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ABSTRACT: Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) are
protein kinases that are promising targets for treatment of diseases caused by abnormal gene splicing. 6-Arylquinazolin-4-
amines have been recently identified as potent Clk4 and Dyrk1A inhibitors. In order to understand the structure−activity
correlation of these analogs, we have applied ligand-based pharmacophore and 3D-QSAR modeling combined with
structure-based homology modeling and docking. The high R2 and Q2 (0.88 and 0.79 for Clk4, 0.85 and 0.82 for Dyrk1A,
respectively) based on validation with training and test set compounds suggested that the generated 3D-QSAR models are
reliable in predicting novel ligand activities against Clk4 and Dyrk1A. The binding mode identified through docking ligands
to the ATP binding domain of Clk4 was consistent with the structural properties and energy field contour maps
characterized by pharmacophore and 3D-QSAR models and gave valuable insights into the structure−activity profile of
6-arylquinazolin-4-amine analogs. The obtained 3D-QSAR and pharmacophore models in combination with the binding
mode between inhibitor and residues of Clk4 will be helpful for future lead compound identification and optimization to
design potent and selective Clk4 and Dyrk1A inhibitors.

■ INTRODUCTION
Cdc2-like kinases (Clk) and dual specificity tyrosine-phosphor-
ylation-regulated kinases (Dyrk) both are CMGC family of
protein kinases.1,2 They are responsible for phosphorylation of
serine-arginine-rich (SR) proteins and are important for
regulation of basic cellular processes.1,3,4 Specifically, the cdc2-
like kinases promote phosphorylation within spliceosome,
therefore regulating alternative splicing of mRNA isoforms.5

Because abnormal gene splicing is the cause of many pathological
conditions including cancers,6,7 modulation of Clkmay represent
a promising approach for treatment of such diseases. Dyrk1A is
the most ubiquitously expressed isoform of Dyrk family.1

Located on the Down Syndrown critical (DS) region of
chromosome 21, it has increased expression in DS patients,8−10

and has shown involvement in growth and mental retardation
and neurodegeneration.1,9,11 Therefore, inhibition of Dyrk1A
may be a strategy for development of drug candidates for these
disorders. Some compounds have been identified as both Clk and
Dyrk inhibitors, such as, 6-arylquinazolin-4-amine analogs,5,12,13

leucettines,14 bauerine C derivatives,15 a benzothiazole analog,16

and natural product extracts.2 However, development of potent
and selective Clk and Dyrk inhibitors is still yet to be
explored.12,13

Pharmacophore and QSAR are ligand-based molecular
modeling techniques based on the notion that compounds
interacting with the same target could share similar structural or
physicochemical properties. Structural properties such as
hydrophobic, aromatic, and hydrogen-bond donor and acceptor
could be featured by a pharmacophore model, which is used for
characterization of structurally diversed compounds targeting the
same protein.17−22 In combination of virtual screening,

pharmacophore modeling has been proved as an effective
strategy for lead compound identification.20,23 Compared to
pharmacophore modeling, 3D-QSAR is also based on 3D-
conformers but considers the overall force field around a
molecule, instead of focusing on group features in a single
region.24−28 Typical programs that generate 3D-QSAR models
include comparative molecular field analysis (CoMFA),26

comparative molecular similarity indices analysis (CoMSIA),29

and phase.30,31 The force fields calculated by 3D-QSAR may be
steric, electrostatic, hydrophobic, and hydrogen-bond donor and
acceptor.24 Because 3D-QSAR is best used when ligands share
the same structural scaffold, it can be applied in lead optimization
for rational drug design.32,33

The ligand-based pharmacophore and 3D-QSAR models may
shed light on the design of novel Clk and Dyrk inhibitors and
may help with issue of selectivity among Clk and Dyrk members.
Previous publications have not identified pharmacophore or
3D-QSAR models for Clk and Dyrk ligands. Recently a series of
6-arylquinazolin-4-amines were reported as Clk and Dyrk
inhibitors.5,12,13 In the present study, we developed pharmaco-
phore and 3D-QSAR models based on their activities against
Clk4 and Dyrk1A by using the phase package of Schrodinger.34

The obtained 3D-QSAR models have shown good predictive
capabilities, according to the statistical validation based on
training and test set compounds. Further, the binding mode
between active ligands and the target Clk4 and Dyrk1A have
been proposed based on docking program Glide.35 The obtained
ligand−protein interactions agree with the force field contours
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Table 1. Molecular Structures of Training and Test Set Compounds and Their Clk4 and Dyrk1A Inhibitory Activity
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obtained via QSAR analysis and help to understand the protein−
ligand interactions that are responsible for the biological activities
on the molecular level when targeting Clk4 and Dyrk1A. The
developed models give useful information of lead optimization
for future rational design of Clk4 and Dyrk1A inhibitors and will
be helpful in development of selective inhibitors between these
two targets.

■ METHODS

Pharmacophore Modeling. The pharmacophore and
3D-QSAR models were generated based on 56 recently
published 6-arylquinazolin-4-amine analogs that were tested for
their inhibition effects against Clk4 and Dyrk1A.5,12,13 Training
and test set compounds were selected in such way that they
covered a similar range of biological activities. Their structures

Table 1. continued

aCompounds are from ref 12 other compounds without footnote a are from ref 13. bThe most active drugs used for generation of Clk4
pharmacophore model. cThe most active drugs used for generation of Dyrk1A pharmacophore model. dThe most inactive drugs used for evaluation
of Clk4 pharmacophore model. eThe most inactive drugs used for evaluation of Dyrk1A pharmacophore model. fBelong to test set for Clk4 QSAR
model. gBelong to test set for Dyrk1A QSAR models. hpIC50 values calculated from IC50 data. ipIC50 values predicted based on 3D-QSAR model.
jThese compounds have IC50 > 10,000nM. pIC50 not available due to lack of exact IC values.
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are shown in Table 1. The molecular structures were sketched
and built with Maestro.36 The pharmacophore models were
generated with the “Develop Pharmacophore Model”module of
phase. Observed activities (IC50) were converted to form of
negative logarithm (pIC50) before pharmacophore generation.
Multiple conformers were generated for each molecule followed
by energy minimization based on OPLS-2005 force field.37 The
conformational space was explored by ConfGen,38 with 100
conformers per rotatable bond and 1000 maximum of con-
formers per structure. A distance-dependent dielectric was
applied for solvation treatment. The pharmacophore models
were developed with the most active training set compounds,
which are defined as “active ligands” for pharmacophore
generation. Features of hydrogen bond acceptor and donor,
hydrophobic, negative, positive, and aromatic rings were located
in the pharmacophore models. Pharmacophores with five
features that match to all active ligands were generated by
using a tree-based partitioning technique34 with maximum tree
depth of five. The generated pharmacophore hypotheses were
scored with default parameters, except that the weight of
reference ligand activity is set to 0.3. The top two hypotheses
were selected for further generation of 3D-QSAR models. All
molecules were aligned in according to selected pharmacophore
models.
3D-QSAR Modeling. Atom-based 3D-QSAR is advanta-

geous over pharmacophore-based 3D-QSAR in that the former
considers the entire molecular space while the latter does not
involve area beyond the pharmacophore model.34,39 In this
study, atom-based 3D-QSAR models were generated with
training set compounds based on the molecular alignment
obtained by pharmacophore generation. In the atom-based
model, each atom is represented by a sphere with the van der
Waals radius, in accordance to the atom type assigned to each
atom. Training set molecules are covered with a regular grid of
cubes, with each cube represented with up to six “bits”,
representing six different classes of atoms. The atom types are
hydrogen-bond donor (D), hydrophobic or nonpolar (H),
negative ionic (N), positive ionic (P), electron-withdrawing
(includes hydrogen-bond acceptors, W), and miscellaneous
(X).34 The 3D-QSAR partial least-squares (PLS) models were
built with three maximum PLS factors in regression model and
1 Å length of the sides of cubic volume elements. The 3D-QSAR
models were validated with test set compounds.
Homology Modeling. The crystal structure of Clk4 has not

been published yet. A homology model of Clk4 was generated
with template of Clk1 by using Prime, Schrodinger.40 The
sequence of human Clk4 was retrieved from the Protein
Database at NCBI (http://www.ncbi.nlm.nih.gov/protein).
Search of homologous proteins in the NCBI Protein Database
(PDB) and sequence alignment were performed through remote
access to the BLAST service at NCBI, a function imbedded in
Prime. The initial alignment by BLAST was rectified by the
second structure prediction (SSP) program SSpro (bundled with
Prime), followed by refined alignment obtained via Prime. The
homologous model was generated by including template ligand
into the model. The initial model was refined with the refinement
procedure of Prime. The quality of the final model was accessed
by procheck.
Preparation of Receptor and Ligand Molecules for

Docking. Low-energy conformations of ligands that were used
for docking program Glide were generated via Ligprep41 of
Schrodinger. New structures were produced based on force
field OPLS_2005, with protonation states generated at target

PH 7.0 ± 2.0. Thirty-two stereoisomers computed by retaining
specified chiralities were allowed for each ligand. Protein struc-
tures for use by Glide were prepared with the Protein Preparation
Wizard42 of Schrodinger. The structures were first preprocessed
with bond order assignment, hydrogen addition, metal treat-
ment, and deletion of all waters in the crystal structures.
Hydrogen bonding network and orientation of Asn, Gln, and His
residues were optimized based on hydrogen bond assignment.
The states of histidine (HIS, HIE, or HIP) were assigned after
optimization. Finally, the proteins were minimized to RMSD
0.3 Å based on force field OPLS2005.

Receptor Grid Generation and Docking. Docking is
based on a grid represented by physical properties in the receptor
volume that is searched for ligand−receptor interaction during
docking process. Grid files were prepared with the “Receptor
Grid Generation” panel of Glide.43−45 Grid points were
calculated within a region or an enclosing box defined with the
centroid of the bound ligand and the size of a docked ligand with
length ≤20 Å. To study possible hydrogen bonding interactions with
docked ligands, constraints were applied on some Clk4 atoms,
i.e., the backbone hydrogen of Leu242, according to the
participation of its corresponding residues in hydrogen bonding
in crystal structures of Clk1 (PDB ID: 1Z57) and Dyrk1A (PDB
IDs: 3ANQ, 3ANR, 2WO6, and 2VX3). Docking was performed
by Glide43−45 of Schrodinger. The score function of Glide, or
Glidescore,43 a modified and expanded version of ChemScore,46

was used for binding affinity prediction and ligand ranking.
The docking can be on the level of either standard (SP) or extra
precision (XP). The improvement of XP over SP includes
the addition of large desolvation penalties to both ligand and
protein, assignment of specific structural motifs that contribute
significantly to binding affinity, and expanded sampling
algorithms required by scoring function improvement.44 The
XP scoring function comprises four components: Ecoul (Coulomb
energy), Evdw (Van de Waals’s energy), Ebind (items favoring
binding), and Epenalty (items hindering binding).

44 In this study,
extra precision docking was applied, with ligand conformations
being generated during docking process. Although the protein
keeps rigid, the surface of a ligand is “softened” by scaling the van
der Waals radii of nonpolar atoms in order to decrease penalty
caused by close contacts. The scaling factor was 0.8, while the
partial charge cutoff was 0.15.

■ RESULTS AND DISCUSSION
Pharmacophore Models. Pharmacophore models of Clk4

and Dyrk1A inhibitors were generated with five of the most
active compounds. Table 1 showed that these two targets share
overlapping but not exactly same active ligands. For example,
compound 1 (denoted as comp-1; other compounds represented
in the same way) has the highest activity against both enzymes,
and comp-2 and comp-7 are active ligands that were used for
both model generations. In addition, comp-4 and comp-5 were
for generation of Clk4 models, while comp-3 and comp-19 were
for Dyrk1A models. A total of 30 and 37 five-point hypotheses
were generated for Clk4 and Dyrk1A inhibitors, respectively, by
requiring all active ligands matched to the generated hypotheses.
The initial hypotheses were evaluated by scoring both active and
inactive ligands. Although inactive ligands were not involved in
model generation, they were used to eliminate hypotheses that
do not distinguish between active and inactive compounds,
which is especially useful when all active ligands share common
structural skeleton. Figure 1 shows the pharmacophores with the
highest adjusted scores mapped to the most active compound 1.
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Both models are represented with AAARR, indicating they have
three hydrogen-bond acceptors and two hydrophobic groups. It
is not surprising that the models associated with Clk4 and
Dyrk1A have features located at almost the same positions,
considering both active sets have common scaffolds. For both
models, two acceptors and one hydrophobe are matched to the
quinazoline ring, which is shared among all tested compounds.
The other two features, or one acceptor and one hydrophobe, are
mapped to the R3 substituent 1,3-benzodioxol, which is shared
among all active ligands.
Atom-Based 3D-QSAR Models. The Clk4 and Dyrk1A

inhibitors used for atom-based 3D-QSAR generation were
aligned based on the above-mentioned pharmacophore models
(Figure 2). One third of tested compounds were assigned to the
test set, with training and test set compounds covering the same
range of inhibition activities. There were 35 and 17 drugs in the
training and test sets associated with Clk4, respectively, while 31
and 15 drugs were associated with Dyrk1A, respectively.
Compounds with ICs above 10,000 nM12,13 (denoted as NA in

Table 1) were only used for evaluation of pharmacophore
models but were excluded from 3D-QSAR modeling due to the
lack of exact IC values. Statistically significant 3D-QSAR models
were generated via partial least-squares (PLS) (three factors)
based on the training set followed by validation with test set
compounds. Table 2 shows the results of atom-based 3D-QSAR
models. The correlation coefficients based on training (R2 in
Table 2) and test set compounds (Q2) were 0.88 and 0.79
(factor 3) for Clk4, respectively, while those with Dyrk1A were
0.85 and 0.82 (factor 2), respectively. Figure 3 represents the
observed versus predicted activities of training and test set com-
pounds regarding Clk4 (Figure 3A) and Dyrk1A (Figure 3B)
3D-QSAR models.
The 3D-QSAR models with combined effects of hydrogen

bond donor, hydrophobic/nonpolar, electron-withdrawing, and
other features were visualized in Figure 4. Figure 4A and B
indicate the cubes generated with the most (comp-1) and least
active (comp-52) compounds in training set regarding Clk4. The
blue regions indicated favorable features contributing to the
ligand interactions with target enzyme, while the red ones
indicated unfavorable features. The effect of the hydrogen bond
donor is revealed by the red region on the substitute R1 of comp-
52, indicating a hydrogen on the amine group located on
4-position of the quinazoline ring is unfavorable for activity. The
results are supported by the evidence that when R1 is changed
from an alkyl group to a hydrogen atom, the activity decreases, as
can be seen when comparing comp-1 with comp-14, comp-2/3
with comp-13, comp-10 with comp-20, comp-5 with comp-18,
and comp-6 with comp-9.
The comparison between the hydrophobic effects of the most

and least active compounds can be seen at position of substituent
R3. There is a big blue region at the five-member ring of the
benzodioxol group of comp-1, indicating oxygen or hydrophilic

Figure 1. Pharmacophore models generated for Clk4 (A) and Dyrk1A
(B). Orange: aromatic rings. Rose: hydrogen-bond acceptor.

Figure 2. Superimposing of training and test set compounds associated with Clk4 (A) (n = 52) and Dyrk1A (B) (n = 46).

Figure 3. Observed and predicted activities of training (red) and test (blue) set compounds associated with Clk4 (A) and Dyrk1A (B).
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atoms could be favorable at this region. On the contrary, for
comp-52, there is a red area around the methyl group of the
3-methylphenyl group on the R3 substitution, indicating a
hydrophobic group attached to the phenyl ring is unfavorable for
activity. This observation is consistent with trend of activity that
when the benzodioxol ring in comp-13 is replaced with
less hydrophilic groups, such as methylphenyl (comp-52),
methoxybenzene(comp-45), and chlorophenyl group (comp-
54 and comp-51), the activities decreased dramatically. These
results were also consistent with the identified pharmacophore
feature, characterized by a hydrogen bond acceptor located at the
benzodioxol group. The other difference between the hydro-
phobic contours regarding comp-1 and comp-52 is that there is a
blue area at the 2-position of thiazole ring on R2 substituent of
comp-1, indicating a hydrophobic substitute on a meta-position
might be favorable for activity. The observation is supported by
the fact that comp-4, with a methyl group on the furan ring, is
more active than comp-20, which does not have a substituent on
the furan ring. The oxygen atoms of the benzodioxol ring also
contributed to the electron withdrawing features, indicated with
a blue area around 1,3-dioxol group of comp-1.
The combinational effects of hydrogen bond donor, hydro-

phobic/nonpolar, electron-withdrawing, and other features
regarding Dyrk1A are visualized in Figure 4C and D. Similar to
the Clk4 activity data, comp-1 is themost potent inhibitor against
Dyrk1A. Although comp-52 is among the compounds with
lowest activity against Dyrk1A, it was not used in the training or
test sets due to lack of exact activity value. Instead, Figure 4D
represented the energy fields around comp-51, the compound
with lowest activity among training set molecules. The roughly
similar activity trends between Clk4 and Dyrk1A account for
similar patterns of energy fields occupied by comp-1 and comp-51,
compared with their Clk4 counterparts. Similar to the volume
regarding Clk4 model, the one occupied by comp-1 (Figure 4C)
had three big blue regions: those around the oxygen atoms of
benzodioxol ring as R3 substituent, around the 2-methyl-thiazole
ring of R2 substituent, and around the methyl group as R1
substituent, indicating a hydrophilic and electron-withdrawing
group attached to phenyl ring of R3 substituent, a hydrophobic
group attached to the substituting ring at R2 substituent, and
a tertiary amine with bulky hydrophobic R1 substitute, could
benefit the inhibitory activity. In contrast, the red regions in

Figure 4D around the hydrogen of R1 substituent, the thiophen
ring of R2 substituent, and the chlorophenyl ring of R3
substituent represent that a hydrogen on R1 and a hydrophobic
group beside R2 and R3 could be harmful for the inhibitory
effects.

Homology Modeling. A homology model of Clk4 was
generated in previous publications.5,13 Here, a homology model
of Clk4 complexed with ligand 10Z-hymenialdisine was
generated with template of Clk1 complexed with the same
ligand (PDB ID: 1Z57) by using Prime. Initial sequence
alignment was obtained by remote access to the NCBI BLAST
service, leading to identification of PDB structures with high
sequence identities as the query sequence. The structure with
highest sequence identity 86% (Clk1, PDB ID: 1Z57) was
chosen as the template to build the structure model for Clk4.
Because residues 1−145 and 481 do not have corresponding
residues in the template, only a homologous model with residues
146−480 was generated. The high sequence identity between the
template and query structures account for a high level of
alignment without leaving a gap among matched residues. The
initial alignment was adjusted by Prime in terms of comparison
between matched residues and secondary structure prediction
(Figure S1, Supporting Information). Because all residues in the
generated model found their corresponding residues in the
template, loop refinement was omitted in the structure refine-
ment procedure. Atoms with homology status of 1 indicate that
their side chain coordinates are not taken from the template.
For such atoms, coordinates were refined with the “predict side
chain” tool of Prime. The refined model was compared with the
template to ensure that side chains belonging to the binding site
have same orientation as those of the template residues. The
quality of the homologous model was assessed with Procheck
(Figure S2, Supporting Information).

BindingMode Identified by Docking. After the character-
ization of ligand−protein interaction by ligand-based pharma-
cophore and 3D-QSAR models, it was of interest to explore the
interaction in a structure-based approach. The docking of
inhibitors 1, 29, and 52 into the Clk4 ATP binding domain was
performed with Glide.35 Figure 5 demonstrated the binding
modes obtained from docking without any hydrogen bond
constraints imposed on protein atoms. Superimposing of the
ligands in Figure 5A showed that they adopted similar poses in
the binding pocket, with the R3 substituent at the hydrophilic
entrance of the binding cleft sided by residues Asp248, Ser245,
Glu290, and backbone of Leu165, Gly166, and Glu167, the
quinazoline core overlapping at the bottom of the binding
pocket, and R2 substituent fitting into a hydrophobic pocket
surrounded by Leu165, Val173, Ala 187, Leu 241−242, and
Leu293. In the crystal structures of Clk115,47 and Dyrk1A,16,48 a
hydrogen bond between a ligand and Lys191 in Clk1 (Lys188 in
Dyrk1A; Figure S3, Supporting Information for sequence
alignment among Clk1, Clk4, and Dyrk1A), a residue from a β
sheet on one side of the ATP binding cleft is important for
ligand−protein interaction. Similarly, binding model obtained by
docking ligands to the ATP binding domain of Clk4 (Figure 5B,
C, D) indicated that the corresponding residue Lys 189 in Clk4
formed hydrogen bonds with all three ligands.
Compound 1 has the highest inhibition activity among all

tested compounds. Above mentioned 3D-QSAR model
indicated that a hydrophobic R1 substitute on the position-4
amine is favorable. Figure 5B represented that the methyl group
on compound 1 is oriented into a hydrophobic pocket
surrounded by the side chains of residues Val173, Ala187, and

Figure 4. Atom-based Clk4 (A and B) and Dyrk1A (C and D)
3D-QSAR models visualized with the most and least active compounds.
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Phe239, which could increase the van der Walls interaction
between compound 1 and Clk4. Compound 29 was selected as a
chemical probe for Clk4 that has selectivity of Clk4 against other
Clk and Dyrk.12,13 Figure 5C showed that there is a hydrogen
bond between the hydroxyl group on the R3 substituent of
compound 29 and the side chain of Asp248, which could
contribute to the selective inhibitory effects of this compound
against Clk4. The superimposing between structures of Dyrk1A
(PDB ID: 3ANQ) and Clk4 is shown on Figure 5D. Compared
to the side chain of Asp248 of Clk4, the corresponding atoms of
residue Asp247 in Dyrk1A are moving away from the binding
pocket by about 2 Å, which could account for the high selectivity
of this compound between Clk4 and Dyrk1A.The interaction
between Clk4 and ligands identified by docking agreed with the
results from ligand-based pharmacophore and 3D-QSAR
models. The hydrogen bond between side chain of Lys189 and
the nitrogen of quinazoline ring of compounds 1, 29, and 52 was
consistent with the hydrogen bond donor feature located on the
position-1 nitrogen of quinazoline core identified by the
pharmacophore model featured in this study (Figure 4). The
orientation of the hydrophilic R3 substituent of compound 29
and 1 to the hydrophilic pocket of Clk4 was supported by the
contour maps obtained via 3D-QSAR model indicating that
hydrophilic and electron-withdrawing groups were favored in
this area. By contrast, the unfavorable interaction between the
hydrophobic methylphenyl group of compound 52 and the
hydrophilic pocket could account for its much lower inhibitory
activity than compound 1 and 29.
It is noticed that there were two hydrogen bond donors

featured on the nitrogen atoms of quinazoline ring by the

pharmacophore model but only one of them participated in the
hydrogen bonding interaction with Clk4. Pharmacophore
characteristics are indications of structural properties of ligands
interacting with a receptor but do not necessarily identify key
features that are responsible for ligand−protein interaction.
Because all 6-arylquinazolin-4-amine analogs involved in this
study, active or inactive, have the same quinazoline core, the
identified two hydrogen bond acceptors associated with this core
may not be essential for ligand recognition. For further study, a
training set with structurally diverse compounds might be
needed to explore the structural space of interacting ligands.

Correlation between Binding Energies and Protein−
Ligand Interaction. The docking scores associated with the
obtained Clk4 interaction with compounds 1, 29, and 52 were
−8.63,−8.61, and−7.72 kcal/mol, respectively. The comparison
among binding energies is consistent with the activities of these
compounds, with compounds 1 and 29 being much stronger
Clk4 inhibitors than compound 52, in terms of their IC50 values
(observed pIC50 were 4.96, 3.87, and 2.10, respectively).
Compound 1 had a slightly lower binding energy than the
compound 29. Although the latter has one more hydrogen
bonding interaction than the former, the lower binding energy of
compound 1 could be attributed to its favorable hydrophobic
interaction of R1 substitute (methyl group in compound 1 vs
hydrogen in compound 29) and the more favorable electrostatic
interaction of its R3 substitute, which fitted to the hydrophilic
pocket sided by residues Asp248, Ser245, and Glu290. The very
close binding energies between compounds 1 and 29 could be
due to the overestimation of the hydrogen bond effect be-
tween Asp248 and the hydroxyl group on R3 of compound 29.

Figure 5.Obtained binding modes between Clk4 and ligands. (A) Superimposing of compounds 1, 29, and 52 docked to homology model of Clk4. (B)
Binding mode between compound 1 and Clk4. (C) Binding mode between compound 29 and Clk4. (D) Superimposing of Dyrk1A (blue, PDBID:
3ANQ) and Clk4 backbones with compound 29. All compounds are represented with ball and sticks, all protein residues in lines, except D248 of Clk4
andD247 of Dyrk1A in (D), which are represented in sticks. All residues are shownwith only backbone atoms except D248 of Clk4 andD247 of Dyrk1A
in (D).
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The predicted pIC50 values of compounds 1, 29, and 52 were
5.13, 3.75, and 2.25, respectively. Compared with docking scores,
the QSAR analysis seemed more effective in distinguishing the
inhibitory activities of compounds 1 and 29 against Clk4.
Comparison with Previous Binding Modes between

Clk4 and Its Inhibitors. The binding mode between Clk4/
Dyrk1A and compounds 1 and 29 was discussed in previous
publications.5,12,13 Homology modeling of Clk4 and docking of 1
and 29 to the ATP binding domain of Clk4 were performed with
different programs.5,12,13 Similar to the current docking results,
the previous binding mode between Clk4 and compound 29
indicated a hydrogen bond between the side chain of Asp 248 of
Clk4 and the hydroxyl group of compound 29.13 Previous
superimposing of the homology model of Clk4 and crystal
structure of Dyrk1A suggested that unfavorable backbone shift of
residue Asp247 in Dyrk1A (counterpart residue Asp248 in Clk4)
could be responsible for the decreased activity of compound 29
against Dyrk1A than Clk4, which is also confirmed in the present
study. However, the difference between the current and previous
binding mode is significant. Observed in the current ligand−
enzyme interaction, the orientation of the quinazoline core and
the R2 substituent attached to the 4-amine group flipped almost a
180 degree from previous position. Therefore, the current mode
represented a hydrogen bond between a quinazoline nitrogen
and the side chain of Lys 189, instead of between the nitrogen
and the backbone of Leu242, a residue located on the hinge
region of the ATP binding pocket, in the previous model. Both
Lys189 and Leu242 are critical for ligand characterization with
Clk4, according to the importance of their corresponding residues
in the crystal structures of Clk1 and Dyrk1A. A hydrogen bond
between ligand and the counterpart Lys (Lys 191 in Clk1 and Lys
188 in Dyrk1A) is present in all identified crystal structures of
Clk1 (PDB ID: 1Z57 and 2VAG) and part of the crystal structures
of Dyrk1A (PDB IDs: 3ANQ and 3ANR). By contrast, the
involvement of the residue at the same position as Leu242 in
the hydrogen bond interaction is only available at one of the Clk1
structures (PDB ID: 1Z57) but is available at all identified
Dyrk1A structures (PDB IDs: 3ANQ, 3ANR, 2WO6, and 2VX3).
To further study the interaction between Clk4 and the ligands,

alternative binding modes with hydrogen bonding interaction
between Leu242 and Compounds 1, 29, and 52 were obtained by
imposing H-bond constraint on backbone hydrogen of Leu242,
requiring at least one hydrogen bond involving the constrained
atom in the protein−ligand complex obtained from docking. The
binding modes with a hydrogen bond involving Leu242 of Clk4
and compounds 1, 29, and 52 are shown in Figure S4 of the
Supporting Information. The docking scores associated with the
above protein−ligand interactions were−7.62,−7.67, and−7.55
kcal/mol, respectively. Compared with the binding modes
obtained without any H-bond constraint (−8.63, −8.61, and
−7.72 kcal/mol, respectively, for compounds 1, 29, and 52), the
docking scores regarding those with Leu242 H-bond interaction
are higher, indicating the binding modes with Lys189
participation in hydrogen bond interaction might be more
favorable than those with Leu242 participation.
As can be seen from the Clk4-compound 1 complex (Figure

S4, Supporting Information), the N3 of the quinazoline ring
participated in the hydrogen bonding with Leu242 located at the
hinge region. By contrast, a previous publication proposed two
hydrogen bonding interactions between both quinazoline
nitrogen atoms and the hinge region of Clk4.13 Except for one
hydrogen bond involving the amideNHof Leu242, the other one
was marked between the backbone carbonyl oxygen of Glu240

and the N3 of the quinazoline core.13 Because there is no other
hydrogen bond donor close to Leu242 that is pointing to the
active site of Clk4, it seems hard that both nitrogen atoms on the
quinazoline ring can be involved in hydrogen bonding
interaction with the hinge region. Although the current binding
mode seems more favored than the previously published one in
terms of their docking scores, further study is yet to be explored
in order to identify the drug-target interaction associated with
arylquinazolines and Clk4/Dyrk1A.

Insights into Design of New Clk4 and Dyrk1A
Inhibitors with Higher Affinity and Specificity. The major
goal of QSAR analysis and docking is to design new ligands with
higher potency and selectivity. Both binding modes (Figure 5)
and QSAR analysis demonstrated that a hydrophobic R1 group
could be favorable for the inhibition of Clk4. Binding modes
indicated that R1 group and the α-carbon of substitute R2
attached to the 4-amino of quinazoline ring were surrounded by a
hydrophobic pocket formed with residues Phe239, Val223,
Leu242, Val173, and Leu293. Therefore, modification on these
two locations with hydrophobic groups might be a means of
improving inhibitory activities against Clk4. QSAR prediction
based on Clk4 pharmacophore model (Figure 1) indicated that
an addition of methyl group to the α-carbon of group R2 of
compound 1 could lead to an Clk4 inhibitor with pIC50 of 5.61,
higher than the predicted 5.13 of compound 1. QSAR prediction
also indicated that substitution of the hydrogen atom with methyl
group on the R1 of compound 29 might increase pIC50 value by
0.49, compared with the predicted pIC50 of compound 29, or
3.75. Because compound 29 is a selective inhibitor and a chemical
probe of Clk4 over other Clk and Dyrk,12 the compound with a
methyl modulation as R1 could represent a better probe that
explores the phenotype particularly down-regulated by Clk4.

■ CONCLUSION
6-Arylquinazolin-4-amines have been recently identified as
potent Clk and Dyrk1 inhibitors.5,12,13 Characterization of
ligand−protein interaction through ligand-based 3D-QSAR and
pharmacophore models combined with structure-based docking
will be of great help in future lead compound identification and
optimization of novel Clk and Dyrk1 inhibitors. The comparison
between the interaction features associated with Clk4 and
Dyrk1A might shed light on the design of selective Clk4 and
Dyrk1A inhibitors. In the present study, we have developed
pharmacophore and atom-based 3D-QSAR models for the Clk4
and Dyrk1A inhibitory effects of a series of 6-arylquinazolin-4-
amines. The high R2 and Q2 (0.88 and 0.79 for Clk4, 0.85 and
0.82 for Dyrk1A, respectively) based on validation with training
and test set compounds suggested that the generated 3D-QSAR
models are reliable in predicting novel ligand activities against
Clk4 and Dyrk1A. Integrating molecular docking with ligand-
based SAR models allows us to use structural information to
further investigate ligand−protein interaction. The interactions
identified through docking ligands to the ATP binding domain of
Clk4 were consistent with the structural properties and energy
field contour maps characterized by the pharmacophore and 3D-
QSAR models and gave valuable hints regarding the structure−
activity profile of 6-arylquinazolin-4-amine analogs, suggesting
that the obtained protein-inhibitor binding mode is reasonable.
The 3D contour maps obtained through atom-based 3D-QSAR
modeling in combination with the binding mode between
inhibitor and residues of Clk4 obtained with docking provide
valuable insights into the rational design of novel Clk4 and
Dyrk1A inhibitors, especially 6-arylquinazolin-4-amine analogs.
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