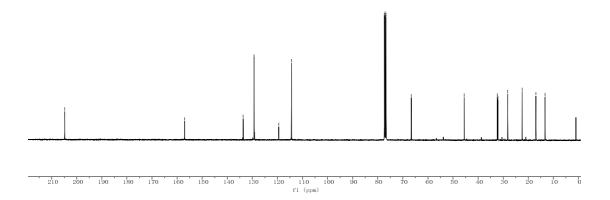



¹H NMR, 400 MHz, CDCl₃

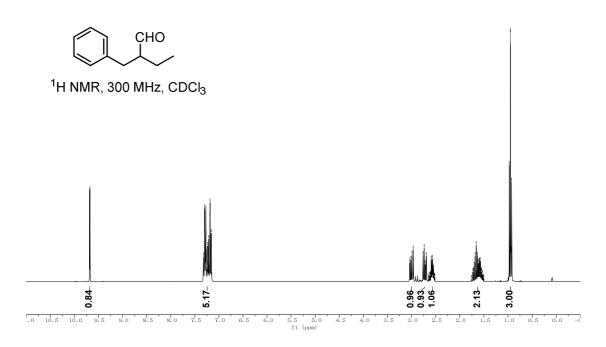

 $\begin{array}{c} -204.892 \\ -157.110 \\ -129.300 \\ -129.300 \\ -14.487 \\ -114.487 \\ -66.822 \\ -66.822 \\ -66.822 \\ -66.822 \\ -66.820 \\ -45.540 \\ -45.540 \\ -13.300 \\ -13.300 \end{array}$

9.9.613 9.9



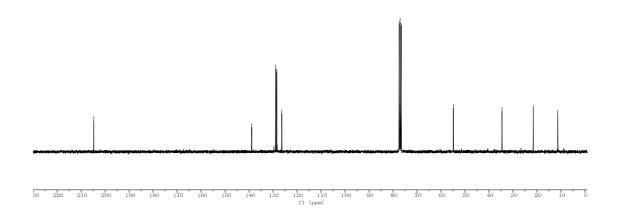

9.9.609 9.9

¹H NMR, 400MHz, CDCl₃

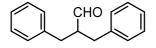


- 204.794
- 167.033
- 153.643
- 119.468
- 119.468
- 114.353
- 177.317
- 77.317
- 77.317
- 76.682
- 66.614
- 66.614
- 22.229
- 16.333
- 13.320

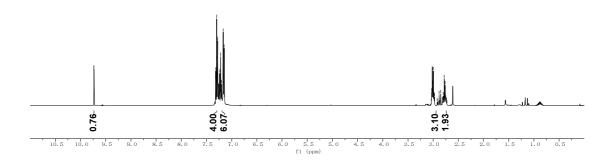
 13 C, 101 MHz, NMR, CDCl $_3$

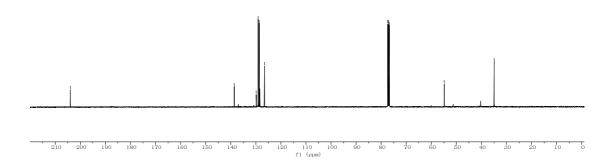


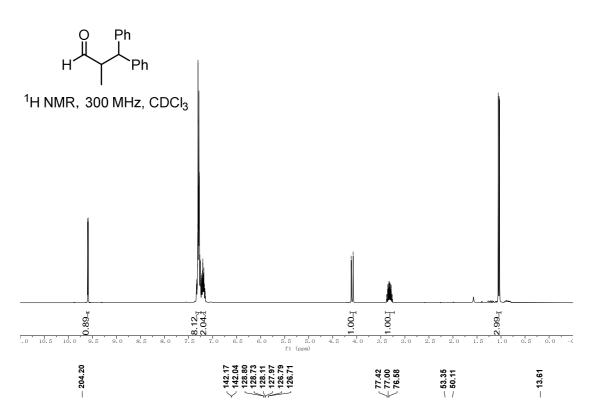
9 684 9 675 7 3318 7 3318 7 295 7 295 7 228 7 228 7 224 7 224 7 224 7 228 7 226 7 228 7 22



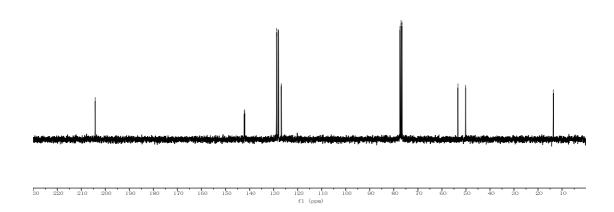
- 204.71 - 138.91 - 138.95 - 128.32 - 128.

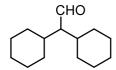

CHO 13C NMR, 75 MHz, CDCl₃

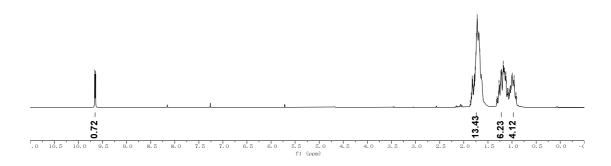

¹H NMR, 400 MHz, CDCl₃


- 204.03 - 138.62 - 129.05 - 129.05 - 128.37 - 126.55 - 54.88

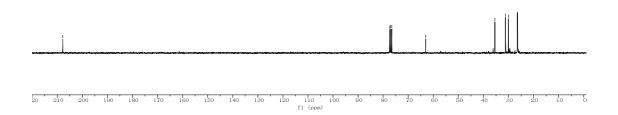
CHO


 13 C NMR, 101 MHz, CDCl $_3$

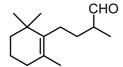




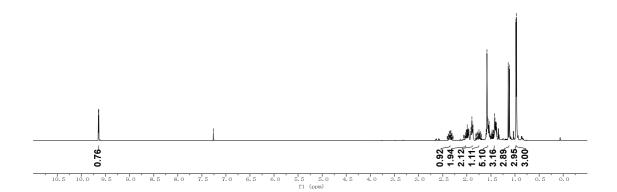
¹³C NMR, 75 MHz, CDCl₃

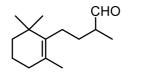


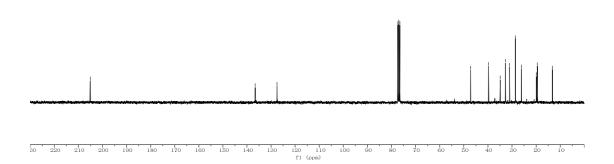
¹H NMR, 300 MHz, CDCl₃

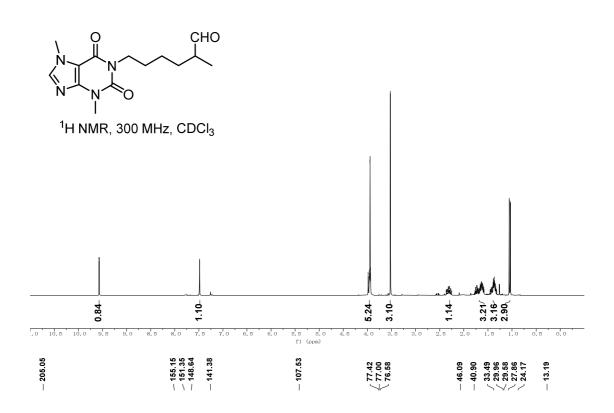


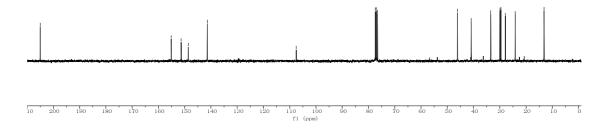
- 207.77


 13 C NMR, 75 MHz, CDCl $_3$

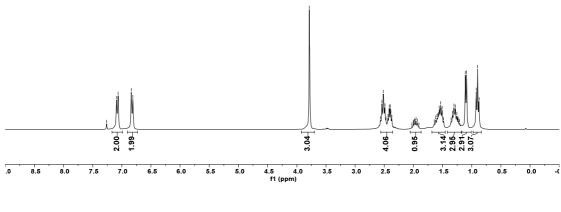

9.644 9.638 9.638 9.638 9.638 9.2336 9.2336 9.2336 9.2338


¹H NMR, 300 MHz, CDCl₃


- 205.07
- 136.60
- 127.53
- 127.42
- 47.16
- 47.16
- 39.72
- 39.93
- 28.57
- 28.56
- 19.84
- 13.17

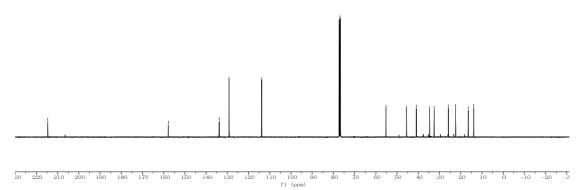


 13 C NMR, 75 MHz, CDCl $_3$

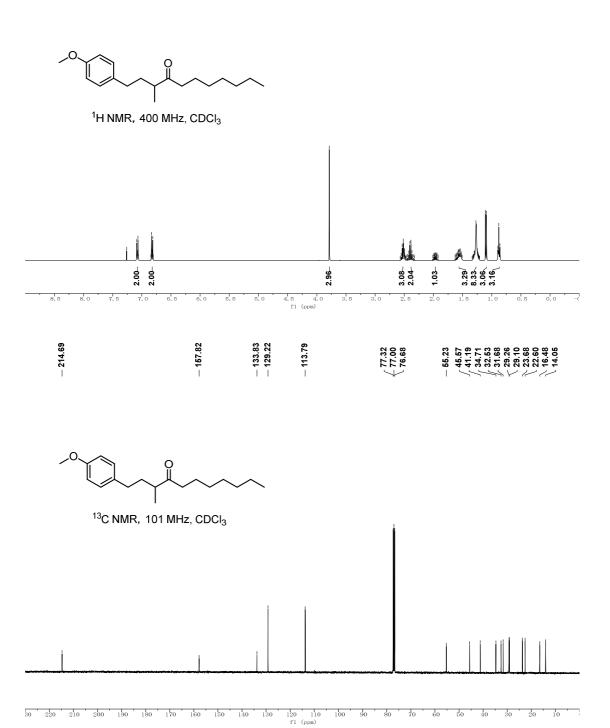

9.572 9.9665 9.9666 9.9

7.260 7.091 7.091 7.091 6.838 6.838 6.838 6.838 7.254 7.254 7.295 7.237 7.203 7.337

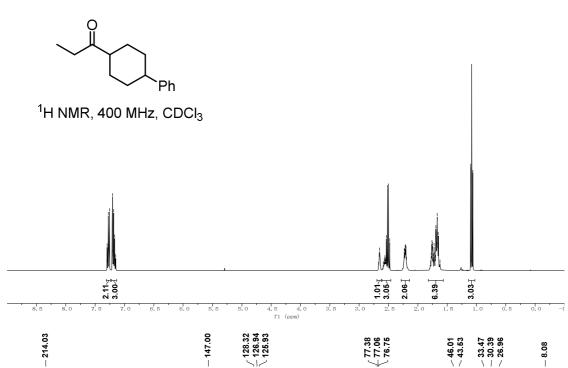
 $^{1}\text{H NMR},\ 300\ \text{MHz},\ \text{CDCI}_{3}$



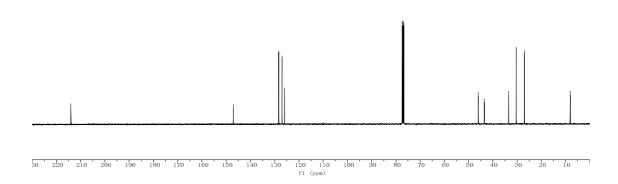
- 157.81 - 133.82 - 129.21 - 113.78

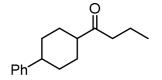

77.32 76.68 76.68 76.68 76.68 76.68 76.70 76.89 77.22 77.22 76.89 77.22 76.89

¹³C NMR, 75 MHz, CDCl₃

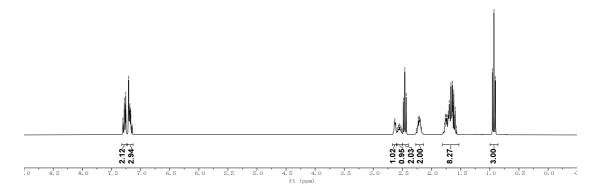


7.260 7.087

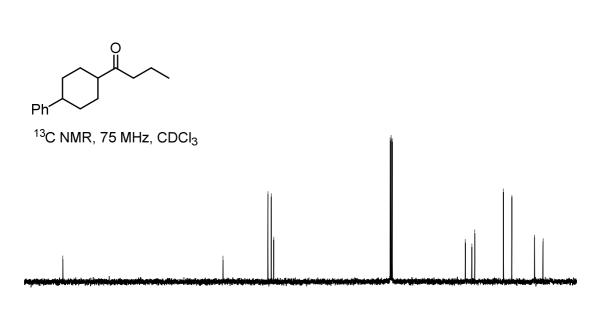


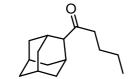


2.670 2.658 2.587 2.587 2.551 2.551 2.551 2.551 2.230 2.218

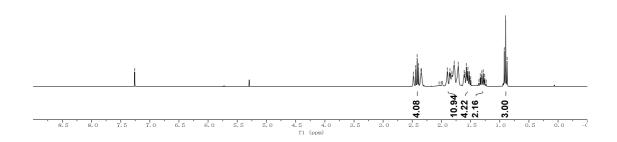


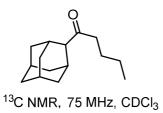
 $^{13}\text{C NMR},\,101\,\text{MHz},\,\text{CDCI}_3$

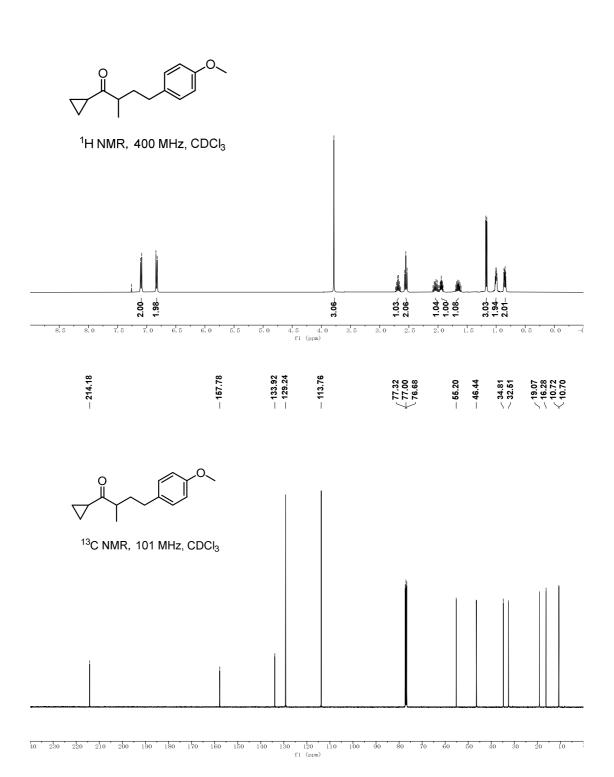


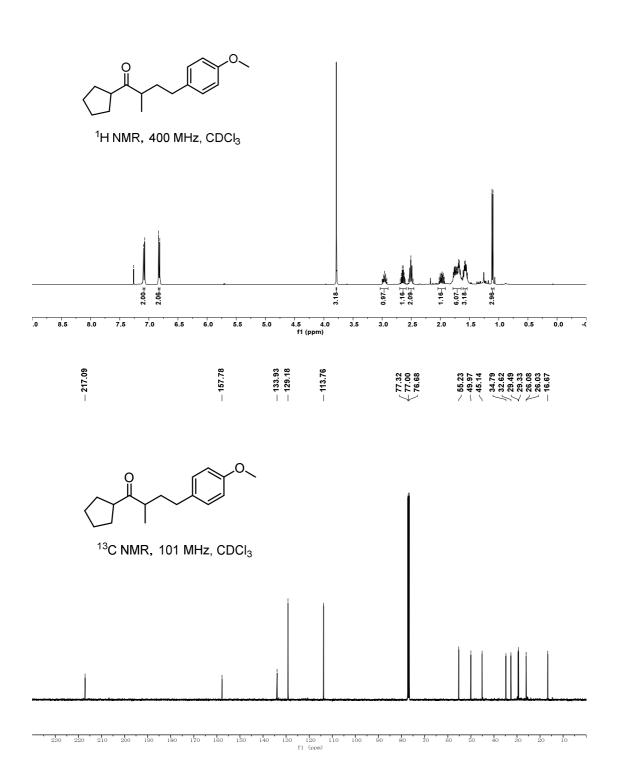


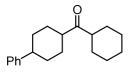
 $^{1}\mathrm{H}\ \mathrm{NMR},\,300\ \mathrm{MHz},\,\mathrm{CDCI}_{3}$

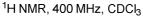


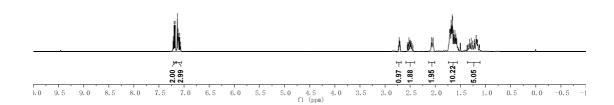



¹H NMR, 300 MHz, CDCl₃

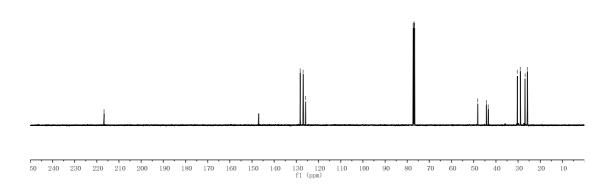


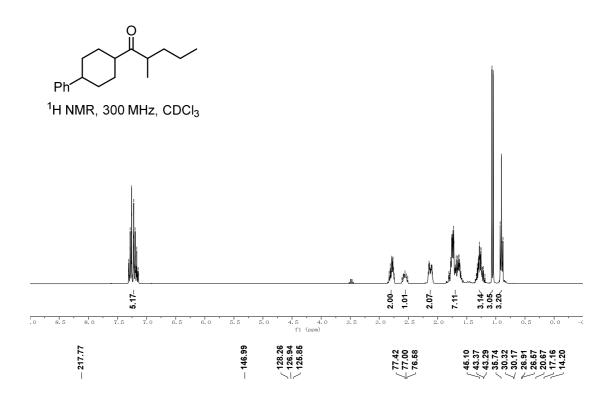


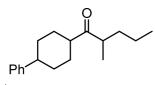

7.7.26 6.8.45



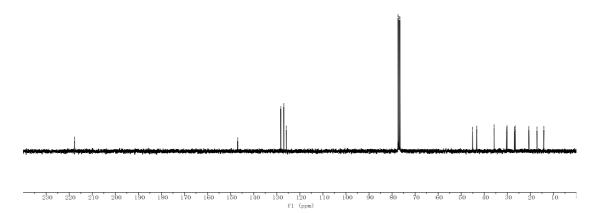
7.216 7.1897 7.1897 7.1189 7.1189 7.1189 7.1189 7.106



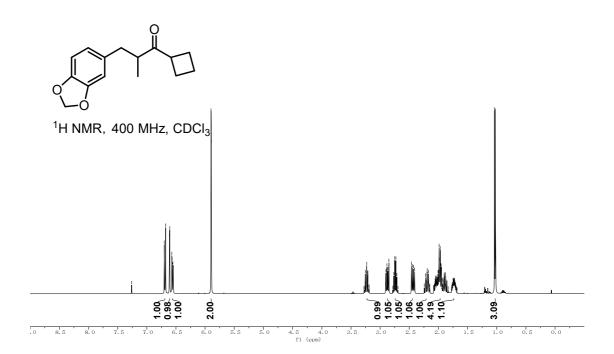


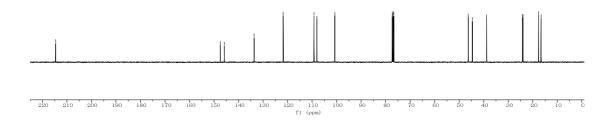


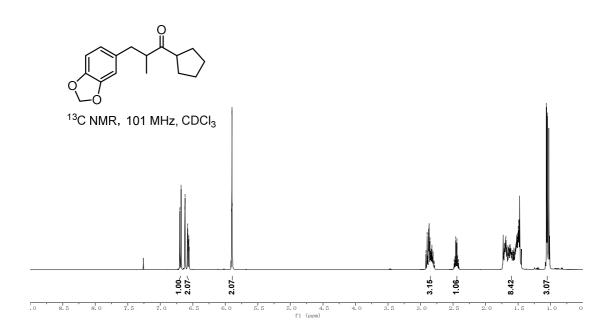
¹³C NMR, 101 MHz, CDCl₃

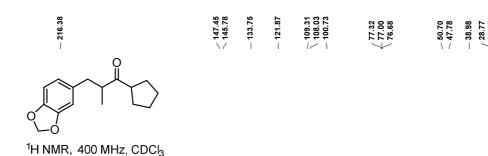


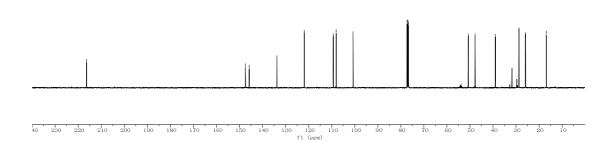
7.285 7.285 7.285 7.285 7.285 7.225 7.225 7.225 7.225 7.227 7.227 7.227 7.227 7.227 7.238 7.238 7.238 7.238 7.238 7.248 7.248 7.248 7.248 7.259



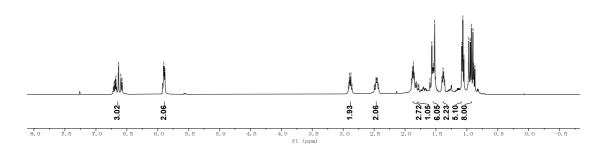

 1 H NMR, 75 MHz, CDCl $_{3}$


6.689 6.6680 6.6670 6.6571 6.6571 6.6571 6.5571 6.5571 6.5571 6.5571 6.5571 6.5571 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.2333 7.2333

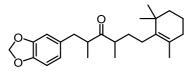



 $^{13}\mathrm{H}$ NMR, 101 MHz, $\mathrm{CDCl_3}$

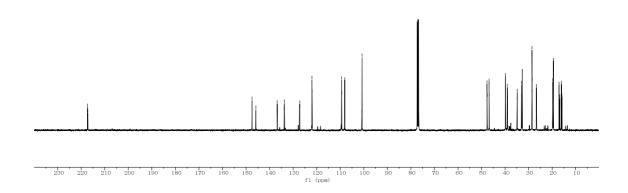
6.6700 6.6881 6.6583 6.5583 6.



6.676 6.686 6.687 6.687 6.688 6.596

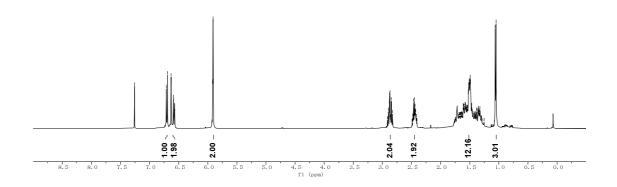


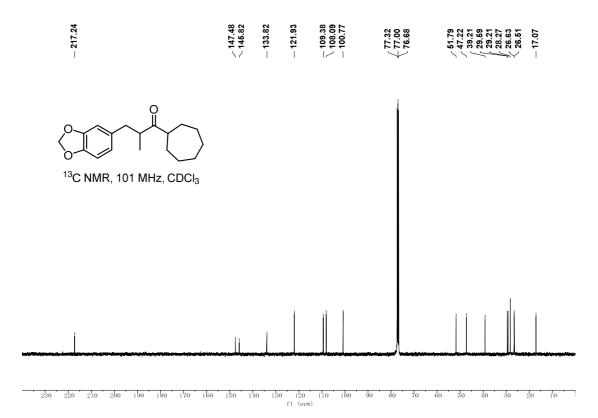
¹H NMR, 400 MHz, CDCl₃



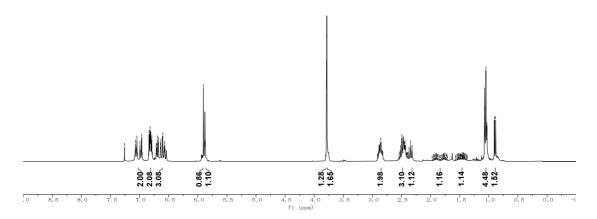
217.36
 217.16

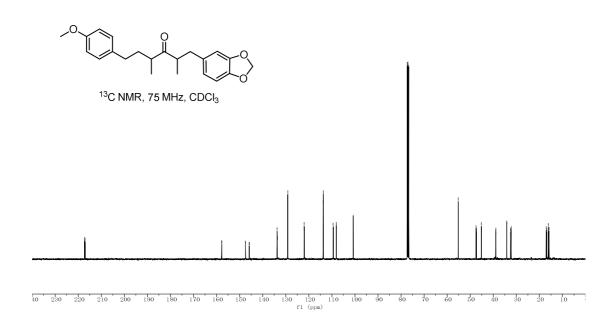
147.47 145.84 145.84 133.80 133.80 127.26 102.35 102.35 100.77 10



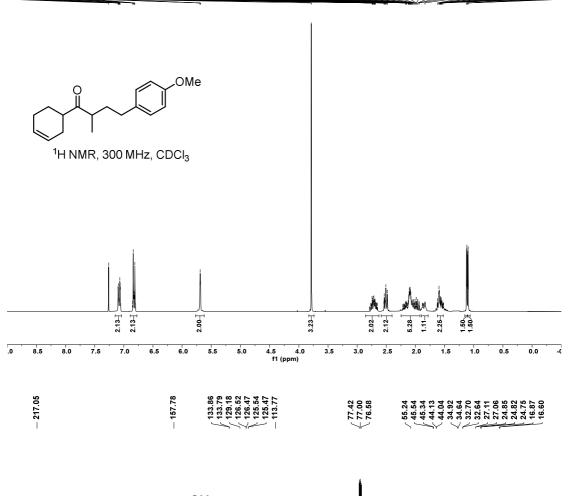

 $^{13}\text{C NMR},\,101\,\text{MHz},\,\text{CDCI}_3$

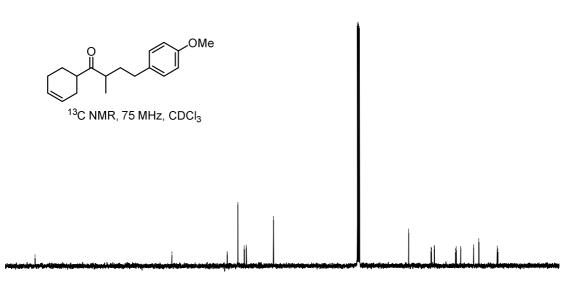
6.509 6.6713 6.6713 6.629 6.633 6.633 6.658 6.568 6.568 6.588 6.588 6.588 6.588 6.588 6.588 6.286 5.913 5.913 7.886 7.88

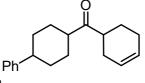

¹H NMR, 400 MHz, CDCl₃



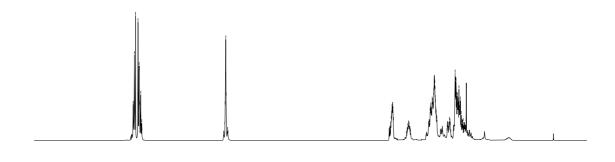
7.260 7.075 7.075 7.075 7.075 6.974 6.819 6.819 6.819 6.819 6.819 6.819 6.819 6.819 6.819 6.819 6.819 7.819

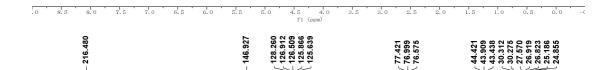

¹H NMR, 300 MHz, CDCl₃

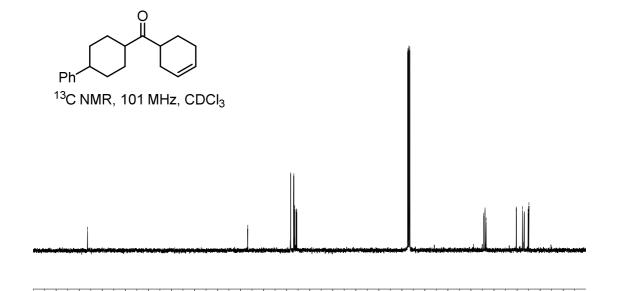




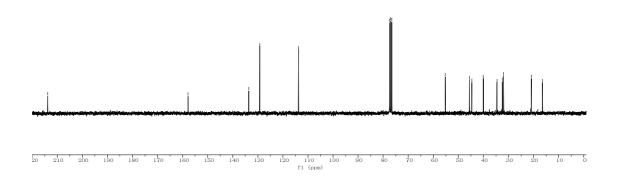
7.7.260 7.7.7068 8.8.81 8.81 8

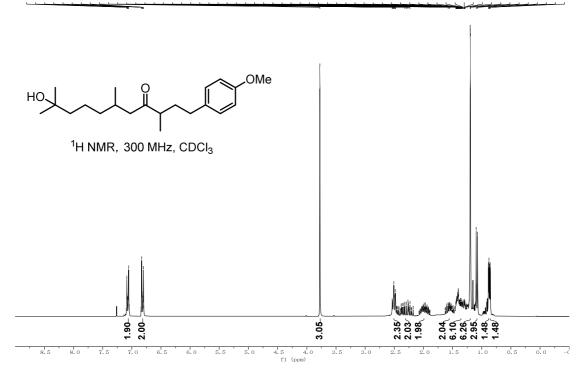





7.279 7.279 7.279 7.219 7.219 7.219 7.219 7.1175 7.1176 7.1177

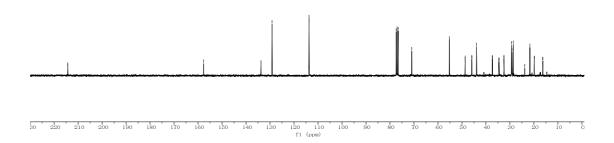
 $^{1}\mathrm{H}$ NMR, 400 MHz, CDCl $_{3}$

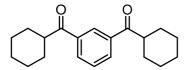




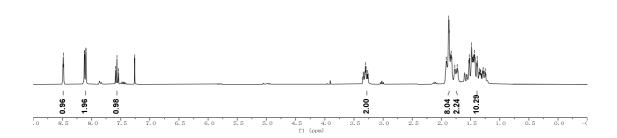
- 13.72 - 13.72 - 13.72 - 14.73 - 14.73 - 14.73 - 14.73 - 14.74 - 14.74 - 14.75 - 17.00 - 1

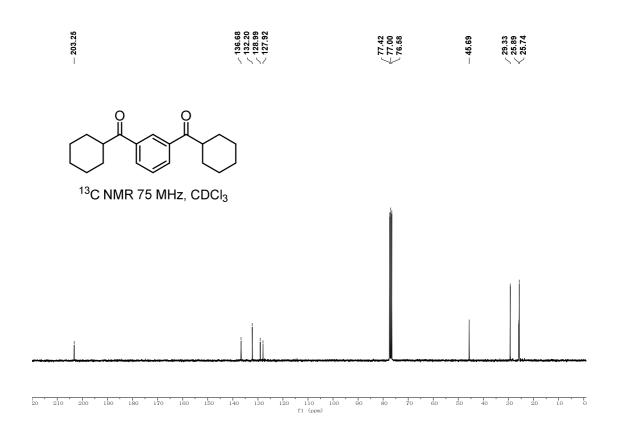
 13 C NMR, 75 MHz, CDCl $_3$


7,088 7,7078 7,708 7,7078 7,708 7,709 7,70

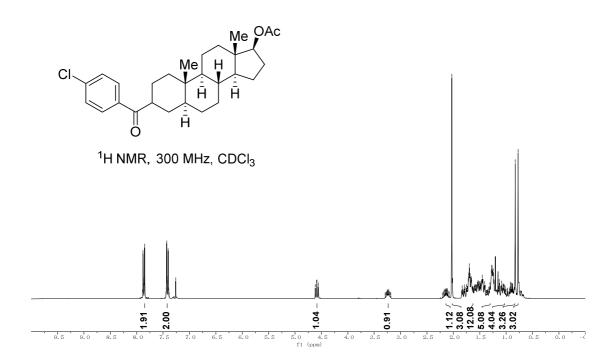

214.34 214.30 214.30 13.377

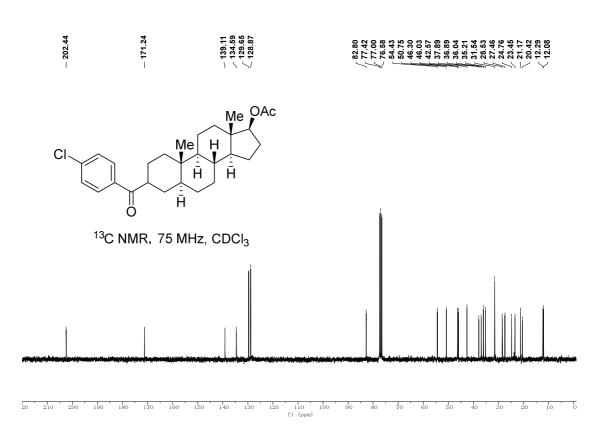
HO OMe

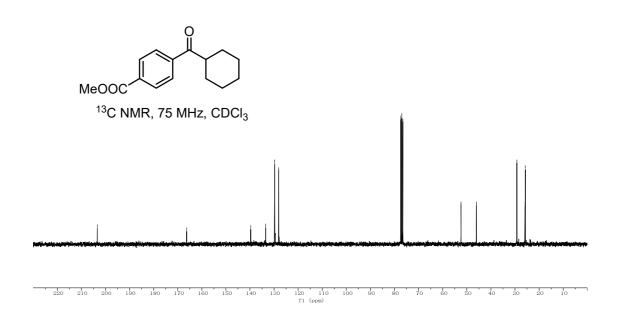

13C NMR, 75 MHz, CDCI₃

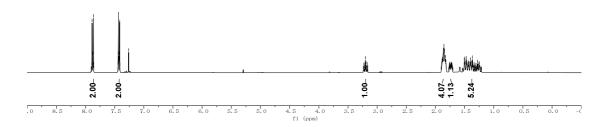


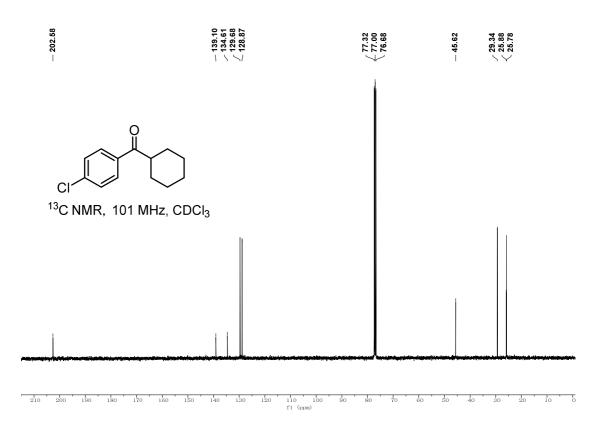
8.490 8.483 8.483 8.124 8.124 8.092 9.333 9.333 9.333 9.333 9.333 1.563 1.

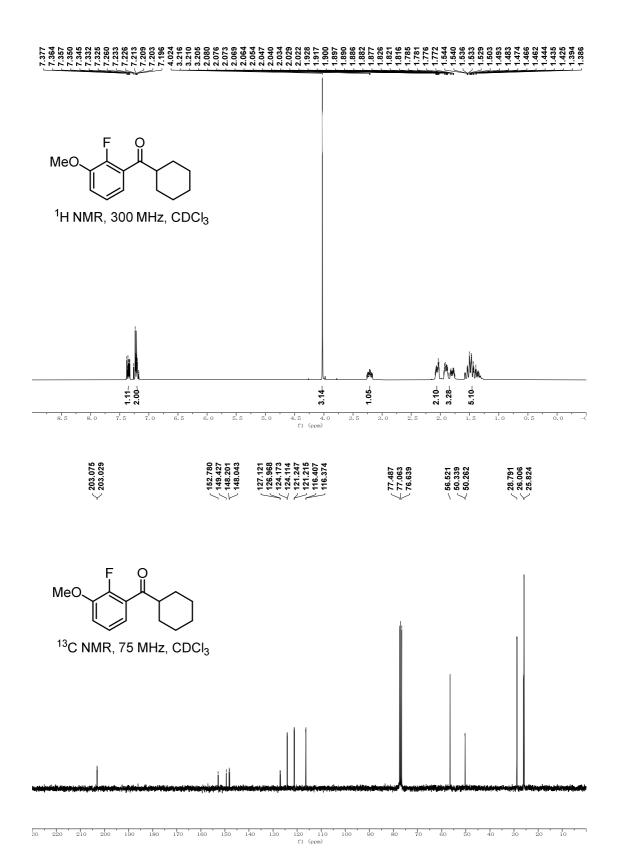


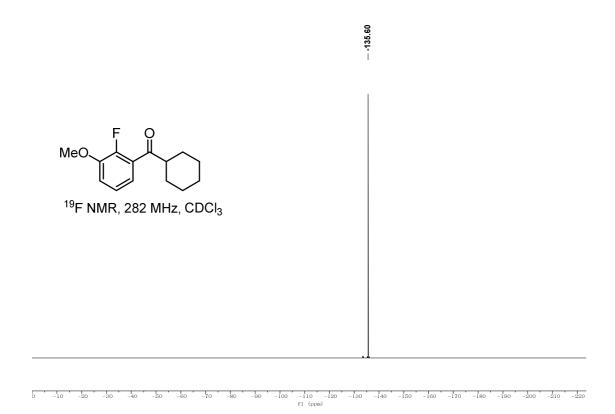

¹H NMR 300 MHz, CDCl₃


7.880 7.7873 7.7873 7.7473 7.7473 7.7403 7.7

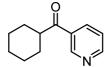

8.129 8.122 8.122 8.122 8.122 8.122 8.122 8.132 7.988 7.7988 7.7986 7.7986 7.7986 7.7986 7.7988 7.7986 7.7986 7.7986 7.7986 7.7988 7.7986 7.7988 7.7986 7.79

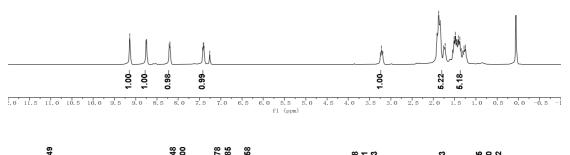


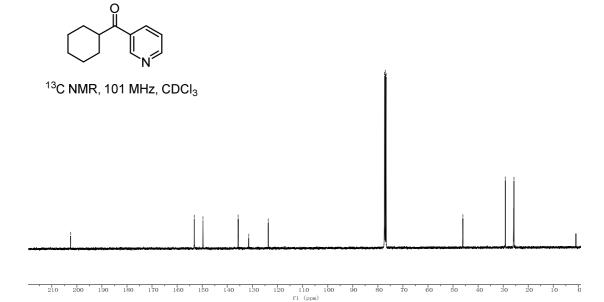


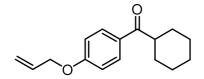

7.893 7.887 7.887 7.887 7.445 7.445 7.445 7.445 7.445 7.445 7.445 7.420 7.420 7.420 7.420 3.199 3.199 3.199 3.199 3.199 3.199 3.199 3.199 1.878

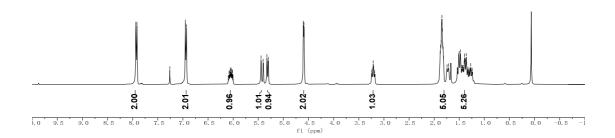
¹H NMR, 400 MHz, CDCl₃

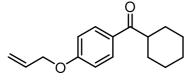


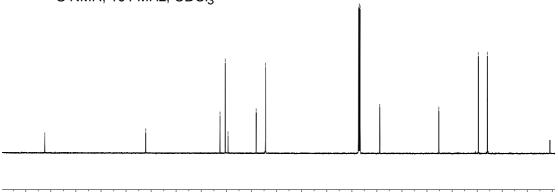


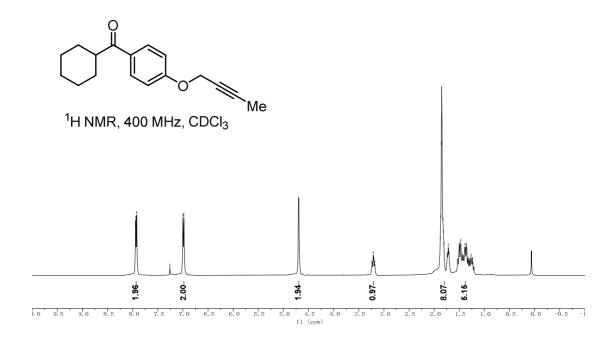

3.247 3.218 3.218 3.218 1.914 1.836 1.726 1.726 1.645 1.442 1.442 1.442 1.442 1.378 1.377 1.442 1.442 1.442 1.378

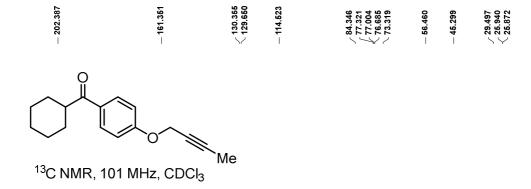

¹H NMR, 400 MHz, CDCl₃

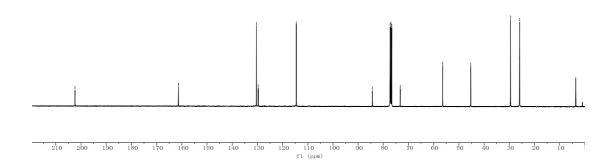


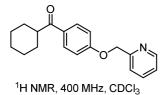

7,336 6,930 6,637 6,637 6,637 6,607

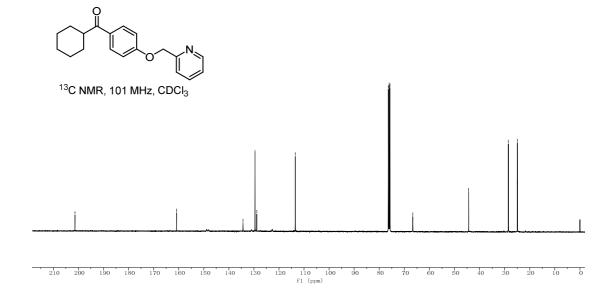

¹H NMR, 400 MHz, CDCl₃



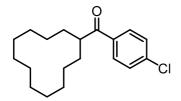


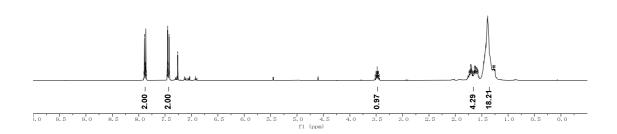

 13 C NMR, 101 MHz, CDCl $_3$

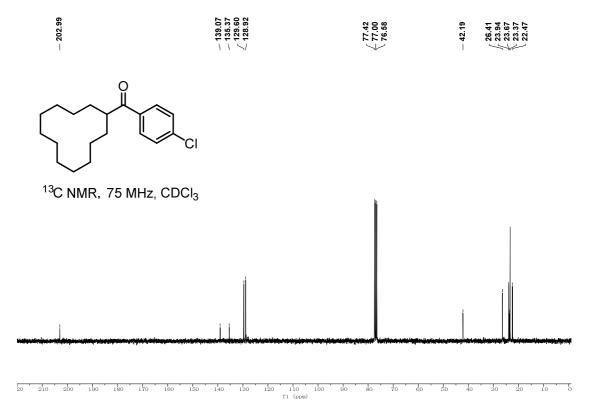

7.9200 7.9200 7.9

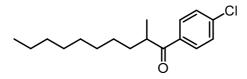


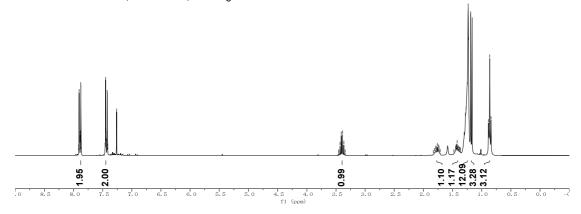
8.697 8.608 8.609 8.609 8.609 7.727 7.727 7.726 7.726 7.727 7.727 7.727 7.727 7.726 7.727 7.

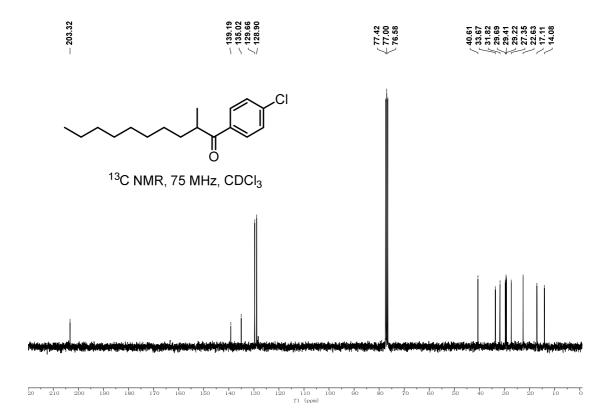

1.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 ft (ppm)

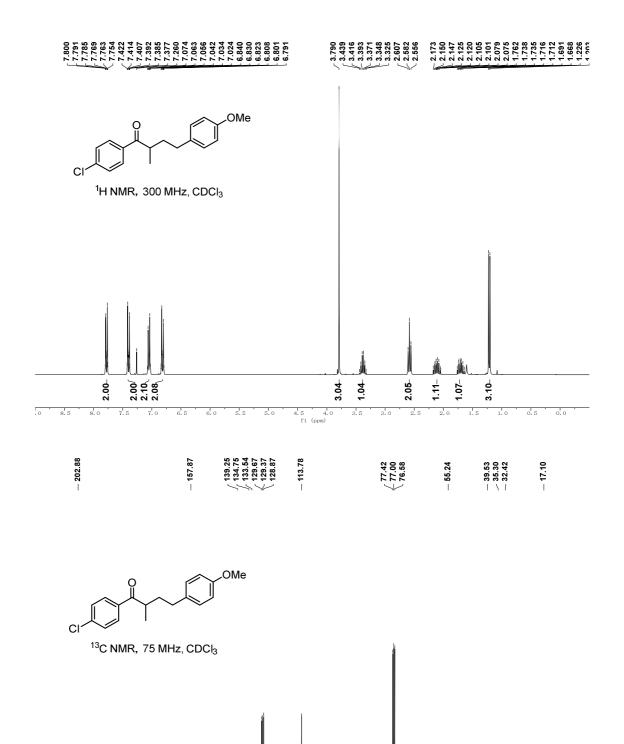



7.893 7.886 7.881 7.881 7.881 7.864 7.461 7.446 7.445 7.441 7.445 7.441 7.445 7.441 7.445

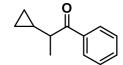

3.521 3.504 3.480 3.480 3.483 3.483 3.457 3.457 3.457 1.741 1.741 1.689

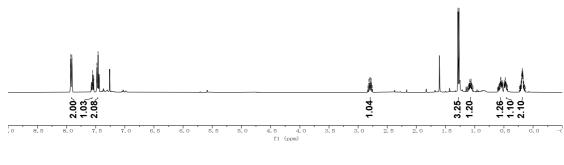

¹H NMR, 300 MHz, CDCl₃



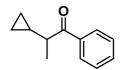


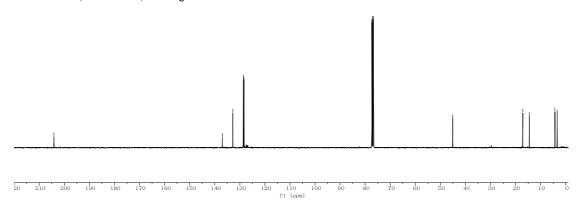
¹H NMR, 300 MHz, CDCl₃

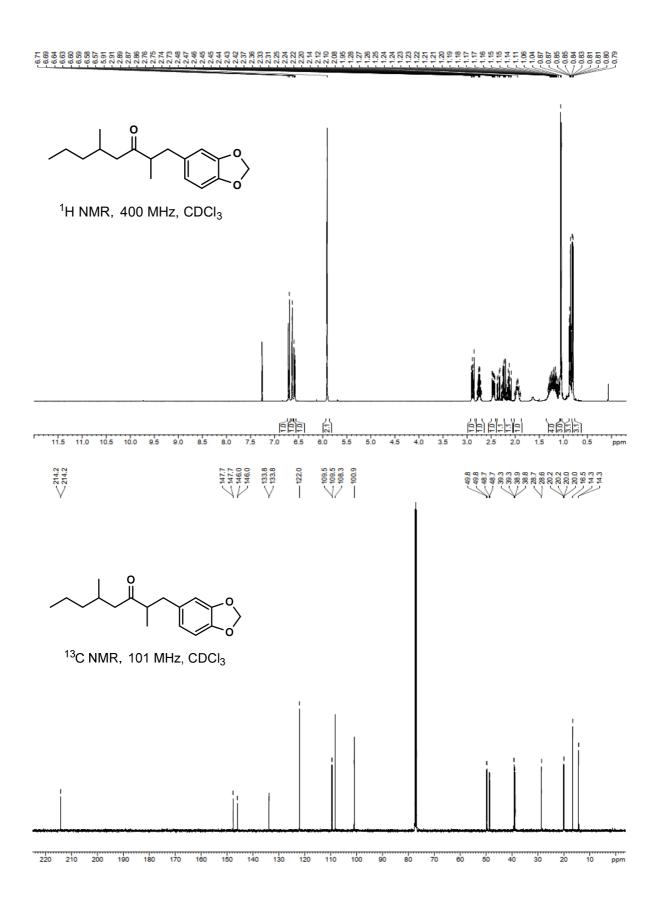


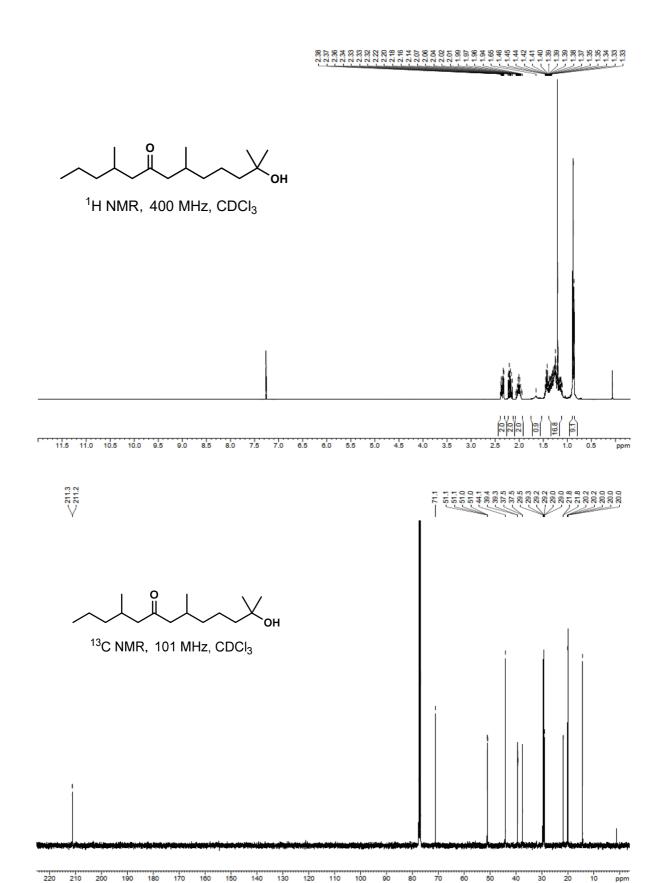


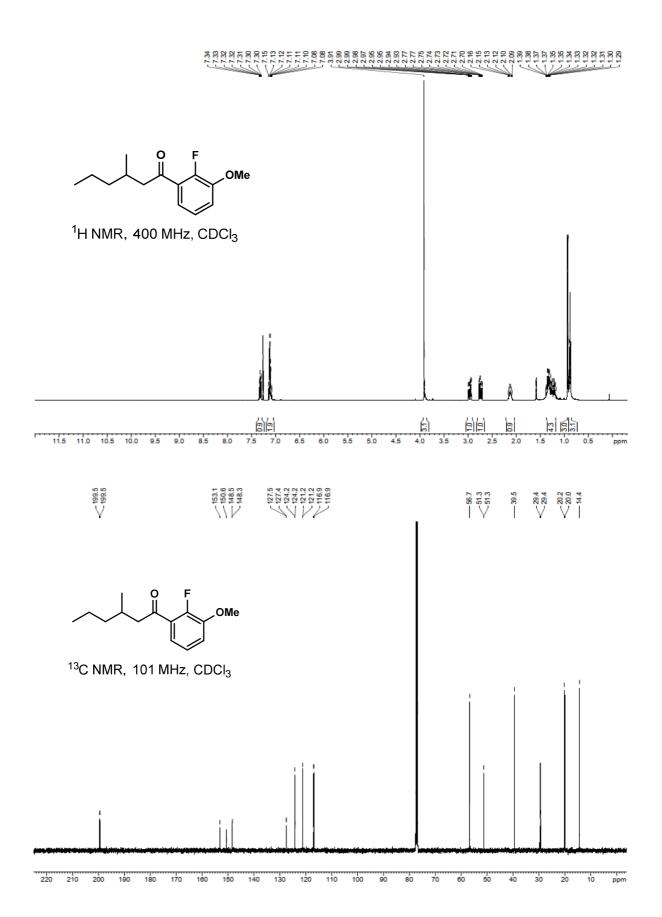
f1 (ppm)



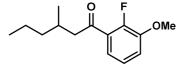

 $^{1}\text{H NMR},\,400\,\text{MHz},\,\text{CDCI}_{3}$

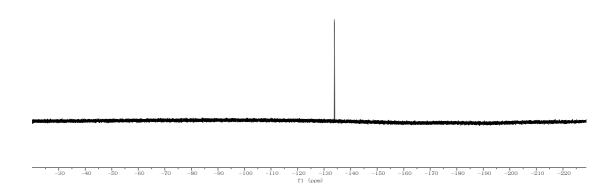


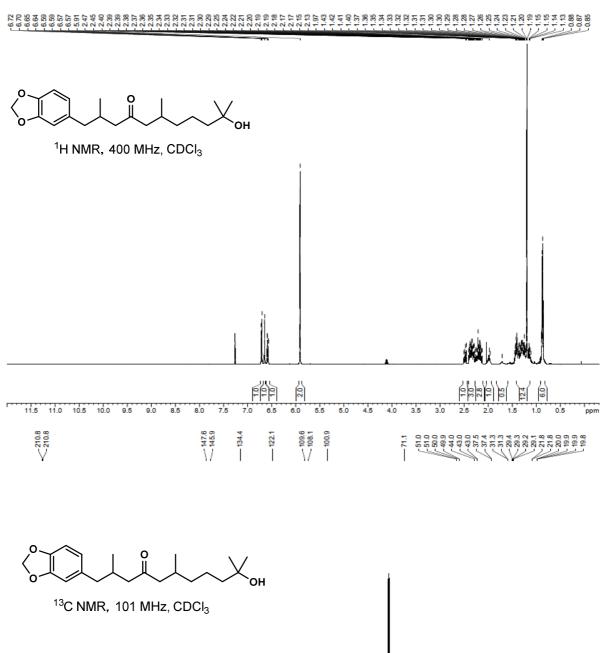

-204.14 -136.95 -132.81 -128.30 -177.32 -77.00 -76.68 -76.68 -74.35 -44.36 -44.36

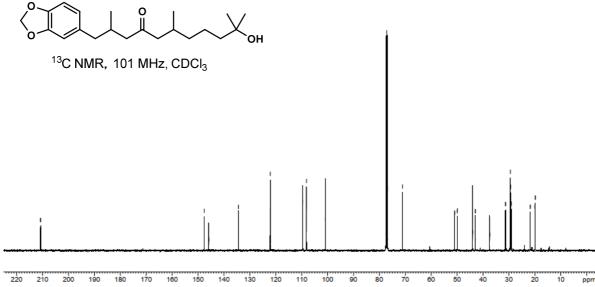


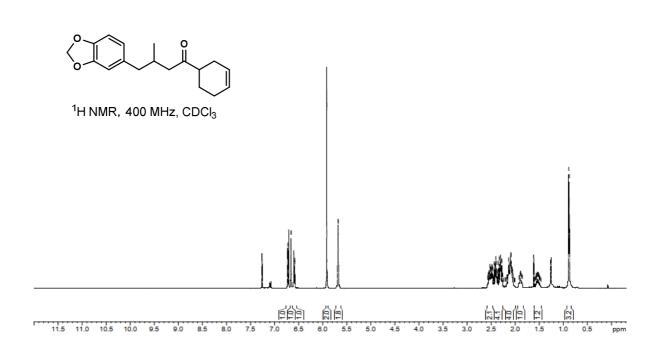
 $^{13}\mathrm{C}$ NMR, 101 MHz, CDCl₃

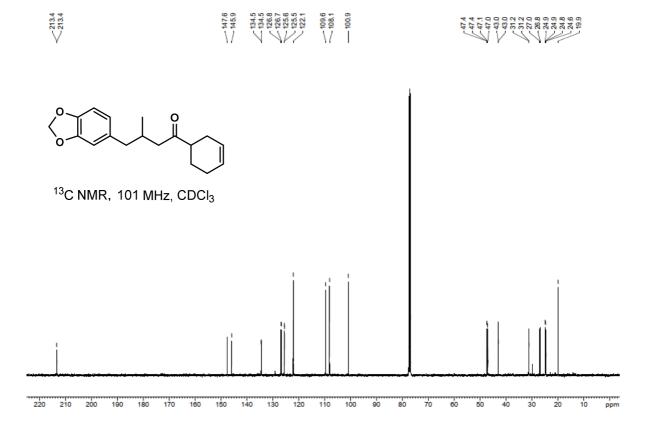


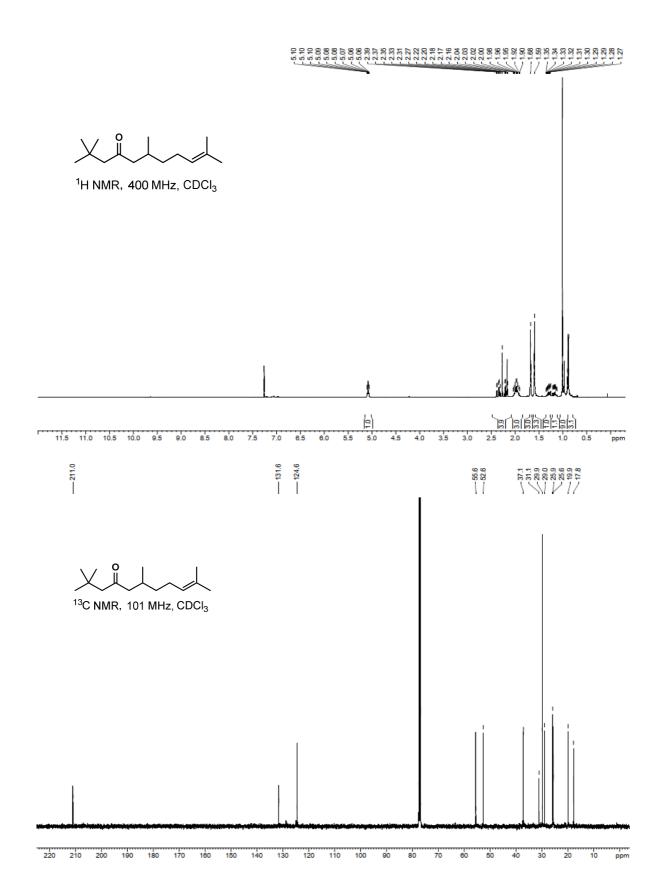


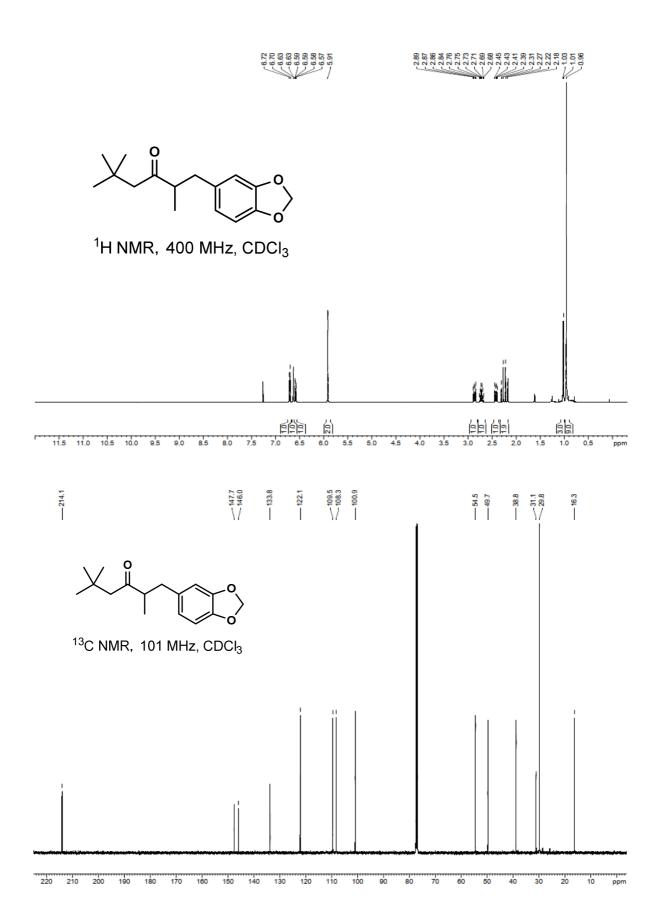


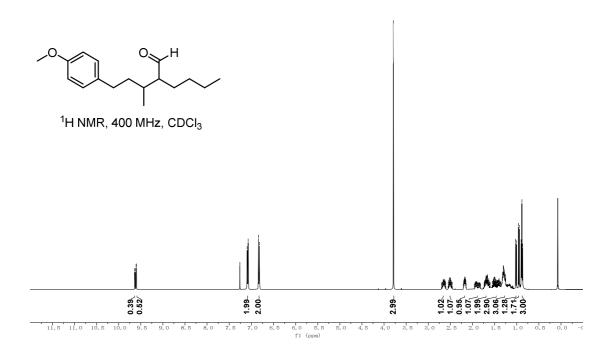


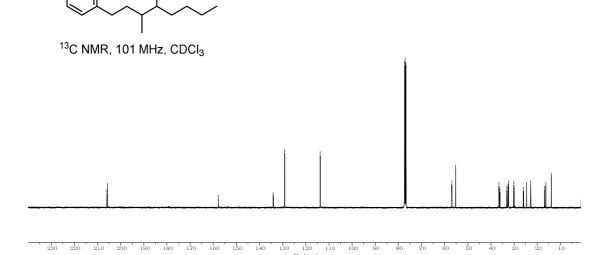

¹⁹F NMR, 377 MHz, CDCl₃

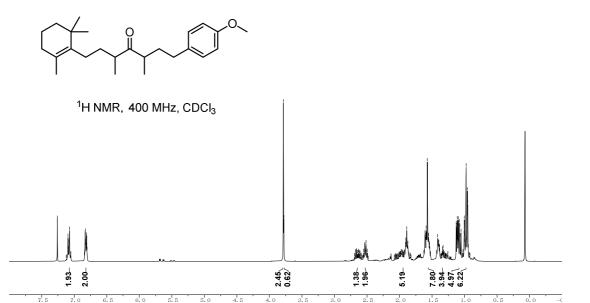


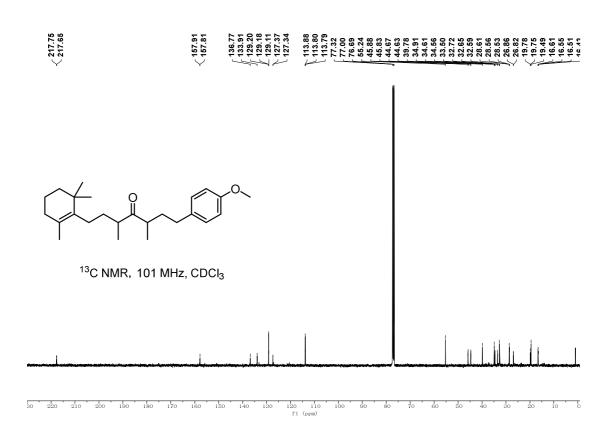


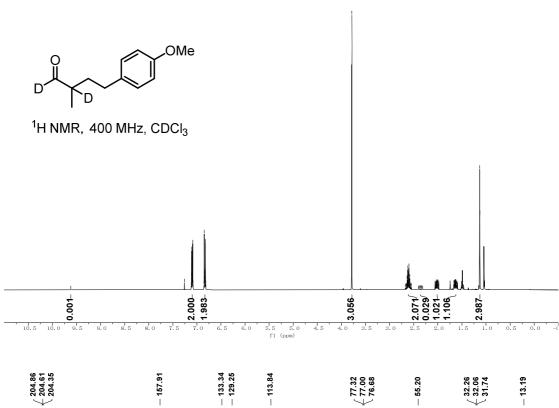




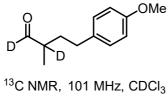


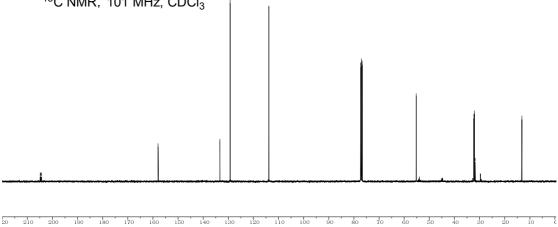

9.9636 9.9626 9.9626 9.9627 9.9537 9.



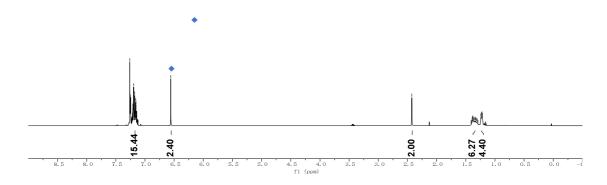


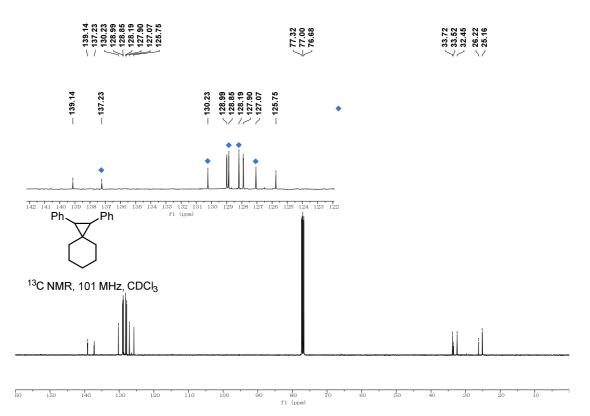
7.266 7.7095 6.830 6.830 6.830 6.831 6.831 6.831 7.831

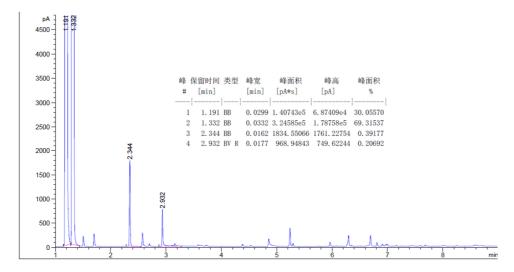




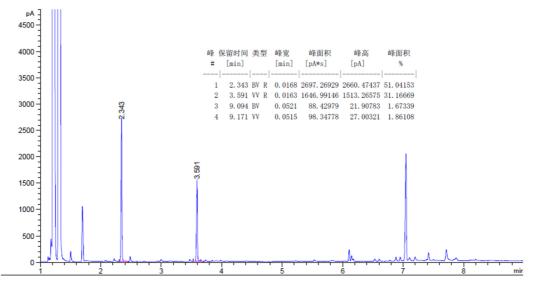
7.280 7.117 7.1117 7.110 7.108 7.108 6.837 7.088 6.837 7.088 6.831 6.831 6.831 7.088 6.831 7.089







¹H NMR, 400 MHz, CDCl₃



9. GC spectra

Figure S10. GC Spectrum of **30**. RT = 2.932 min (area = 968.9); **30**, 2.344 min (area = 1834.5): anisole (internal std.).

Figure S11. GC Spectrum of **3p**. RT = 3.591 min (area = 1646.99); **3p**, 2.343 min (area = 2697.3): anisole (internal std.).

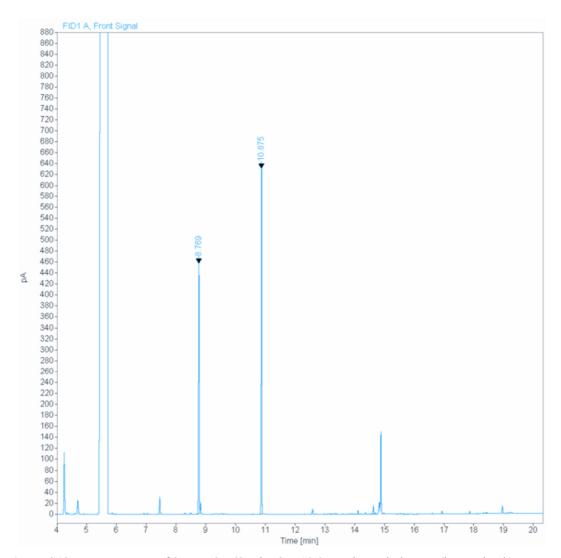


Figure S12. GC Spectrum of 3q. t = 8.769 min: 3q; 10.875 min: n-dodecane (internal std.).

Signal:	FID1 A, Front Signal				
RT [min]	Туре	Width [min]	Area	Height	Area% Name
8.769	MM	0.0247	678.8668	457.7612	43.8198
10.875	BB	0.0209	870.3565	632.1578	56.1802
		Sum	1549.2233		

Figure S13. Integration of the GC Spectrum of **3q**. RT = 8.769 min; **3q**, 10.875 min: n-dodecane (internal std.). n(std) = 87.25 μ mol.

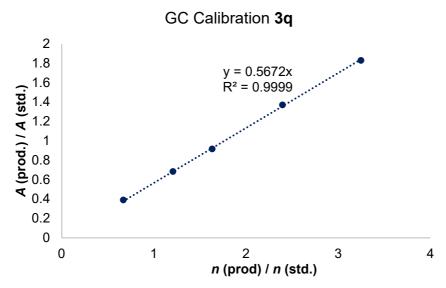


Figure S14. GC Calibration curve of 3q with dodecane as internal standard.

10. References

- [1] S. Wang, B.-Y. Cheng, M. Sršen, B. König, J. Am. Chem. Soc. 2020, 142, 7524-7531.
- [2] a)C. Empel, C. Pei, R. M. Koenigs, *Chem. Commun.* 2022, 58, 2788-2798; b) S. Jana, C. Pei, C. Empel, R. M. Koenigs, *Angew. Chem. Int. Ed.* 2021, 60, 13271-13279; c) Z. Yang, M. L. Stivanin, I. D. Jurberg, R. M. Koenigs, *Chem. Soc. Rev.* 2020, 49, 6833-6847; d) J. Durka, J. Turkowska, D. Gryko, *Eur. J. Org. Chem.* 2021, 9, 8895-8918.
- [3] K. Yang, Q. Li, Y. Liu, G. Li, H. Ge, J. Am. Chem. Soc. 2016, 138, 12775-12778.
- [4] K. Palakodety Radha, R. Ch. Govardhan, G. V. M. Sharma, Lett. Org. Chem. 2004, 1, 212-214.
- [5] T. Shin, H. Kim, S. Kim, A. Lee, M.-S. Seo, J. Choi, H. Kim, H. Kim, Org. Lett. 2019, 21, 5789-5792.
- [6] D. J. Vyas, E. Larionov, C. Besnard, L. Guénée, C. Mazet, J. Am. Chem. Soc. 2013, 135, 6177-6183.
- [7] M.-A. Schneider, K. Seifert, Eur. J. Org. Chem. 2017, 2017, 6739-6746.
- [8] G. S. Lee, J. Won, S. Choi, M.-H. Baik, S. H. Hong, Angew. Chem. Int. Ed. 2020, 59, 16933-16942.