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The RNA-binding protein Musashi2 governs osteoblast-
adipocyte lineage commitment by suppressing PPARγ
signaling
Jinlong Suo1, Sihai Zou2, Jinghui Wang3, Yujiao Han3, Lingli Zhang3, Chenchen Lv3, Bo Jiang3, Qian Ren3, Long Chen3, Lele Yang3,
Ping Ji2, Xianyou Zheng1✉, Ping Hu4,5,6,7✉ and Weiguo Zou 1,3✉

Osteoporosis caused by aging is characterized by reduced bone mass and accumulated adipocytes in the bone marrow cavity. How
the balance between osteoblastogenesis and adipogenesis from bone marrow mesenchymal stem cells (BMSCs) is lost upon aging
is still unclear. Here, we found that the RNA-binding protein Musashi2 (Msi2) regulates BMSC lineage commitment. Msi2 is
commonly enriched in stem cells and tumor cells. We found that its expression was downregulated during adipogenic
differentiation and upregulated during osteogenic differentiation of BMSCs. Msi2 knockout mice exhibited decreased bone mass
with substantial accumulation of marrow adipocytes, similar to aging-induced osteoporosis. Depletion of Msi2 in BMSCs led to
increased adipocyte commitment. Transcriptional profiling analysis revealed that Msi2 deficiency led to increased PPARγ signaling.
RNA-interacting protein immunoprecipitation assays demonstrated that Msi2 could inhibit the translation of the key adipogenic
factor Cebpα, thereby inhibiting PPAR signaling. Furthermore, the expression of Msi2 decreased significantly during the aging
process of mice, indicating that decreased Msi2 function during aging contributes to abnormal accumulation of adipocytes in bone
marrow and osteoporosis. Thus, our results provide a putative biochemical mechanism for aging-related osteoporosis, suggesting
that modulating Msi2 function may benefit the treatment of bone aging.
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INTRODUCTION
Aging-induced osteoporosis is characterized by reduced bone
formation and the accumulation of adipocytes in the bone marrow
chamber.1,2 Both osteoblasts and adipocytes are differentiated
from the same multipotent precursor bone marrow mesenchymal
stem cells (BMSCs).3–5 Compared with young MSCs, MSCs in old
organisms show enhanced senescence, have reduced self-renewal
and mainly differentiate into adipocytes instead of osteoblasts.6

The dynamic balance of MSC differentiation between adipogenesis
and osteoblastogenesis is controlled by the expression of key
transcription factors, including PPARγ, C/EBPα, and RUNX2.7,8 The
adipose tissue of mice lacking C/EBPα is underdeveloped, and
endogenous PPARγ cannot be induced.9 The transcription factor
PPARγ plays a crucial role in bone development by inducing
adipogenesis and inhibiting osteoblastogenesis.10,11 In addition to
transcriptional regulation, posttranscriptional mechanisms also
play important roles in regulating cell fate determination.12

RNA-binding proteins have been shown to regulate multiple
steps of post-translational regulatory processes, such as RNA
stability, RNA polyadenylation and translation, and determine cell

fate.13 Whether RNA-binding proteins can regulate the commit-
ment of MSCs has not been fully explored. Furthermore, the
relationship between RNA-binding proteins and master transcrip-
tion factors has not been fully elucidated. Revealing the functions
of more RNA-binding proteins will help us further understand the
orchestrated regulation of cell fate determination.
The Musashi (Msi) family of RNA-binding proteins contains two

members, namely, Msi1 and Msi2, in mammals.13 Msi1 and Msi2 are
evolutionarily conserved, containing two tandem RNA recognition
motifs and a carboxyl terminal poly-A–binding protein association
domain.13–15 Msi proteins bind to r(G/A)U1–3AGU sequences (MSI
binding elements, MBEs) at the 3′ untranslated region (UTR) of the
target mRNA to prevent poly-A binding protein from entering the
extension initiation complex to repress translation.14,16 Several
studies have reported that MSI proteins act as translation
repressors.17–19 MSI proteins contribute to the control of symmetric
and asymmetric stem cell division, regulate stem cell function, and
play a role in cell fate determination.15,20 Msi1 is mainly involved in
regulating the self-renewal of neuronal stem cells, and Msi2 is
mainly expressed in hematopoietic stem cells and regulates
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hematopoietic function.15,21 Msi2 plays an important role in hair
regeneration, maintaining the resting state of hair follicle stem
cells, translation of cancer stem cells, and self-renewal and
differentiation of hematopoietic stem cells.22–24 Msi2 plays a critical
role in the differentiation of osteoclasts in vitro, which are derived
from HSCs. Loss of Msi2 inhibits Notch signaling during osteoclast
differentiation and induces apoptosis in preosteoclasts.25 Studies
have found that Hh signaling can negatively regulate osteogenic
differentiation by inhibiting RNA binding to Msi1.26 The Msi family
plays a role in a variety of stem cells. Whether Msi2 can regulate
mesenchymal stem cells and whether it can regulate the fate
determination of MSCs have not yet been reported. Whether Msi2
has a regulatory effect on bone homeostasis and bone aging
in vivo and the downstream molecular mechanism of the
regulation are still unclear. The link between the RNA-binding
protein Msi2 and osteoporosis is worth exploring in depth.
Here, we revealed the functions of Msi2 in balancing the

osteoblast/adipocyte lineage commitment of BMSCs and aging-
induced osteoporosis. Msi2 knockout mice displayed accumulation
of adipocytes in the bone marrow cavity and decreased bone

mass, mimicking osteoporosis. Msi2 promotes the differentiation
of BMSCs into osteoblasts and inhibits the differentiation of
BMSCs into adipocytes. Msi2 specifically binds the 3′UTR of mRNA
of the key adipogenesis-related transcription factor Cebpα to
inhibit its translation, thereby inhibiting PPARγ signaling. Further-
more, we found that Msi2 expression was decreased in aged
BMSCs, indicating that the decreased Msi2 expression during
aging shifts the osteogenesis/adipogenesis balance toward
adipogenesis and leads to osteoporosis. Overall, these results
suggested that increasing Msi2 function may benefit the treat-
ment of aging-related bone loss.

RESULTS
The Msi2 expression level decreases during adipogenesis and
increases during osteogenesis of BMSCs
BMSCs were able to differentiate into both osteoblasts and
adipocytes. To explore the functions of Msi2 in BMSCs, we first
surveyed the protein level of Msi2 during BMSC differentiation.
When BMSCs were induced to differentiate into adipocytes that
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Fig. 1 Changes in Msi2 expression levels in the adipogenesis and osteogenesis of BMSCs. a BMSCs isolated from 4-week-old wild-type mice.
Cultures were stained with Oil Red O and BODIPY as shown. Scale bar= 200 μm. b Western blot analysis of Msi2 levels during adipogenesis for
different durations. c qPCR analysis of Msi2 expression in BMSCs during adipogenesis for the indicated durations. Data represent the mean ±
SD, n= 4. d qPCR analysis of the expression of adipocyte markers, including perilipin, Fabp4, Pparγ and Cebpα, in BMSCs during adipogenesis
for the indicated durations. Data represent the mean ± SD, n= 4. e BMSCs isolated from 6-week-old wild-type mice. Cultures were stained with
ALP and Alizarin red S as shown. Scale bar= 3mm. f Western blot analysis of Msi2 levels during osteogenesis for different durations. g qPCR
analysis of Msi2 expression in BMSCs during osteogenesis for the indicated durations. Data represent the mean ± SD, n= 4. h qPCR analysis of
the expression of osteoblast markers, including Runx2, Col1a1 and Osterix, in BMSCs during osteogenesis for the indicated durations. Data
represent the mean ± SD, n= 4. i Immunostaining of Msi2 (green), CD105 (red) and DAPI (blue) in tibia from 6-week-old WT mice. Scale bar=
200 μm (left). Scale bar=30 μm (right). j Immunostaining of Msi2 (green) and DAPI (blue) in femurs from 6-week-old Prx1-Cre Tdtomato mice.
Scale bar= 1 000 μm (left). Scale bar= 200 μm (right)
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were stained with Oil Red O and BODIPY (Fig. 1a), both the mRNA
and protein levels of Msi2 decreased, while the expression levels
of adipocyte markers such as CCAAT/enhancer binding protein α
(Cebpα), peroxisome proliferative activated receptor γ (Pparγ), fatty
acid binding protein 4 (Fabp4) and perilipin increased, indicating
efficient differentiation into adipocytes (Fig. 1b–d). In contrast,
when BMSCs were induced to differentiate into osteoblasts that
were stained with ALP and Alizarin red S (Fig. 1e), both the mRNA
and protein levels of Msi2 increased during the differentiation
process. Consistently, the expression levels of osteoblast markers,
including Runt-related transcription factor 2 (Runx2), Sp7 tran-
scription factor (Osterix), and Collagen type 1 alpha 1 (Col1α1),
increased, suggesting efficient differentiation into osteoblasts
(Fig. 1f–h). The dynamic changes in Msi2 expression levels during
BMSC adipogenesis and osteogenesis indicate that Msi2 may play
distinct roles in adipogenesis and osteoblastogenesis from BMSCs.
We next determined the MSI2 expression level in long bone

in vivo and found that MSI2 was highly expressed in the growth
plate and trabecular bone (Fig. S1A). Interestingly, MSI2 was also
expressed in the internal and external periostea but was barely
expressed in cortical bone (Fig. S1B). CD105 is a marker of MSCs.
Further research found that MSI2 and CD105 can be colocalized
(Fig. 1i). Further research was performed to determine whether
MSI2 is expressed in Prx1-positive cells, which are mainly MSCs.
We found that MSI2 expression colocalized with Prx1-positive cells
(Fig. 1j). These results further suggested that Msi2 may have
functions in MSC commitment and bone formation.

Msi2-deficient mice display increased bone marrow adipocytes
and decreased bone mass
To investigate the function of Msi2 in BMSC differentiation, we
generated Msi2 knockout mice using CRISPR-Cas9 technology to
introduce a frameshift in the first intron of Msi2 (Fig. 2a).
Immunofluorescence staining and western blotting confirmed
the knockout of Msi2 in bone and BMSCs (Fig. 2b and Fig. 6j). We
tested the knockout efficiency of Msi2 in the main organs of the
knockout mice. The results showed that Msi2 was almost
completely eliminated in the Msi2 knockout mice (Fig. S2A, B). In
addition, we tested whether Msi1, a homolog of Msi2, has a
compensatory effect in knockout mice, and the results showed
that Msi1 expression in the BMSCs of knockout mice was not
significantly different from that in the control mice. (Fig. S2C). The
Msi2−/− mice survived normally after birth and had normal
fertility. However, the Msi2−/− mice exhibited short stature and
skeletal dysplasia regardless of sex (Fig. 2c and Fig. S2D).
Compared with the control mice, the Msi2 knockout mice had
reduced body weight, body length, and femur length (Fig. S2E-G).
BODIPY staining results of the Msi2−/− mouse tibia revealed
increased adipocyte accumulation in the tibia bone marrow of the
Msi2−/− mice, and older Msi2 knockout mice had more fat
vacuoles in the bone marrow cavity (Fig. 2d). Immunofluorescence
staining of perilipin A, a mature adipocyte marker, also confirmed
adipocyte accumulation in the Msi2−/− mice (Fig. 2e, f). Both the
number and the size of adipocytes in the bone marrow cavity
increased with age in the Msi2−/− mice (Fig. 2g, h).
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We further investigated whether bone formation was affected.
Microquantitative computed tomography (μ-CT) analysis was
performed to compare the changes in bone-related elements in
the long bones of the Msi2 knockout mice and the WT littermates.
We found that the 6-week-old Msi2−/− mice showed significantly
decreased bone mass (Fig. 3a). Trabecular bone per tissue volume
(BV/TV) in the Msi2−/− mice was decreased compared to that in the
age-matched WT littermates (Fig. 3c), accompanied by a reduction
in trabecular number (Tb.N) (Fig. 3d), a reduction in trabecular
bone thickness (Tb.Th) and an increase in trabecular bone spacing
(Tb.Sp) (Fig. 3e, f). There was no significant difference in cortical
bone thickness (Cor.Th) of the Msi2−/− mice compared with that of
the WT mice, which is consistent with the observation that Msi2 is
rarely expressed on cortical bone (Figs. 1j, 3b, g).
To further explore the function of Msi2 in bone formation, we

performed histomorphometric analysis to evaluate static and
dynamic parameters of bone formation and resorption (Fig. 3h).
Consistent with the μ-CT data, histomorphometric analysis also
showed that the Msi2−/− mice had a significant decrease in both
BV/TV and Tb.Th and also showed a significant increase in Tb.Sp
but no changes in Tb.N (Fig. 3i–l). The numbers of osteoblasts per
bone perimeter (N.Ob/B.Pm) and osteoblast surface per bone
surface (Ob.S/BS) were decreased in the Msi2−/−mice compared to
the WT control mice (Fig. 3m, n). Further immunofluorescence
staining analysis of the distal femur of the Msi2−/− mice revealed
decreased expression of the osteoblast markers osteopontin
(OPN) and COL1α1 in the Msi2−/− mice (Fig. 3o–r).
Bone formation by osteoblasts and bone resorption by

osteoclasts are essential for the maintenance of bone homeostasis.
Our results showed that the osteoclast differentiation of the Msi2
knockout mice was weakened in vitro (Fig. S3A, B). Interestingly, no
changes in the number of HSCs were detected in the bone marrow
cells of the Msi2−/− mice (Fig. S3C). TRAP staining for osteoclast
activity showed no significant difference between the WT and
Msi2−/− mice in vivo (Fig. S3D, E). This finding indicates that the
decrease in bone mass in the Msi2−/− mice is mainly due to
decreased bone formation. Taken together, the above results
suggested that Msi2 is required for proper bone formation.

Msi2 promotes osteoblastogenesis and inhibits BMSC
adipogenesis
The accumulation of adipocytes and decreased bone formation in
the bone of the Msi2−/− mice prompted us to further explore how
Msi2 regulates BMSC differentiation. BMSCs were isolated from the
WT or Msi2−/− mice and were differentiated in adipogenic
medium for 7 days. Adipogenic differentiation was enhanced in
the Msi2−/− BMSCs, as indicated by increased Oil Red O staining
and BODIPY staining compared to that of the BMSCs from the WT
mice (Fig. 4a, b). The expression levels of adipocyte markers such
as Cebpα, Cebpβ, Fabp4, lipoprotein lipase (Lpl), perilipin and Pparγ
increased in the Msi2 knockout BMSCs upon induction to
adipogenesis compared to those of the WT BMSCs (Fig. 4c).
We next examined the role of Msi2 in the osteoblast

differentiation of BMSCs. BMSCs were isolated from the WT or
Msi2−/− mice and were induced to differentiate in osteogenic
medium for 1 week and 2 weeks. Alkaline phosphatase (ALP)
activity assays and Alizarin red histochemical staining revealed
reduced osteoblast differentiation in BMSCs from the Msi2−/−

mice (Fig. 4d, e). The expression levels of osteoblast markers, such
as Alp, bone sialoprotein (Bsp), Col1α1, Osterix and Atf4, also
decreased in the Msi2−/− BMSCs (Fig. 4f).
Taken together, the above results revealed that Msi2 regulates

the balance of BMSC fate commitment by repressing adipocyte
differentiation and enhancing osteoblast differentiation.

MSI2 inhibits PPAR signaling in BMSCs
To explore the molecular mechanism by which Msi2 regulates
osteoblast-adipocyte lineage commitment, we performed RNA

sequencing analysis using BMSCs from the WT and Msi2−/− mice
(7 days after osteoblast differentiation) and compared the gene
expression profiles. Genes related to adipocyte differentiation
showed upregulated expression, and genes related to osteoblast
differentiation showed downregulated expression (Fig. 5a). Gene
set enrichment analysis (GSEA) was then performed to identify
significantly enriched Gene Ontology (GO) terms. Lipid localization
or storage regulators and adipocyte differentiation markers
showed upregulated expression in the Msi2−/− BMSCs (Fig. 5b).
Ossification-, skeletal development- and bone development-
related genes showed significantly downregulated expression
(Fig. 5c). Kyoto Encyclopedia of Genes and Genomes pathway
analysis indicated that the PPAR signaling pathway was signifi-
cantly enhanced in the Msi2 knockout BMSCs (Fig. 5d). To further
analyze the changes in the PPAR signaling pathway in the Msi2
knockout cells, we utilized GSEA to mine the RNA-seq data, and
the results showed that Msi2 knockout increased the enrichment
score for the PPAR signaling pathway module (Fig. 5e). Genes with
upregulated expression that showed a significant difference in
expression in the GSEA were visualized by a heatmap (Fig. 5f). The
expression levels of the genes with upregulated and down-
regulated expression were further confirmed in the Msi2 knockout
BMSCs by RT-PCR (Fig. 5g). As PPARγ is considered to be one of
the major drivers of adipogenesis,10,11 these results suggested that
Msi2 may regulate BMSC commitment by inhibiting the PPARγ
signaling pathway.

Msi2 inhibits Cebpα translation and PPARγ expression in BMSCs
Msi2 is an RNA-binding protein. Previous results demonstrated
that three phenylalanine residues in Msi2 are essential for Msi2
RNA binding. To determine whether RNA binding is essential for
the function of Msi2, we mutated three phenylalanine residues
essential for Msi2 RNA binding to leucine (F64/66/69 L) to
generate an RNA binding-deficient mutant of Msi2 (hereafter
Msi2RBDmut) (Fig. 6a).16,27 We next compared the function of Msi2
with that of Msi2RBDmut. As shown in Fig. 6b, overexpression of
Msi2 reduced the differentiation of BMSCs into adipocytes, but
Msi2RBDmut overexpression did not reduce the differentiation of
BMSCs into adipocytes (Fig. 6b). Moreover, overexpression of
Msi2 enhanced the differentiation of BMSCs into osteoblasts, but
Msi2RBDmut overexpression did not (Fig. 6c). These results
suggest that the mRNA binding activity of Msi2 is required for
BMSC commitment.
Transcriptional profiling analysis suggested that Msi2 may

regulate BMSC commitment by inhibiting the PPARγ signaling
pathway. Msi2 is considered to be a translational repressor by
binding the 3′ UTR of the target mRNA.13 We next explored
whether Msi2 regulates the PPARγ signaling pathway by repres-
sing the translation of key components of PPARγ signaling. As
shown in Fig. 6d, overexpression of Msi2 reduced the protein
levels of PPARγ and perilipin when BMSCs were induced to
differentiate into adipocytes (Fig. 6d). In contrast, Msi2RBDmut

overexpression abolished the inhibitory effect of Msi2 (Fig. 6d).
These results indicated that mRNA binding activity is required for
Msi2 to inhibit the PPARγ signaling pathway.
We next examined how Msi2 relies on the mRNA binding ability

to regulate PPAR signaling. The C/EBP family has been reported to
be closely related to the regulation of PPAR signaling, and the
mRNA level of Cebp factors was not changed significantly in our
RNA sequencing data. We then examined the putative MBEs in the
3′ UTR of different Cebps and found that only Cebpα’s 3′ UTR has
two MBEs; the Cebpβ and Cebpδ 3′ UTRs did not (Fig. 6e). We then
performed an RNA immunoprecipitation (RIP) assay using C3H10
cells transfected with plasmids expressing Flag-tagged Msi2 or
Flag-tagged Msi2RBDmut. Interestingly, Cebpα transcripts were
significantly enriched by Flag immunoprecipitation when Flag-
Msi2 was expressed. In contrast, Cebpα transcripts were not
enriched when Flag-tagged Msi2RBDmut was expressed (Fig. 6f).
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These results suggested that Msi2 binds to the mRNA of Cebpα.
Consistently, RIP with an anti-Msi2 antibody also specifically
enriched Cebpα transcripts relative to that of an immunoglobulin-
G (IgG) control (Fig. 6g), further confirming the interaction

between Msi2 and Cebpα mRNA. Msi2 overexpression in C3H10
cells did not change the RNA level of Cebpα (Fig. 6h), However,
the RNA level of Pparγ, which is regulated by Cebpα, was
significantly downregulated when Msi2 was overexpressed in
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Histomorphometric analysis of distal femurs from the 5-week-old WT and Msi2−/− mice to determine the trabecular bone volume per
tissue volume (BV/TV) (i), trabecular number (Tb.N) (j), trabecular thickness (Tb.Th) (k) trabecular separation (Tb.Sp) (l) and number of
osteoblasts per bone perimeter (N.Ob/B.Pm) (m) and osteoblast surface per bone surface (Ob.S/BS) (n). Data represent the mean ± SD, n=
4. *P < 0.05, **P < 0.01, ns indicates no significance, unpaired Student’s t test. o Immunostaining of OPN (red) and DAPI (blue) in femurs
from the 6-week-old WT and Msi2−/− mice. Scale bar= 500 μm. p Quantification of the relative area of OPN in (o). q Immunohistochemical
staining of Col1α1 from the 6-week-old WT and Msi2−/− mice. Scale bar= 100 μm. r Quantification of the relative area of Col1α1 in (q)
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C3H10 cells (Fig. 6i). The protein level of Cebpα was increased
significantly in the MSI2 knockout BMSCs, and PPARγ signaling
markers were also significantly increased in the MSI2 knockout
BMSCs (Fig. 6j). These data indicated that binding of Msi2 to Cebpα
transcripts negatively regulates the translation of Cebpα. Regula-
tion of PPARγ signaling by Msi2 is essential for the dynamic
balance of the commitment between osteoblasts and adipocytes
(Fig. 6k).

Msi2 expression is downregulated during aging
The depletion of Msi2 in mice led to decreased bone mass with
increased marrow adipocytes, resembling aging-induced osteo-
porosis. We next examined whether Msi2 expression changed
during aging. We isolated BMSCs from 2-month-old (young) or
24-month-old (old) mice and found that the Msi2 expression level
was decreased in old BMSCs, as indicated by RT-qPCR assays
(Fig. 7a). Immunohistochemical staining also showed that Msi2
protein expression levels were downregulated in the aged mice
(Fig. 7b). μ-CT analysis confirmed that the bone mass of the old
mice was significantly reduced (Fig. 7c, d), accompanied by
increased Tb.Sp (Fig. 7e) and decreased Tb.N (Fig. 7f). Interestingly,
compared with that in the young mice, cortical bone in the aging
mice was thicker (Fig. S4A, B). Similar to the phenotype of the Msi2
knockout mice, abnormal accumulation of adipocytes in the bone
marrow cavity of the aged mice was observed (Fig. 7g), suggesting
the occurrence of aging-related osteoporosis. Immunofluorescence
staining revealed decreased expression levels of the osteoblast
marker OPN and increased expression levels of the adipocyte

marker perilipin in the bone marrow cavity of the old mice (Fig. 7h, i).
Similar to the scenario in Msi2−/− BMSCs, the RNA level of Cebpα
remained unchanged in BMSCs isolated from the aged mice, and
the RNA level of Pparγ increased in BMSCs isolated from the aged
mice (Fig. 7j). Immunohistochemical staining also showed that
PPARγ protein expression levels were upregulated in the aged
mice (Fig. 7k, l). Consistent with previous reports,28 the mRNA level
of the senescence marker p16 increased in the old BMSCs. In
addition, the target genes of PPARγ increased significantly
(Fig. S4C). The old BMSCs had a phenotype similar to that of the
Msi2−/− BMSCs, which is consistent with the decreased expression
level of Msi2 in the aged BMSCs.
These results suggest that Msi2 could be one of the contributors

to aging-induced osteoporosis. In old BMSCs, the reduction in the
Msi2 expression level leads to a shift in the differentiation balance
of BMSCs. Adipogenesis is enhanced, and osteoblastogenesis
declines, which results in aging-induced osteoporosis.

DISCUSSION
RNA-binding proteins play an important role in cell fate determina-
tion through posttranscriptional regulation. Here, we found that the
RNA-binding protein Msi2 controls the fate of BMSCs. By binding to
the 3′ UTR of the mRNA of the key adipogenesis-related factor, Msi2
inhibits the adipogenic potential of BMSCs. In aged BMSCs, the Msi2
expression level decreased, and the balance of BMSC differentiation
shifted toward adipogenesis, which led to osteoporosis indicated by
abnormal accumulation of adipocytes in the bone marrow cavity and
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decreased bone mass. Our results revealed that Msi2 is an important
contributor to osteoporosis by modulating protein translation.
MSI is an evolutionarily conserved family of RNA-binding

proteins that play key roles in the maintenance of self-renewal
of stem cells and HSC fate.15,29 Previous studies on Msi2 have
mainly focused on its function in tumors.30–32 In this study, we
reported for the first time that Msi2 regulates BMSC commitment.
Msi2 plays a key role in maintaining the balance between
osteoblastogenesis and adipogenesis. Although several previous

studies have shown that there is a negative correlation between
MSC osteogenesis and adipogenesis,3,4,33,34 the RNA-binding
protein involved is the first to be discovered. Among the limited
number of genes identified downstream of MSI2,13,19,27 our study
found that MSI2 specifically binds to the 3′ UTR of Cebpα to
regulate PPARγ signaling and control the differentiation of BMSCs.
These results suggest that RNA-binding proteins such as Msi2 can
be considered upstream of the PPARγ signaling pathway for drug
targeting research.
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Aging-related osteoporosis causes progressive fat accumulation
and trabecular bone loss.35 Existing studies on osteoporosis have
mainly focused on transcription factors, epigenetics and hormone
metabolism.4,36,37 However, the mechanism of RNA-binding

proteins involved in regulating osteoporosis remains to be
discovered. In our study, it was confirmed that Msi2 greatly
reduced both RNA and protein levels in aging mouse bone
samples, and theMsi2-deficient mice showed an age-dependent
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osteoporosis-like phenotype. Our research established a link
between osteoporosis and RNA-binding proteins, and we dis-
covered a regulatory relationship between MSI2 and PPARγ
signaling. This result may provide new ideas for future research
on targeted therapy for osteoporosis.
There are several limitations in our study. The animal model

used in this study is Msi2−/− mice, and the influence of other
organs on bone cannot be ruled out. Although the expression
level of Msi2 in the BMSCs was not the highest, we found that the
expression level of Msi2 in the spleen was lower than that in
the BMSCs, and Msi2 has been shown to play an important role in
the spleen. Our knockout mice also have a similar phenotype of
reduced spleen.19 We observed a certain difference between the
detection of RNA levels and the detection of protein levels, which
may be caused by slightly different posttranscriptional translation
of proteins in different tissue environments. However, in vivo and
in vitro experiments showed that Msi2 was knocked out in BMSCs,
which resulted in an osteoporotic phenotype. Although we have
established a connection between Msi2 and PPARγ signaling, the
direct genetic evidence remains to be further examined.
Our work reveals the function of Msi2 in regulating the

commitment of MSCs, thereby regulating bone homeostasis. We
further tested the proportion of HSCs in the Msi2−/− mice and the
control mice, and the results showed that the absence of Msi2 did
not affect the proportion of HSCs in bone marrow cells (Fig. S3C).
Although we also observed that Msi2 deletion inhibited osteoclast
differentiation in vitro,25 there was no significant difference in
TRAP staining in vivo. The effect of Msi2 on bone in HSCs through
other methods of compensation cannot be ruled out. This issue
also needs to be revealed in future research.
Because RNA sequencing showed the tight integration of the

Msi2 and PPAR signaling pathways, Msi2 plays a key role in the
regulation of the PPAR signaling pathway in mesenchymal stem
cells. We focused on genes such as Cebpα, Cebpβ, Pparg, Fabp4,
and Lpl. We excluded some genes by analyzing whether there are
Msi2 binding sites on the 3′ UTR and then conducted RIP
verification, but unfortunately, the results were not verified by the
RIP experiment. In addition, we focused on Runx2, which is the
core transcription factor for bone formation. However, we did not
find a mouse skull closure disorder, and the results were not
verified in the RIP experiment. We do not know whether Msi2 will
bind to the 3′ UTR of other molecules and regulate protein
expression, nor can we eliminate other ways of Msi2 molecular
regulation. Future work should investigate these issues.
RNA-binding proteins are closely related to the occurrence and

development of cancer. As a potential target for cancer treatment,
small molecules have been developed to act as inhibitors of Msi2.
We need to consider the effect of this medication on patients with
osteoporosis and other skeletal degenerative diseases.38,39 Realiz-
ing tissue-specific and spatiotemporal specificity to restore the
normal expression of Msi2 will be crucial for the occurrence and
development of the disease. Exploring compounds and small
molecules that regulate Msi2 will promote the treatment of cancer
and osteoporosis.
Overall, our work demonstrated that Msi2 functions as a

repressor of Cebpα to inhibit the activation of PPARγ signaling.
This work defined the role of Msi2 in regulating MSC commitment
and identified a new target for aging-induced osteoporosis
treatment. It is not clear whether Msi2 is also involved in
regulating the translation of other targets in the process of aging.
If so, how Msi2 cooperates among different molecules will be
another interesting question worthy of further study.

MATERIALS AND METHODS
Msi2 mice were constructed using the Crispr-Cas9 strategy.
Msi2−/− mice were constructed using the Crispr-Cas9 strategy. At
the end of the first exon of Msi2, 10 bases were deleted using

Crispr-Cas9 technology, resulting in a gene frameshift. The
deleted base sequence is AGCACGACCC. All mice analyzed had a
C57BL/6 background. Animals were maintained under specific
pathogen-free conditions in the institutional animal facility of
the Shanghai Institute of Biochemistry and Cell Biology, Chinese
Academy of Sciences. All animal experiments were performed
with a protocol approved by the Animal Care and Use
Committee of Shanghai Institute of Biochemistry and Cell
Biology, Chinese Academy of Sciences.

Antibodies
Anti-Flag antibody (F-3165, 1:5 000, Sigma), rabbit IgG (SC-2027,
Santa Cruz Biotechnology), anti-perilipin A/B (Sigma, P1873), and
anti-OPN (R&D, AF808) were used. Anti-Col1a1 (Rockland, 600-400-
103), anti-PPARγ (Santa Cruz, sc-7273), anti-LPL (R&D, AF7197) and
anti-Msi2 (Abcam, ab76148) were obtained.

Cell culture
Cells were cultured at 37 °C in humidified incubators containing an
atmosphere of 5% CO2. HEK-293T cells were maintained in DMEM
(Corning, Corning, NY) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (Gibco) solution. C3H10T1/2
cells were maintained in α-MEM (Corning, Corning, NY) supplemen-
ted with 10% FBS and 1% penicillin/streptomycin (Gibco) solution.

Osteoblast differentiation and adipocyte differentiation
We collected femurs from the WT and Msi2−/− mice and flushed
out the bone marrow cells with phosphate-buffered saline (PBS).
All nuclear cells were seeded (2 × 106 cells per dish) in 100 mm
culture dishes (Corning) and incubated at 37 °C under 5% CO2

conditions. After 24 h, the cells were supplemented with fresh
medium. After 48 h, nonadherent cells were washed with PBS, and
adherent cells were cultured in alpha minimum essential medium
(Corning, Corning, NY) supplemented with 10% FBS and 1%
penicillin/streptomycin (Gibco) solution for an additional 5 days.
For induction of the differentiation of BMSCs into adipocytes,

cells were first cultured in adipogenic induction medium (α-MEM/
10% FBS containing 1 μmol·L−1 dexamethasone, 0.1 mmol.L−1

rosiglitazone, 0.5 mmol·L−1 IBMX, 10 µg.mL−1 insulin) for 1 day,
and then, adipogenic maintenance medium (α-MEM/10% FBS
containing 10 µg.mL−1 insulin) was added for 2 days. After mature
adipocyte formation, cells were stained with 2 mg.mL−1 Oil Red O
solution or BODIPY 493/503.
For induction of the differentiation of BMSCs into osteoblasts,

cells were cultured in α-MEM containing 10% FBS, 50 μg.mL−1

L-ascorbic acid, and 1080mg.mL−1 β-glycerophosphate. The
osteoblast differentiation assay was performed following a
previously published method. For quantitative analysis of ALP
activity, cells were incubated with Alamar Blue to calculate cell
numbers and then incubated with phosphatase substrate (Sigma-
Aldrich, St. Louis, MO) dissolved in 6.5 mmol.L−1 Na2CO3,
18.5 mmol.L−1 NaHCO3, and 2mmol.L−1 MgCl2 after washing with
PBS. ALP activity was then read with a luminometer (Envision).
Bone nodule formation was stained with 1 mg.mL−1 Alizarin red S
solution (pH 5.5) after 14 days of induction.

RIP assay
BMSCs isolated from the WT and Msi2−/− mice or C3H10 cells
infected with Flag-tagged Msi2 or Flag-tagged Msi2RBDmut

lentivirus were lysed in 50 mmol.L−1 Tris/HCl (pH 7.4) containing
100mmol.L−1 NaCl, 5 mmol.L−1 EDTA, 1% NP-40, Protease
Inhibitor Cocktail (HY-K0010, 1:100, MedChem Express), and RNase
inhibitor (Thermo Scientific). We performed immunoprecipitations
with anti-FLAG, anti-Msi2 or rabbit normal IgG and protein G
magnetic beads for 2 h at 4 °C. The immunoprecipitated protein-
RNA complexes were washed five times with wash buffers
(25 mmol.L−1 Tris/HCl (pH 7.4), 20 mmol.L−1 MgCl2, 100 mmol.L−1

NaCl, 0.2% Tween-20, and 0.05% NP40). Total RNA was purified
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from the washed beads using TRIzol (T9424, Sigma) and subjected
to RT-qPCR analysis for quantification. For each sample, we
calculated the enrichment multiple of the transcript content in the
RIP score relative to the amount (RIP/input) that was present
before the RIP in the input sample.

RNA-seq
Isolation of total RNA with TRIzol comes from samples of
osteoblastic differentiation induced by BMSCs from the WT and
Msi2-deficient mice for 7 days. RNA library construction, sequen-
cing and analysis are provided by Novogene. The top GO
categories were selected according to the P values.

Real-time RT-PCR analysis
Total RNA was isolated from cells with TRIzol reagent (T9424,
Sigma), and first-strand cDNA was synthesized from 500 ng of
total RNA using the PrimeScript™ RT Reagent Kit (PR037A, TaKaRa).
Real-time reverse transcriptase RT-PCR was performed with the
Bio-Rad CFX96 system. Gene expression from RT-PCR was
quantified relative to that of Hprt or Gapdh.

IP and immunoblotting
First, 293 T cells were seeded at 1 – 2 × 107 cells per 10 cm dish
and cultured overnight. After transfection with PEI for 48 h, the
cells were harvested and washed with cold PBS following
experimental treatments. Then, the cells were lysed with EBC
buffer (50 mmol.L−1 Tris, pH 7.5, 120mmol.L−1 NaCl and 0.5% NP-
40) containing protease inhibitor cocktail (HY-K0010, 1:100,
MedChem Express). After ultrasonication (power: 25%, sonicate
5 s, stop 5 s, five times), lysates were subjected to IP with anti-Flag
beads (M2, Sigma) at 4 °C for 4–6 h or overnight, followed by
washing in lysis buffer, SDS–PAGE electrophoresis and immuno-
blotting with the indicated antibody.

μ-QCT analysis
Preparation of skeletal tissue and μ-QCT analysis were performed
as previously described.3 The mouse femurs isolated from age-
and sex-matched mice were skinned and fixed in 70% ethanol.
Scanning was performed with the instrument μ-QCT system
SkyScan1176 (Bruker Biospin). The mouse femurs were scanned at
a 9 μm resolution for quantitative analysis. Three-dimensional
images were reconstructed using a fixed threshold.

Histology and immunofluorescence
Tissues were fixed in 4% paraformaldehyde for 48 h, incubated in
15% DEPC-EDTA (pH 7.8) and ultrasonically decalcified. The
specimens were embedded in paraffin or OCT and cut into 7 μm
sections.
Immunofluorescence assay: Sections were blocked in PBS with

10% horse serum and 0.1% Triton for 1 h at room temperature.
Then, the cells were stained overnight with rabbit anti-perilipin
A/B (Sigma, P1873, 1:1 000, USA) and OPN (1:1 000; R&D, AF808).
Donkey-anti-rabbit Alexa Fluor 488 (1:1 000; Molecular Probes,
A21206) and donkey-anti-goat Cy3 (1:1 000; Jackson ImmunoR-
esearch, 705–165–147) were used as secondary antibodies. DAPI
(Sigma, D8417) was used for counterstaining. Slides were
mounted with anti-fluorescence mounting medium (Dako,
S3023), and images were acquired with an Olympus FV3000 and
SP8 confocal microscope.
Immunohistochemical staining and Col1a1 (1:100; Rockland,

600–400–103) staining were performed as described by Dako.
Tissue sections were used for TRAP, BODIPY, and Oil Red O

staining according to the standard protocol.

Statistics
Statistical analysis was performed by unpaired, two-tailed
Student’s t test for comparison between two groups using
GraphPad Prism Software. Through Prism software, one-way

ANOVA was used to compare and analyze the three groups of
data. A P value of <0.05 was considered statistically significant.
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