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ABSTRACT
Methotrexate (MTX) is a typical chemotherapeutic drug that is widely used in the treatment of
various malignant diseases as well as autoimmune diseases, with gastrointestinal toxicity being its
most prominent complication which could have a significant effect on the prognosis of patients.
Yet effective ways to alleviate such complications remains to be explored. Here we show that 30%
dietary restriction (DR) for 2 weeks dramatically increased the survival rate of 2-month-old female
mice after lethal-dose MTX exposure. DR significantly reduced intestinal inflammation, preserved
the number of basal crypt PCNA-positive cells, and protected the function of intestinal stem cells
(ISCs) after MTX treatment. Furthermore, ablating intestinal microbiota by broad-spectrum anti-
biotics completely eliminated the protective effect achieved by DR. 16S rRNA gene deep-
sequencing analysis revealed that short-term DR significantly increased the Lactobacillus genus,
with Lactobacillus rhamnosus GG gavage partially mimicking the rescue effect of DR on the
intestines of ad libitum fed mice exposed to lethal-dose MTX. Together, the current study reveals
that DR could be a highly effective way to alleviate the lethal injury in the intestine after high-
dose MTX treatment, which is functionally mediated by increasing the protective intestinal
microbiota taxa in mice. Keywords: Dietary restriction, Methotrexate, Gut microbiota, Intestinal
stem cells, intestinal toxicity
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Introduction

The classic cytotoxic drug methotrexate (MTX) is
a folic acid antagonist that inhibits cell growth and
reproduction by inhibiting dihydrofolate reductase.1–3

It is widely used for the treatment of acute leukemia
and various solid tumors as well as autoimmune dis-
eases, and is the gold standard drug for rheumatoid
arthritis.4–6 Unfortunately, MTX exhibits numerous
side effects, involving gastrointestinal damage as well
as bone marrow suppression.7–10 When used at high
doses, MTX antagonizes the synthesis of purines and
interferes with DNA synthesis, which results in cell-
cycle arrest during S-phase. Therefore, MTX applica-
tion often targets rapidly dividing tumor cells as well
as highly proliferative normal tissues, such as the
intestinal epithelium.2,11 A common gastrointestinal
side effect of MTX, intestinal mucositis, often induces

symptoms such as diarrhea, infection, and bloody
stools, which severely affects the life quality of patients
and extends the treatment cycle.12–15 Therefore, the
resulting gastrointestinal toxicity is the main dose-
limiting side effect of MTX application. However,
efficient ways to alleviate the severe gastrointestinal
side effects induced by MTX, especially at high doses,
remains to be developed.

Intestinal epithelial cells as well as rapidly prolif-
erating intestinal stem cells (ISCs) can be vastly
depleted by the application of high-dose cytotoxic
drugs, including MTX.16,17 This is due to direct cell
toxicity per se as well as intestinal damage caused by
inflammation, leading to the destruction of the
intestinal barrier, compromised digestion, and
malabsorption, thus triggering a series of gastroin-
testinal complications.10,16,17 After the acute phase of
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injury, the residual ISCs and a small number of
progenitor cells reconstruct the ISC pool by self-
renewal and proliferation; at the same time, they
differentiate into intestinal epithelial functional
cells such as enterocytes, enteroendocrine cells,
Paneth cells, and goblet cells for the reconstruction
of the intestinal epithelial system. Thus, ISCs are the
driving force to maintain intestinal homeostasis as
well as tissue regeneration after injury, and could
serve as a potential key target to improve MTX-
induced intestinal complications.18–24

Recently, it was reported that feeding mice with
probiotics before and/or after lethal radiation com-
bined with high-dose MTX treatment ameliorated
destruction of villi and crypts, and extended the survi-
val time of mice after treatment by a small extent.16

However, the combined treatment still proved fatal for
all groups. Another recent study showed that
Bacteroides fragilis gavage reduced low-dose MTX-
induced inflammation.25 These studies suggest that
microbiota could serve as a protective agent to reduce
MTX-induced gut toxicity, but ways tomanipulate the
gutmicrobiota to achieve amore promising protective
effect that can allow for the high-dose application of
MTX remain to be explored. Additionally, it has been
shown that 24 h-fasting could preserve ISC viability, as
well as small intestine architecture and barrier func-
tion after high-dose etoposide17 and that 4-week cal-
orie restriction decreased intestinal toxicity induced
by cyclophosphamide associated remodeling of gut
microbiota.26 Previously, we and others have shown
that calorie restriction significantly decreases levels of
inflammatory factors and enhances stem cell
functionality.27,28 However, whether calorie restric-
tion can attenuate MTX-induced toxicity and the
underlying mechanism has not been studied so far.

In the current study, we remarkably observed that
mice pretreated with short-term DR (30% dietary
restriction for 2 weeks) were fundamentally protected
from lethal doses of MTX that otherwise kill ad libi-
tum (AL)-fed mice. Intestinal mucositis induced by
lethal-dose MTX was also significantly attenuated by
DR. In particular, DR significantly protected basal
crypt PCNA-positive cells from depletion by MTX,
as well as preserved the functionality of ISCs in orga-
noid formation and survival. However, ablating the
gut microbiota with antibiotics completely eliminated
the rescue effect by DR. Further analysis showed that
DR significantly restructured intestinal flora with

a prominent increase of Lactobacillus. Furthermore,
gavage of AL-fed mice with Lactobacillus rhamnosus
GG, which belongs to the Lactobacillales Order and
has known protective effects on radio-/chemo- toxi-
city, partially mimicked the rescue effect achieved by
DR. Of note, ablating the intestinal microbiota com-
pletely eliminated the rescue effect by DR, while
gavage with a single probiotic was only able to par-
tially recapitulate the strong protective effect by DR.
Together, our study provides the first experimental
evidence that DR protects ISC function and
diminishes intestinal toxicity induced by lethal-dose
MTX via a global regulation of gut microbiota, which
if translatable could have great clinical implications
regarding the dose-limiting application of MTX.

Results

DR remarkably increases survival rate of mice
exposed to lethal doses of MTX

To study the effect of DR on mice exposed to lethal
doses of MTX, mice were treated with 30% DR or
fed with AL diet for 2 weeks before intraperitoneal
MTX injection, with control groups injected with
saline (Figure 1A). A high dose of MTX was used
in the study to generate a high lethality injury to best
see the protective effect by DR. Basal physiology
before MTX administration was evaluated by mea-
suring body weight, belly fat, and blood biochemical
parameters. DR led to a gradual reduction of body
weight within the first week after dietary interven-
tion, which was then stable in the second week (Fig.
S1A). Two-week DR also resulted in decreased belly
fat, blood glucose concentration, triglycerides (TG),
cholesterol (TC) and low-density lipoprotein (LDL),
with an increased high-density lipoprotein (HDL)
level observed (Fig. S1B, C). However, two-week
DR had no significant impact on aspartate transami-
nase (AST) or alanine transaminase (ALT) (Fig.
S1C). We examined the survival rate of AL and DR
mice upon MTX treatment by setting up 3 indepen-
dent experiments with a combined total of 45 mice
per AL+MTX and DR+MTX groups, and with 10
mice per AL+Saline and DR+Saline groups. The
results from all 3 independent experiments showed
a high level of consistency which is why they were
combined for analysis (Figure 1B). Strikingly, more
than 80% AL mice died between day 3 and day 7

e1714401-2 D. TANG ET AL.



following MTX treatment, while more than 90% DR
mice survived (Figure 1B). In the DR group, the
survival rate was stable after day 3, while in the AL
group, the survival rate continuously decreased
until day 7 after MTX administration (Figure 1B).
No further mice died up until the end of monitoring
at day 30 (Figure 1B). Both AL+Saline and DR
+Saline groups showed a 100% survival rate during
the whole monitoring period (Figure 1B). In line
with the survival rate, AL mice exhibited
a remarkable reduction in body weight (Figure 1C).

On the contrary, body weight of DR mice after MTX
treatment remained largely constant compared to
their initial body weight before MTX injection, indi-
cating a better overall health status (Figure 1C).

DR significantly protects small intestine and ISCs
from lethal doses of MTX

To understand the mechanism underlying why DR
maintained body weight and protected mice from
death post MTX treatment, we first examined the
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Figure 1. DR significantly improves survival rate and body weight maintenance of mice exposed to lethal doses of MTX treatment.
(A) Scheme of experiment. Two-month-old mice were fed with AL diet or 30% DR diet for 14 days before MTX administration and
the diet regimen was continued afterward. Then, mice were intraperitoneally injected with saline as control or MTX for 2 days at
a dose of 120mg/kg (d-1) and 60mg/kg (d0). (B) Survival was monitored daily after MTX administration. (Data combined from 3
independent experiments. n = 45 mice per group for the AL+MTX mice and DR+MTX mice; n = 10 mice per group for the AL+Saline
mice and DR+Saline mice) Gehan-Breslow-Wilcoxon test. (C) Percent change of body weight at indicated timepoints after MTX
treatment compared to before MTX treatment (n = 45 mice per group, combined from 3 independent experiments). Note that the
majority of mice were dead within 7 days after MTX administration, therefore, the number of mice measured in the AL group was
much reduced at later timepoints after MTX treatment. Unpaired two-tailed, Student’s t test. Results were displayed as mean±SD. n.
s: nonsignificant; ****: P < .0001. AL: mice on AL diet; DR: mice on DR diet; AL+Saline: mice on AL diet and received saline injection;
DR+Saline: mice on DR diet and received saline injection; AL+MTX: mice on AL diet and received MTX injection; DR+MTX: mice on
DR diet and received MTX injection.
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histology of the small intestines after MTX expo-
sure. MTX-induced severe intestinal toxicity
throughout the duodenum, jejunum, and ileum,
as displayed by the great loss of villi and crypts,
shortened villi, and decreased number of cells per
crypt (Figure 2A–F). On the contrary, mice pre-
treated with DR significantly maintained the
height of villi, the number of crypts, and cell
number per crypt (Figure 2A–F). In general, AL
mice exhibited significant changes in the crypt-
villus structure upon MTX treatment while the
small intestine architecture of DR mice was
much less affected and was essentially recovered
by day 6 after treatment (Figure 2D–F). Of note,
AL mice showed a strong reduction of villi height
and crypt cell number on day 3 and a significant
recovery on day 6 in the survived population,
while DR mice maintained a relatively intact
intestinal architecture (Figure 2D,F). These data
suggest that DR strongly reduces intestinal toxicity
caused by lethal-dose MTX and improves small
intestine regeneration.

To further examine the effects of DR on the
proliferative capacity of crypts, we counted the
number of basal crypt PCNA-positive cells by
immunofluorescent staining.24,29 MTX adminis-
tration resulted in a significant loss of basal crypt
PCNA-positive cells in AL mice, with the strongest
phenotype presenting on day 3 post-MTX treat-
ment (Figure 2G,H). Intriguingly, the number of
basal crypt PCNA-positive cells was significantly
preserved by DR pre-treatment (Figure 2G,H).
The formation of a crypt-villus axis in the standard
3D matrigel culture system reflects the prolifera-
tion capacity, as well as the differentiation activity
of the plated ISCs.30 To further explore the effect
of DR on the functionality of injured ISCs, mice
were treated with AL or 30% DR regimen for 2
weeks followed by MTX or saline intraperitoneal
injection as described above (Figure 1A) and
crypts of mice receiving different treatment were
isolated on day 3 after MTX or saline injection and
cultured. MTX treatment led to reduced seeding
efficiency and impaired organoid formation in AL
mice as shown by an increase in apoptotic orga-
noids, whereas the growth of organoids from
crypts derived from DR mice was significantly
improved (seeding efficiency: 7.9 ± 4.6% in AL
+MTX group versus 51.1 ± 19.7% in DR+MTX

group; viable organoids per well: 1.8 ± 1.3 in AL
+MTX group versus 79.4 ± 31.5 in DR+MTX
group) (Figure 2I,J). Together, these data indicated
that DR pre-treatment protected basal crypt
PCNA-positive cells from depletion and preserved
the functioning of ISCs after MTX administration,
which could contribute to the improved regenera-
tion under DR condition.

DR ameliorates MTX-induced intestinal
inflammation

Previously we have shown that DR significantly
inhibited expression of inflammatory factors in
blood in undisturbed conditions.27 DR was also
shown to suppress inflammation in other
models.31,32 Since mucosal inflammation was con-
sidered to be the major cause of MTX-induced
toxicity, we further examined the effect of DR on
intestinal inflammation upon MTX administra-
tion. H&E staining shows that the small intestines
of AL mice exhibited remarkable neutrophil infil-
tration and vascular congestion, associated with
great loss of crypts and depletion of crypt cells,
while intestines of DR mice presented minor signs
of inflammation and relatively intact crypts
(Figure 3A). The mucosal inflammation was
further assessed by histology scores,12 correspond-
ingly, MTX treatment resulted in a notable eleva-
tion of the histology score in AL mice but not in
DR mice (Figure 3B). In addition, immunofluor-
escent staining of CD11b+ myeloid cells showed
much stronger inflammation induced in AL mice
compared to DR mice (Figure 3C). To further
examine the inflammatory activity, whole small
intestine crypts were isolated to determine the
expression of inflammation-related genes by
qPCR analysis. MTX administration led to
increased induction of inflammatory factors in
AL mice, including IL-10, IL-1β, TNF-α, IFN-γ,
and IL-6, whereas the induction was much less
significant in DR mice (Figure 3D). These results
indicated that high-dose MTX leads to a strong
induction of mucosal inflammation in the intes-
tine of AL mice while DR significantly suppressed
it, which could play an important role in the gen-
eral beneficial effect of DR on high-dose MTX-
induced intestinal toxicity and mortality.
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Ablating the gut microbiota eliminates the
protective effects of DR

It was reported that supplementation of probiotics in
rodents and human beings could reduce intestinal
damage after radio- and/or chemotherapy.16,25,33–36

To determine the role of intestinal microbiota in the
DR induced protective effect under high-dose MTX
administration, we applied broad-spectrum antibio-
tics (Abx) to DR pretreated mice to ablate the gut
microbiota before MTX administration (Figure 4A).
Remarkably, wiping out the microbiota completely
diminished the beneficial effect on the overall survival
rate achieved byDR (Figure 4B). Bodyweight on day 3
afterMTX treatment revealed that ablating themicro-
biota also decreased the beneficial effect by DR on
body weight maintenance (Figure 4C). To check the
effect of removing gut microbiota on intestines, we
analyzed intestinal histology by H&E staining.
Antibiotic administration resulted in shortening of
the villus height after MTX injection both under AL
and DR conditions (Figure 4D,E). Crypt density was
also reduced in theDR+Abx+MTXmice compared to
the DR+Saline+MTX mice (Figure 4E). Further ana-
lysis of inflammation showed that the DR+Abx+MTX
mice harbored similar levels of inflammation to the
AL+Abx+MTX and AL+Saline+MTX mice, with the
DR+Saline+MTX group significantly lower than all
three other groups. Accordingly, the histological
score of the DR+Saline+MTX group was around 5
times less compared to the other 3 groups (Figure 4E).
In line with that, ablating the gut microbiota also
significantly increased the CD11b labeled myeloid
cell infiltration in intestines of DR mice (Figure 4F)
and strongly up-regulated the expression level of
inflammation genes in the crypts of DR mice,

including IL-10, IL-1β, TNF-α, and IFN-γ (Figure
4G). The number of basal crypt PCNA-positive cells
was also significantly reduced in AL+Abx+MTX, AL
+Saline+MTX, andDR+Abx+MTXgroups compared
toDR+Saline+MTXmice (Figure 4H,I). In the culture
system, crypts derived from DR+Abx+MTX mice
showed the impaired formation of organoids and
increased death, which was similar to the culture of
crypts from AL+Abx+MTX mice and AL+Saline
+MTX mice, but distinct to the culture of crypts
from DR+Saline+MTX mice. DR+Saline+MTX mice
exhibited less death and better formation of organoids
(seeding efficiency: 51.0 ± 7.2% in DR+Saline+MTX
group versus 13.8 ± 6.6% in DR+Abx+MTX group;
viable organoids per well: 75.2 ± 17.7 in DR+Saline
+MTX group versus 8.2 ± 2.9 in DR+Abx+MTX
group), suggesting that ablating the gut microbiota
diminished the positive effect of DR on ISC mainte-
nance and function upon MTX treatment (Figure 4J,
K). Together, the results indicated that the protective
effect of DR on lethal-dose MTX treated mice was
mediated via the gut microbiota. In addition, since
removing the intestinal flora diminished the positive
effect of DR but had a minor impact on AL mice, we
inferred that DR treatment might increase the abun-
dance of bacterial taxa having protective potential
against MTX treatment, rather than decreasing bac-
terial taxa that may induce intestinal damage upon
MTX treatment.

DR modulates composition of intestinal flora

To investigate further, we analyzed the gut micro-
biota of AL and DR mice immediately before and
2 days after MTX injection (fecal samples on day 2

sections on day 3 after MTX administration (scale bar: 50μm). Square frames show the enlarged images of arrowhead pointed areas
(scale bar: 20μm). (D) Villi height (30 crypts were counted for each mouse, n = 5 mice per group randomly picked from 2
independent experiments.) (E) Crypt number per millimeter (crypt number per 15 mm length was counted for each mouse, n = 5
mice per group randomly picked from 2 independent experiments.) and (F) cell number per crypt (30 crypts were counted for each
mouse, n = 5 mice per group randomly picked from 2 independent experiments) at indicated timepoints after MTX administration.
(G) Representative images of immunofluorescent staining of PCNA of jejunum on day 3 after MTX treatment (scale bar: 20μm). (H)
Basal crypt PCNA-positive cell number per crypt counted from the whole small intestine at indicated timepoints after MTX
administration (40 crypts were counted for each mouse, and n = 5 mice per group randomly picked from 2 independent
experiments). (I) Representative images of cultured crypts on day 6 in culture derived from mice on day 3 after indicated treatment.
Lower line: zoomed in vision of images in square frames of the upper line. Scale bars: 100 μm (upper); 50 μm (lower). (J) Seeding
efficiency of cultured crypts on day 3 and number of viable organoids from cultured crypts on day 6 (n = 5 mice per group,
combined from 2 independent experiments). Results were displayed as mean±SD. n.s: nonsignificant; *: P < .05; **: P < .01; ***: P <
.001; ****: P < .0001 by One-way ANOVA test. AL+Saline: mice on AL diet and received saline injection; DR+Saline: mice on DR diet
and received saline injection; AL+MTX: mice on AL diet and received MTX injection; DR+MTX: mice on DR diet and received MTX
injection; d3: day 3 after MTX injection; d6: day 6 after MTX injection.
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after MTX injection was collected for analysis
before the start of massive death in the AL
group, and before heavy diarrhea hampered collec-
tion in this group) by 16S rRNA gene deep-
sequencing (Illumina 250 bp paired-end).
Interestingly, the overall structure of the gut
microbiota was significantly shifted in DR treated
mice compared to the AL mice, both before and
after MTX injection, as shown by principal-
coordinate analysis (PCoA) based on Bray–Curtis
distance (Figure 5A). Of note, 2 weeks of DR
treatment resulted in a significant shift in the
composition of the gut microbiota at the level of
Order (Figure 5B). Most prominently, short-term
DR led to an increased relative abundance of the
Order Lactobacillales in the intestinal flora (Figure
5B). We used the linear discriminant analysis
(LDA) scores over 2 and looked at the top 9

bacteria in each direction (Figure 5C). The Order
of Lactobacillales, Family of Lactobacillaceae and
Genus of Lactobacillus were among the top 5
enriched taxa both before and after MTX admin-
istration (Figure 5C). In particular, the relative
abundance of Lactobacillus was significantly
increased both before and after MTX administra-
tion (Figure 5D). Lactobacillus is known to have
protective potential on intestinal tissue exposed to
radio- and/or chemotherapy, which might mediate
the protective effect of DR on intestines exposed to
lethal-dose MTX. To further examine the quanti-
tative change of Lactobacillus, quantitative PCR
(qPCR) was performed. The results show that
amounts of total bacteria in the gut were not
significantly altered (Figure 5E). Notably, DR sig-
nificantly increased the detectable amount of
Lactobacillus before as well as after MTX injection
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Figure 3. DR reduces MTX-induced intestinal inflammation. Two-month-old mice were fed with AL diet or 30% DR diet for 14 days
before MTX administration and the diet regimen was continued afterward. Then, mice were intraperitoneally injected with saline as
control or MTX for 2 days at a dose of 120mg/kg (d-1) and 60mg/kg (d0). Mice were sacrificed on day 3 after MTX administration and
whole small intestinal tissue was collected for further analysis. (A) Representative images of H&E staining of jejunum. Representative
crypts are shown in insets on the right. Note that crypts of DR mice were relatively intact while they were destroyed in AL mice with
significantly increased neutrophils infiltration as pointed by blue arrows. Scale bar: 50μm (left), 20μm (right). (B) Histology score
based on H&E staining. (33 vision fields were counted per mouse, n = 5 mice per group randomly picked from 2 independent
experiments) of the whole small intestine. (C) Representative images of CD11b+ immunofluorescent staining for myeloid cells of
jejunum. Arrow heads point to CD11b+ cells. Note the rare infiltration of CD11b+ cells in DR mice compared to the extensive
infiltration of CD11b+ cells in AL mice after MTX administration. Scale bars: 20 μm. (D) Relative expression of indicated genes in
freshly isolated crypt cells by qRT-PCR analysis (n = 5 mice per group randomly picked from 2 independent experiments). Results
were displayed as mean±SD. n.s: nonsignificant; *: P < .05; **: P < .01; ***: P < .001; ****: P < .0001 by two-tailed, Student’s t test. AL
+Saline: mice on AL diet and received saline injection; DR+Saline: mice on DR diet and received saline injection; AL+MTX: mice on AL
diet and received MTX injection; DR+MTX: mice on DR diet and received MTX injection.
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Figure 4. Ablating the gut microbiota eliminates the protective effect of DR. (A) Scheme of experiments. Two-month-old mice were
fed with AL diet or 30% DR diet for 14 days before MTX administration and the diet regimen was continued afterward. Then, all mice
were intraperitoneally injected with MTX for 2 days at a dose of 120mg/kg (d-1) and 60mg/kg (d0). Seven days prior to MTX
administration, mice were fed by gavage for 5 days and then in drinking water for the following days with broad-spectrum
antibiotics or saline. (B) Survival was monitored daily after MTX administration. Number of mice in each group was indicated. Gehan-
Breslow-Wilcoxon test (n = 25 mice per group, combined from 2 independent experiments). (C) Percent change of body weight
on day 3 after MTX treatment compared to before MTX treatment (number of mice of each group were indicated, results were from
2 combined independent experiments). Note that antibiotics treatment resulted in impaired body weight maintenance of DR mice.
(D) Representative images of H&E staining of jejunum on day 3 after MTX administration. Representative crypts are shown in insets.
Note that crypts of DR mice were relatively intact while they were destroyed in antibiotics treated mice after MTX administration.
Scale bar: 50μm (outside), 20μm (insets). (E) Villi height (45 crypts were counted for each mouse, n = 5 mice per group randomly
picked from 2 independent experiments), crypt number per millimeter (crypt number in 15 mm length as a unit was counted, and15
units were counted for each mouse, n = 5 mice per group randomly picked from 2 independent experiments), cell number per crypt
(30 crypts were counted for each mouse, n = 5 mice per group randomly picked from 2 independent experiments) from the jejunum
on day 3 after MTX administration were shown. Histology score was based on H&E staining (30 vision fields were counted per
mouse, n = 5 mice per group randomly picked from 2 independent experiments) from the whole small intestine on day 3 after MTX
administration. (F) Representative images of CD11b+ immunofluorescent staining of jejunum on day 3 after MTX administration.
Arrow heads point to CD11b+ cells. Note antibiotics treatment induced the extensive infiltration of CD11b+ cells in DR mice after
MTX administration. Scale bars: 20 μm. (G) Relative expression of indicated genes in freshly isolated crypt cells from whole small
intestine of mice on day 3 after MTX administration by qRT-PCR analysis (n = 5 mice per group randomly picked from 2 independent
experiments). Note that antibiotics treatment significantly induced expression of inflammatory genes. (H) Representative images of
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(Figure 5E). Together, these data indicated that
DR increased the abundance of protective bacterial
taxa in the gut.

We further examined alpha diversity to com-
pare microbial richness and evenness in the broad-
spectrum-antibiotics treated mice before and after
MTX injection. As expected, the Shannon index
decreased sharply in both AL and DR mice after
antibiotics treatment, indicating that the structure
of intestinal flora was heavily compromised by the
broad-spectrum-antibiotics treatment in both AL
and DR mice as shown by the alpha diversity
analysis (Figure 6A). PCoA analysis showed that
overall structure of AL and DR mice were signifi-
cantly different before antibiotic treatment, but
that difference disappeared after antibiotic treat-
ment (Figure 6B). The relative abundance of
Lactobacillus was similar among all groups after
antibiotics treatment, regardless of whether the
mice were treated with DR or MTX (Figure 6C).
Coupled with that, the qPCR analysis showed
a remarkable reduction in the amount of total
bacteria as well as Lactobacillus upon antibiotic
treatment in both AL and DR groups, with no
significant difference among groups of mice trea-
ted with antibiotics (Figure 6D,E). These results
indicated that bacterial richness, biodiversity, and
the amount of Lactobacillus were severely compro-
mised by broad-spectrum-antibiotics treatment in
both AL and DR mice which negated the DR-
mediated modulation of gut microbiota.

Lactobacillus rhamnosus GG gavage partially
rescues survival of AL mice exposed to lethal
doses of MTX

To further investigate the relationship between
the rescue effect of DR on high-dose MTX and
its role in increasing beneficial bacterial taxa, we

sought to mimic its rescue effect by gastric gavage
of Lactobacillus rhamnosus GG (LGG). LGG was
chosen as the Lactobacillus genus was found in
higher abundance in DR both before and after
MTX administration, as well as LGG belonging
to the Lactobacillales lactic acid bacteria Order
and being a well-known probiotic, known to pro-
tect against radio- and chemotherapy induced
intestinal toxicities.16,35,36 We applied LGG to
AL mice for 5 days prior to the MTX administra-
tion (Figure 7A). qPCR analysis proved
a significant increase in the amount of LGG in
the LGG-fed mice both before and after MTX
injection (Figure 7B). Interestingly, LGG gavage
decreased the mortality rate to 52% on day 3 after
which point a stable survival rate was maintained
until the end of monitoring on day 30 (Figure
7C), and showed decreased body weight loss com-
pared to the control group (Figure 7D). LGG
gavage significantly improved intestinal architec-
ture after MTX treatment, such as better main-
tenance of villi height, crypt density, and crypt
cells, and histology score (Figure 7E,F). LGG
gavage also diminished the infiltration of
CD11b+ myeloid cells and expression of inflam-
matory genes TNF-α and IFN-γ (Figure 7G,H).
Furthermore, number of basal crypt PCNA-
positive cells was also better maintained upon
LGG-feeding in MTX injected AL mice
(Figure 7I,J). LGG-feeding also significantly
improved seeding efficiency and organoid forma-
tion of crypts from MTX treated AL mice com-
paring to vehicle-fed control mice (seeding
efficiency: 3.4 ± 0.5% in AL+Vehicle+MTX
group versus 32.7 ± 16.5% in AL+LGG+MTX
group; viable organoids per well: 3.2 ± 2.2 in AL
+ Vehicle +MTX group versus 28.6 ± 19.3 in AL
+LGG+MTX group) (Figure7K,L). These results
indicated that supplementation of LGG can

immunofluorescent staining of PCNA of jejunum on day 3 after MTX treatment. (I) Basal crypt PCNA-positive cell number per crypt
on day 3 after MTX administration of the whole small intestine (40 crypts were counted for each mouse, and n = 5 mice per group
randomly picked from 2 independent experiments). (J) Representative images of cultured crypts on day 6 in culture derived from
mice on day 3 after indicated treatment. Lower line: zoomed in vision of images in square frames of the upper line, note that
antibiotics treatment diminished the protective effect in DR mice. Scale bars: 100 μm (upper); 50 μm (lower). (K) Seeding efficiency of
cultured crypts on day 3 and number of viable organoids of cultured crypts on day 6 (n = 5 mice per group randomly picked from 2
independent experiments). Results were displayed as mean±SD. n.s; nonsignificant; *: P < .05; **: P < .01; ***: P < .001; ****: P <
.0001 by one-way ANOVA. AL+Saline+MTX: mice on AL diet and received MTX injection and saline administration; DR+Saline+MTX:
mice on DR diet and received MTX injection and saline administration; AL+Abx+MTX: mice on AL diet and received MTX injection
and Abx administration; DR+Abx+MTX: mice on DR diet and received MTX injection and Abx administration.
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Figure 5. DR modulates composition of intestinal flora. Two-month-old mice were fed with AL diet or 30% DR diet for 14 days
before MTX administration and the diet regimen was continued afterward. Then, mice were intraperitoneally injected with saline as
control or MTX for 2 days at a dose of 120mg/kg (d-1) and 60mg/kg (d0) Fecal samples were randomly collected from mice before
and on day 2 after MTX injection for 16S rRNA gene sequencing (n = 8–10 mice per group randomly picked from 2 independent
experiments) and qPCR analysis (n = 5 mice per group randomly picked from 2 independent experiments). (A) Variation of intestinal
flora structure of indicated groups along PC1 and PC2 of PCoA based on the Bray–Curtis distance. (B) Relative abundance of the
intestinal flora of indicated groups on the Order level showed by 16S rRNA gene sequencing. (C) LDA scores in the fecal microbiomes
of indicated groups. LDA score>2 and top nine bacteria were shown. (D) Relative abundance of the Lactobacillus showed by 16S
rRNA gene sequencing. (E) qPCR analysis of the amounts of total bacteria and Lactobacillus of indicated groups (n = 5 mice per
group, randomly picked from 2 independent experiments). Results were displayed as mean±SD. n.s; nonsignificant; *: P < .05; **: P <
.01 by two-tailed, Student’s t test. AL: mice on AL diet; DR: mice on DR diet; AL+MTX: mice on AL diet and received MTX injection; DR
+MTX: mice on DR diet and received MTX injection; d-1: day −1 before MTX injection; d2: day 2 after MTX injection.
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Figure 6. Broad-spectrum-antibiotics abolished differences of gut microbiota between AL and DR mice. Two-month-old mice
were fed with AL diet or 30% DR diet for 14 days before MTX administration and the diet regimen was continued afterward.
Then, all mice were intraperitoneally injected with MTX for 2 days at a dose of 120mg/kg (d-1) and 60mg/kg (d0). Seven days
prior to MTX administration, mice were fed by gavage for 5 days and then in drinking water for the following days with broad-
spectrum antibiotics or saline. Fecal samples were randomly collected from mice after 14 days on AL or DR diet before MTX
injection and on day 2 after MTX injection for 16S rRNA gene sequencing (n = 5–8 mice per group randomly picked from 2
independent experiments) and qPCR analysis (n = 5 mice per group randomly picked from 2 independent experiments). (A)
Shannon index of indicated groups based on alpha diversity analysis. (B) Variation of intestinal flora structure of indicated
groups along PC1 and PC2 of PCoA based on the Bray–Curtis distance. (C) Relative abundance of the Lactobacillus showed by
16S rRNA gene sequencing. (D,E) qPCR analysis of the amounts of total bacteria (D) and Lactobacillus (E) of indicated groups (n
= 5 mice per group, randomly picked from 2 independent experiments). Results were displayed as mean±SD. n.s; nonsigni-
ficant; *: P < .05; **: P < .01; ***: P < .001; ****: P < .0001 by one-way ANOVA. AL: mice on AL diet; DR: mice on DR diet; AL
+Abx: mice on AL diet with Abx administration before MTX injection; DR+Abx: mice on DR diet with Abx administration before
MTX injection; AL+Abx+MTX: mice on AL diet with Abx administration day 2 after MTX injection; DR+Abx+MTX: mice on DR
diet with Abx administration day 2 after MTX injection.
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Figure 7. LGG gavage partially rescued the survival of AL mice exposed to high-dose MTX. (A) Scheme of experiment. Two-month-
old mice were fed with vehicle control or LGG for 5 days before MTX administration. Then, mice were intraperitoneally injected with
the vehicle as control or MTX for 2 days at a dose of 120mg/kg (d-1) and 60mg/kg (d0). All mice were fed with AL diet. (B) qPCR
analysis of the amounts of total bacteria and LGG of indicated groups (n = 5 mice per group randomly picked from 2 independent
experiments). (C) Survival was monitored daily after MTX administration. Gehan-Breslow-Wilcoxon test. (n = 20–25 mice per group,
combined from 2 independent experiments). (D) Percent change of body weight at indicated timepoints after MTX treatment
compared to before MTX treatment (n = 7–17 mice per group, combined from 2 independent experiments). (E) Representative
images of H&E staining of jejunum on day 3 after MTX administration. Representative crypts are shown in insets. Scale bar: 50μm
(outside), 20μm (insets). (F) Villi height (40 crypts were counted for each mouse, n = 5 mice per group randomly picked from 2
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partially mimic the rescue effect by DR upon
MTX treatment. However, the rescue effect was
less effective compared to DR, suggesting that
a global modulation of the gut microbiota upon
DR treatment plays an essential role in the pro-
tective mechanism of DR to MTX treatment.

Discussion

MTX is an established cytotoxic drug widely used in
the treatment of malignant and autoimmune dis-
eases. However, the strong intestinal toxicity induced
by MTX is a major dose-limiting factor. As such,
efficient ways to reduce the severe complications of
MTX, which would allow for its high-dose applica-
tion, would prove greatly beneficial. The current
study provides the first experimental evidence in
mice that short-term DR prior to high-dose MTX
administration markedly reduced intestinal damage
and increased survival rate compared to AL mice. In
particular, DR preserved the viability as well as the
regeneration functionality of ISCs exposed to high-
dose MTX injury. Principally, we show that the
beneficial effect achieved by DR was mediated by
a global regulation of the intestinal flora and asso-
ciated with a significant increase of the Order
Lactobacillales. Our findings present DR as a novel
way to ameliorate high-dose MTX-induced damage
and provide insight into the underlying mechanism,
which could be of great interest to clinicians as well
as researchers aiming to reduce toxicity caused by
dose-intensive chemotherapy.

Importantly, DR per se shows promising inhibi-
tion of spontaneous, chemically induced and
radiation-induced tumors in multiple organs,

including skin, breast, lung, liver, colon, pancreas,
and prostate.37 DR was also shown to restrict the
growth and spread of cancer as well as sensitizing
tumor cells to tumor treatment.38–41 Therefore, it
is tempting to speculate that DR treatment can
markedly alleviate intestinal complications of
MTX without disturbing its tumor killing effect,
if not synergizing it.

Intestinal injury is a common complication of
multiple chemotherapeutic drugs, and several studies
have been conducted to find ways to ameliorate it. It
was shown that 24-h fasting protected the structure
and function of the small intestine in mice exposed to
lethal doses of etoposide by activating DNA repair
genes, faster resolution of DNA double strand breaks,
reducing apoptosis in ISCs, and inhibition of infiltra-
tion of inflammatory cells.17 However, the mechan-
ism of how fasting achieved the above effects were not
studied. A recent study showed that 4 weeks of calorie
restriction prior to cyclophosphamide administration
protected the intestinal barrier and epithelium, which
was associated with amodulation of gut-microbiota.26

Two other recent studies reported that probiotic sup-
plementation ameliorated intestinal toxicity induced
by a combination of lethal radiation and high-dose
MTX treatment or low-dose MTX treatment
alone.16,25 These studies indicated an associated rela-
tion between intestinal flora and chemotherapy-
induced intestinal damage.

The data presented here were generated using
female C57BL/6J mice, so generalizability
beyond this should be cautious given the micro-
biome variability introduced by sources such as
the animal providers, rearing facilities, sex, and
genetic background.42,43 Previous studies have

independent experiments), crypt number per millimeter (crypt number in 15 mm length was counted as a unit, and 15 units were
counted for each mouse, n = 5 mice per group randomly picked from 2 independent experiments), cell number per crypt (30 crypts
were counted for each mouse, n = 5 mice per group randomly picked from 2 independent experiments) from jejunum on day 3 after
MTX administration were shown. Histology score was based on H&E staining (30 vision fields were counted per mouse, n = 5 mice
per group randomly picked from 2 independent experiments) from the whole small intestine on day 3 after MTX administration. (G)
Representative images of CD11b+ immunofluorescent staining of jejunum on day 3 after MTX administration. Arrow heads point to
CD11b+ cells. Scale bars: 20 μm. (H) Relative expression of indicated genes in freshly isolated crypt cells from the whole small
intestine of mice on day 3 after MTX administration by qRT-PCR analysis (n = 5 mice per group randomly picked from 2 independent
experiments). (I) Representative images of immunofluorescent staining of PCNA of jejunum on day 3 after MTX treatment. (J) Basal
crypt PCNA-positive cell number per crypt of the whole small intestine on day 3 after MTX administration (30 crypts were counted
for each mouse, and n = 5 mice per group randomly picked from 2 independent experiments). (K) Representative images of cultured
crypts on day 6 in culture derived from mice on day 3 after indicated treatment. Lower line: zoomed in vision of images in square
frames of the upper line. Scale bars: 100 μm (upper); 50 μm (lower). (L) Seeding efficiency of cultured crypts on day 3 and number of
viable organoids of cultured crypts on day 6 (n = 5 mice per group randomly picked from 2 independent experiments). Results were
displayed as mean±SD. n.s; nonsignificant; *: P < .05; **: P < .01; ***: P < .001; ****: P < .0001 by two-tailed, Student’s t test.
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highlighted, for example, the influence andro-
gens can have on the gut microbiota.44–46

Anatomical and microbiota differences between
mice and humans, such as a relatively higher
abundance of Lactobacillus in mice than
humans,47 may also impact on the translation
of this finding to humans. Mouse models should
never be viewed as a faithful equivalent to the
human intestinal microbiota; however, these
models allow for a detailed study of pathologies
and functionalities on the hosts and therefore
provide useful insights into the direct effects on
intestinal tissue. Moreover, a small proportion of
AL mice survived the high-dose MTX treatment
and the survival rate stabilized after day 7. The
underlying mechanism could be related to indi-
vidual variations on drug metabolism, etc., and
regeneration of the intestinal epithelium driven
by ISCs in the survived mice, which was not
deeply explored in the current study.

Previous studies have uncovered changes in
intestinal microbiota upon chemotherapy-induced
inflammation, and differentiating whether the
change is causative or consequential has been very
difficult.48 Nevertheless, it has been shown that abro-
gating intestinal microbiota by broad-spectrum anti-
biotics resulted in enhanced inflammatory
signatures, including substantial increases in inflam-
matory signaling and activation of dendritic cells.49

In line with this, our study showed an even higher
mortality rate in AL mice after broad-spectrum anti-
biotic treatment, which suggests that recent Abx
application probably increases intestinal toxicities
of MTX treatments. Furthermore, a wealth of studies
has shown that gut microbiota modulates the actions
of chemotherapeutic drugs through multiple
mechanisms, including translocation, immunomo-
dulation, metabolism, enzymatic degradation, and
reduced diversity and ecological variation.50

Therefore, it is believed that the gut microbiota can
be targeted to improve efficacy and reduce the toxi-
city of chemotherapy agents.26,50,51 In this regard,
Abx application might also interfere with the MTX
tumor killing capacity. Overall, one should be cau-
tious in using Abx prior to or in combination with
chemotherapy.

MTX administration has previously been shown
to induce inflammation in mice, as well as reduce
the diversity of the gut microbiota, and change

macrophage M1/M2 polarization.25 The observed
decrease in intestinal inflammation caused by DR
may be additionally mediated by changes in
immune cell cytokine secretion,52 as well as
changes in the amount and/or type of bioactive
metabolites secreted by the changed microbial
composition.53 Multiple studies have proved that
the application of probiotics can attenuate
abnormalities of inflammatory cells induced by
chemotherapies.34,54,55 In line with that, our
study revealed that DR attenuated the infiltration
of CD11b+ cells. It is possible that DR-mediated
modulation of gut microbiota ameliorates changes
in inflammatory cells upon MTX treatment, which
requires further future investigation.

Our study shows that DR attenuated MTX-
induced intestinal damage, accompanied by
a global up-regulation of “protective” bacterial taxa,
whose protective effect could be eliminated through
antibiotic treatment or partially mimicked by LGG
gavage. Therefore, the current study provided the
first experimental evidence that under chemother-
apy treatment DR preserved proliferative capacity of
crypt cells and ISC function, accompanied with
reduced intestinal toxicity via global modulation of
gut microbiota. Furthermore, though a variety of
chemotherapeutic agents can induce intestinal toxi-
city, the damaging level to the intestine specifically
can be quite different at clinical doses. In the clinic,
for cyclophosphamide the major complications are
hemocytopenia and hemorrhagic cystitis,56,57 and
likewise with etoposide mainly hemocytopenia.58,59

However, the predominant side effect of MTX is
severe intestinal mucitis,10,12,60 which can be some-
times lethal, especially at high doses. The intestinal
toxicity is the major dose-limiting factor of MTX
administration. The current study presents a novel
way to eliminate the intestinal damage induced by
high-dose MTX, and explores the underlying
mechanism, which could be of great interest to the
clinical applications of MTX.

Materials and methods

Mice and dietary intervention

Mice were bought from Beijing Speyford Laboratory
Animals and maintained in the animal facilities of
Nanchang Royo Biotech. Two-month-old C57BL/6J
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female mice were maintained a 12-h light/dark cycle
in the feeding environment under SPF-level feeding
conditions. Mice were housed individually and
received a regimen of either an AL diet (fed with an
unlimited amount of food) or a DR diet (fed daily
with an amount of food corresponding to 70% of the
amount of food consumed by body weight – and
gender-matchedmice in the AL group). The provided
food amount was constant over the whole DR
period.27 All mouse experiments were approved by
the Animal Experimental Ethical Inspection of
Nanchang Royo Biotech Co. Ltd (RYEI20170507-1).

MTX treatment

Protocol of MTX administration was modified
from a previous publication.10 Mice were given
intraperitoneal injection of MTX (LingNan
Pharmacy) at a dose of 120 mg/kg on day −1 and
60 mg/kg on day 0. The survival status and the
body weight of the mice were monitored daily.
A euthanasia criterion of 25% weight loss was
followed for all mice.

Antibiotic treatment

Mice were fed by way of gavage with 0.2 ml
broad-spectrum antibiotics at a concentration
of 10 mg/mice/day including ampicillin
(Solarbio), neomycin (Solarbio), metronidazole
(Solarbio) and vancomycin (Lilly, Inc.) for 5
days, then the antibiotics were administered
in drinking water (ampicillin, neomycin, and
metronidazole: 1 g/L; vancomycin: 500mg/L)
until the end of the experiment. Drinking
water was exchanged twice a week. For the
control group, saline was administrated in the
same way as the antibiotics.

Fecal sample collection

Fresh fecal pellets were directly collected from
each mouse in 1.5 ml microtubes by positioning
the microtube in the proximity of the anus of the
mouse and collect the pellets that are excreted. All
samples stored at −80°C within 1h until DNA
isolation for 16S rRNA gene sequencing.

Fecal DNA isolation

Fecal samples were weighed and total DNA was
extracted with the DP328 Fecal Genome Extraction
Kit (Tiangen Biotech) according to the manufac-
turer’s instructions. DNA concentration and purity
were measured with Nanodrop 2000.

Histology

Intestinal cross-sections through intestinal rolls
spanning the entire small intestine were prepared
as previously described.61 Three-micrometer par-
affin sections of the intestines were used for H&E
staining. Five-micrometer paraffin sections of the
intestines were used for immunofluorescent stain-
ing. Antibodies used were the following: PCNA
(Abcam, ab29) 1:500 diluted; CD11b (Peprotech,
101204) 1:500 diluted; DAPI-containing sealing
tablet (Solarbio).

All the images were taken by using the OLYMPUS
IX73 microscope. The length of villi height and crypt
number per millimeter were taken by using
CELLSENS. The histology score ranged from 0 to 13
and was subdivided in the following categories: villus
aspect (0 = normal,1 = short, 2 = extremely short),
villus tops (0 = normal, 1 = damaged, 2 = severely
damaged), epithelium (0 = normal, 1 = flattened, 2 =
damaged, 3 = severely damaged), inflammation (0 =
no infiltration, 1 = mild infiltration, 2 = severe infil-
tration), crypts (0 = normal, 1 = mild crypt loss, 2 =
severe crypt loss), crypt abscesses (0 = none, 1 =
present) and bleeding (0 = none, 1 = present).12

Histology scoring and PCNA counting were based
on the analysis of the whole small intestine with
representative images from the jejunum shown. Villi
height, crypt number per mm, and cell number per
crypt were analyzed as duodenum, jejunum, and
ileum separately. Results for Villi height, crypt num-
ber per mm, and cell number per crypt from different
intestinal sites are shown in Figure 2, whereas only
jejunum results were shown in Figures 4 and 7.

Crypt culture

Crypt culture was performed as previously
described.62 Briefly, isolated crypts were resuspended
in cold matrigel (BD) containing Y27632 (Abcam),
hR-spondin-1(PeproTech), mEGF (PeproTech),
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hNoggin (PeproTech), CHIR99021(Tocris), and peni-
cillin/streptomycin, and plated in 24-well plates in
triplicates for each sample at a density of 200 crypts
per well. Four hundred microliters of advanced
DMEM/F12 medium (Invitrogen) containing B27
(Invitrogen), N2 supplement (Invitrogen) and
1.25 mM N-acetylcysteine were added to each well to
cover the matrigel. In the culture system final concen-
trations of the following components were
hRspondin-1 1 μg/ml, mEGF 50 ng/ml, hNoggin 100
ng/ml, CHIR99021 10mM and Y27632 10 μM. The
medium containing growth factors was changed every
3 days.

RNA isolation and cDNA synthesis

Total RNA was isolated from fresh crypts by using
RNApure Tissue Kit (CWbiotech) following the
manufacturer’s instructions. Reverse transcriptions
were performed to synthesize first strand DNA by
using TransScript-Uni One-Step gDNA Removal
and cDNA Synthesis SuperMix kit (TransGen
Biotech) according to the manufacturer’s instruc-
tions with a procedure of incubation at 42°C for 15
min and heating inactivation at 85°C for 5 s.

Quantitative Real-Time PCR (qPCR)

For intestinal crypt samples, qRT-PCR was per-
formed using TransStart Tip Green qPCR
SuperMix (TransGen Biotech) with an ABI 7900
Real-Time PCR system (Applied Biosystems) in
triplicates. The reactions were performed under
the following conditions: 94°C for 30 s, 40 cycles
of 94°C for 30 s followed by 60°C for 30 s. mRNA
expression of genes was normalized to β-actin in
each sample and was normalized to 1 in the AL
group and AL+Saline+MTX group. Primer sets for
the detection of single genes were either self-
designed (IL-6) or taken from literature as follows
β-actin from Tang et al.,27 IL-1β from Seo et al.,63

IFN-γ from Bamias et al.,64 TNF-α and IL-10 from
Sassone-Corsi et al.65 Primer sequences were listed
in Supplementary Table S1.

For fecal samples, qPCR assays were carried out
using Ace qPCR SYBR Green Master Mix kit
(Vazyme) with Bio-RAD 9600A system following
the manufacturer’s instructions. The reactions
were performed under the following conditions:

94°C for 5 min, 40 cycles of 94°C for 15
s followed by 60°C for 30 s and 72°C for 30
s. The copy number of target DNA was deter-
mined by serially diluting standards (104 to 108

copies of plasmid DNA containing the respective
amplicon for each set of primers) running on the
same plate. The bacterial quantity was expressed as
copies per gram of stool. Primer sets for the detec-
tion of bacteria taxa were picked from previous
publications66-69 and were listed in Supplementary
Table S2.

16S rRNA gene sequencing

Fecal-sample DNA was extracted using DNA extrac-
tion kit (Minkagene Stool DNA kit), and 16S rRNA
gene regions V3-V4 were amplified using universal
primers70 (338F 5ʹ-ACTCCTACGGGAGGCAGCAG
-3ʹ and 806R 5ʹ-GGACTACCAGGGTATCTAAT-3ʹ)
with 12 bp barcode, PCR reactions, containing 25 μl
2x Premix Taq (Takara Biotechnology, Dalian Co.
Ltd., China), 1 μl each primer (10 M) and 3 μl DNA
(20 ng/μl) template in a volume of 50 μl.

The length and concentration of the PCR product
were detected by 1% agarose gel electrophoresis.
PCR products were mixed in equimolar ratios
according to the GeneTools Analysis Software
(Version4.03.05.0, SynGene). Then, the PCRmixture
was purified with EZNA Gel Extraction Kit (Omega,
USA). Then, sequencing libraries were generated
using NEBNext® Ultra™ DNA Library Prep Kit for
Illumina® (New England Biolabs, USA) following the
manufacturer’s recommendations and index codes
were added. The library quality was assessed on the
Qubit 2.0 Fluorometer (Thermo Scientific) and
Agilent Bioanalyzer 2100 system. Lastly, the library
was sequenced on an Illumina Hiseq 2500 platform
and 250 bp paired-end reads were generated.

Sequencing data processing

Quality filtering on the paired-end raw reads was
performed under specific filtering conditions to
obtain the high-quality clean reads according to
the Trimmomatic (V0.33, http://www.usadellab.
org/cms/?page=trimmomatic) quality controlled
process. Paired-end clean reads were merged using
FLASH (V1.2.11, https://ccb.jhu.edu/software/
FLASH/) according to the relationship of the
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overlap between the paired-end reads, when at least
10 of the reads overlap the read generated from the
opposite end of the same DNA fragment, the max-
imum allowable error ratio of the overlap region of
0.1, and the spliced sequences were called Raw
Tags. Sequences were assigned to each sample
based on their unique barcode and primer using
Mothur software (V1.35.1, http://www.mothur.org),
after which the barcodes and primers were removed
and got the effective Clean Tags.

OTU cluster and Species annotation

Sequences analysiswas performedbyusearch software
(V10, http://www.drive5.com/usearch/). Sequences
with ≥97% similarity were assigned to the same
OTU. An OTU is thought to possibly represent
a species. The most frequently occurring sequence
was extracted as a representative sequence for each
OTU and was screened for further annotation.

LGG treatment

Mice were orally inoculated with LGG (ATCC 53103)
(Bayer) (5 × 109 CFU per 200μl of saline) daily for 5
days according to the manufacturer’s instructions.
Briefly, the commercially obtained LGG was main-
tained in corn oil with a concentration of 5 × 109 CFU
per 5 drops. Drops of LGG were diluted in saline for
gavage and the same amount of corn oil (Sigma-
Aldrich) drops without LGG was diluted in saline as
a control.

Statistical analysis

All data were analyzed with GraphPad Prism 7.0 soft-
ware. To calculate p-values, the unpaired two-tailed
Student’s t test was used for two-group datasets and
one-way ANOVA was used for multi-group (more
than two groups) datasets. Gehan-Breslow-Wilcoxon
test was used for survival rate analysis. The specific
data analysis is described in each figure legend.

Data availability

Raw illumina sequence data of the 16SrRNA gene
generated in the study are available in the NCBI
Sequence Read Archive(SRA) under accession num-
ber PRJNA579590.
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