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Temperature is one of the key constraints on the spatial extent, physiological and
phylogenetic diversity, and biogeochemical function of subsurface life. A model system
to explore these interrelationships should offer a suitable range of geochemical regimes,
carbon substrates and temperature gradients under which microbial life can generate
energy and sustain itself. In this theory and hypothesis article, we make the case
for the hydrothermally heated sediments of Guaymas Basin in the Gulf of California
as a suitable model system where extensive temperature and geochemical gradients
create distinct niches for active microbial populations in the hydrothermally influenced
sedimentary subsurface that in turn intercept and process hydrothermally generated carbon
sources. We synthesize the evidence for high-temperature microbial methane cycling
and sulfate reduction at Guaymas Basin – with an eye on sulfate-dependent oxidation
of abundant alkanes – and demonstrate the energetic feasibility of these latter types of
deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling
Project 64.
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THE GUAYMAS MODEL SYSTEM
The Guaymas Basin in the Gulf of California is a young marginal
rift basin characterized by active seafloor spreading and rapid
deposition of organic−rich sediments from highly productive
overlying waters. The juxtaposition of active seafloor spreading
and thick sedimentary sequences has created a dynamic envi-
ronment where tightly linked physical, chemical, and biological
processes regulate the cycling of sedimentary carbon. In Guay-
mas Basin, deeply emplaced volcanic sills originating at the
spreading center have indurated and hydrothermally altered their
surrounding sediment matrix, and continue to shape hydrother-
mal circulation patterns today (Einsele et al., 1980; Lonsdale and
Becker, 1985). Buried organic matter is transformed quickly into
hydrocarbons; Guaymas Basin hydrocarbons are young enough to
be 14C-dated and have an average radiocarbon age of approx-
imately 5000 years (Peter et al., 1991). Hydrothermal pyrolysis
transforms and mobilizes a major proportion of subsurface car-
bon sources: the organic carbon content of approx. 3–4 wt%
in surficial Guaymas Basin sediments (De la Lanza-Espino and
Soto, 1999) is reduced to 1–2% in subsurface sediments below sills
(Rullkötter et al., 1982; Simoneit and Bode, 1982). Hydrother-
mal alteration of buried sedimentary organic matter generates
petroleum compounds including complex mixtures of linear,
branched and cycloalkanes, hopanes, steranes, diasteranes, olefins,
and polynuclear aromatic hydrocarbons (PAHs; Simoneit and
Lonsdale, 1982; Kawka and Simoneit, 1987; Didyk and Simoneit,
1989), low-molecular weight alkanes (Bazylinski et al., 1988),
organic acids (Martens, 1990), and ammonia (Von Damm et al.,
1985). This mixture of substrates permeates the sediments and
sustains extensive microbial communities that – among other

processes – mediate methanogenesis (Welhan, 1988), methane
oxidation (Kallmeyer and Boetius, 2004), and sulfate reduction
(Jørgensen et al., 1990; Jørgensen et al., 1992; Elsgaard et al., 1994;
Weber and Jørgensen, 2002; Kallmeyer et al., 2003). Hydrother-
mal mobilization also re-injects buried carbon, esp. methane, into
the biosphere, a process with climate history relevance (Lizarralde
et al., 2011).

Guaymas Basin provides a classic example for young spread-
ing centers that are often thickly sedimented due to their
proximity to terrigenous sediment sources and the influence
of coastal upwelling; modern examples include the Red Sea,
the Gulf of Aden, the South China Sea, the East Sea/Sea
of Japan, and the Aegean Sea. The interplay of geochemi-
cal, thermal and microbial forces that mobilize and assimilate
carbon in the Guaymas Basin sediments provides a model
system for exploring the extent, activity, biogeography and
metabolic capabilities of subsurface microbial life within the
extensive chemical and physical gradients of a young spread-
ing center (Figure 1). Also, hydrocarbon-rich Guaymas Basin
has particular promise for in-depth investigations of anaerobic
hydrocarbon transformation, and the diversity and evolution of
hydrocarbon-degrading microorganisms and pathways. Microbes
capable of intercepting, oxidizing or assimilating hydrocarbons
could attenuate the hydrothermally catalyzed mobilization and
loss of buried carbon from hydrothermal sediments (Lizarralde
et al., 2011). Yet, the extent and function of subsurface life
in Guaymas Basin has not been probed since Leg 64 of the
Deep-Sea Drilling Program (DSDP) targeted the massive sedi-
ments of Guaymas Basin (Curray et al., 1979; Curray and Moore,
1982) and demonstrated microbial methanogenesis in the deep
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FIGURE 1 | Schematic representation of the Guaymas Basin

subsurface with deep basement, sills, sediments, marine

sedimentation and organic carbon input (brown drops), immobilized

carbon in the sediment (dark-brown horizontal pellets), volatile

pyrolysis products (orange drops), and hypothetical fluid flow

pathways (arrows). The black dotted lines indicate potential flow paths
along fracture lines in the sediments; actually existing flow paths vary in
location and vertical extent.

sediment column (Galimov and Simoneit, 1982; Oremland et al.,
1982).

THE SURFACE LAYER
Diverse and abundant microbial life in the surficial hydrother-
mal sediments of Guaymas Basin is well-documented (reviewed
in Amend and Teske, 2005). This survey of temperature and chem-
ical regimes of Guaymas Basin starts at the sediment surface, where
conspicuous microbial mats provide the highly visible surface
expression of complex subsurface processes. Here, cold deep-sea
bottom water supplies oxygen and nitrate; these oxidants perme-
ate the surficial sediments not only by molecular diffusion, but are
entrained by hydrothermal circulation (Gundersen et al., 1992).
The nitrate influx into the upper sediment layers sustains active
denitrifying microbial communities, which are inhibited by sul-
fide exposure (Bowles et al., 2012). Microbial mats of filamentous
sulfur-oxidizing bacteria (family Beggiatoaceae) cover the seafloor
in conspicuous patches (Jannasch et al., 1989). In shipboard exper-
iments with fresh microbial mat samples, these bacteria take up
autotrophic dissolved inorganic carbon (DIC), preferentially at

moderate temperatures around 20◦C (Nelson et al., 1989). These
mats grow specifically in the areas where sulfidic fluids rich in DIC,
methane, and low-molecular-weight organic compounds form
gradients within the porewater right underneath the sediment
surface, indicating near-surface consumption of these substrates
(McKay et al., 2012). In situ temperature measurements in and
beneath these oxygen- and nitrate-dependent sulfur-oxidizing
mats indicate cool temperatures (near 10–15◦C) right at the sedi-
ment surface within the mat, although the temperatures within
the underlying sediments rise quickly and can reach >100◦C
within 30 cm depth (McKay et al., 2012). Genome sequencing of
individual filaments supports a sulfur-oxidizing, nitrate-respiring
metabolism with both autotrophic and heterotrophic capabilities
(MacGregor et al., 2013a,b,c).

THE MICROBIAL GAUNTLET
To map the unexplored taxonomic and physiological diversity
of subsurface life in Guaymas Basin in relation to key chemical
and thermal controls, the concept of the “Microbial Gaunt-
let” is helpful: Hydrothermally transformed organic substrates,
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or pyrolysis products from the hot end of hydrothermal gra-
dients, are gradually processed and assimilated by subsurface
microbial communities that populate the subsurface environ-
ment as soon as in situ temperatures and electron acceptor
availability become compatible with their physiological require-
ments; microbial processing continues with cooler temperatures
and increased electron acceptor availability towards the sediment
surface, where seepage of hydrothermal fluids fuels abundant
microbial mats (Figure 2). In this view, the microbial mats of
Guaymas Basin represent the last stage of the microbial gaunt-
let in the sediments, as they intercept energy and carbon sources
from hydrothermally active sediment and modulate microbial oxi-
dation and carbon assimilation processes at the sediment/water
interface.

HIGH-TEMPERATURE METHANE AND SULFUR CYCLING
The microbial processes that generate, consume or modify the car-
bon and energy sources that are available at the sediment surface
(for example sulfide, DIC and methane) extend into the hydrother-
mal sediments of Guaymas Basin. Given the strong hydrothermal
gradients at Guaymas Basin, it is likely that the depth range of
microbial processes is to a large part determined by tempera-
ture. By extrapolating from current evidence for microorganisms
and microbial processes in surficial sediments (summarized in the
following paragraphs), we hypothesize that the subsurface is per-
meated most deeply by microbial groups that tolerate maximal in
situ temperatures and extremely reduced redox regimes. This is the

domain of microbial methane and sulfur cycling; the temperature
limits on these processes are outlined here.

Methanogens in Guaymas Basin sediments include numer-
ous hyperthermophilic lineages, with the well-studied examples
Methanopyrus kandleri, which has a growth limit at 110◦C (Kurr
et al., 1991; near 120◦C under deep-sea in situ pressure, Takai
et al., 2008), and Methanocaldococcus jannaschii and related strains
growing at temperatures of 80–90◦C (Jones et al., 1983, 1989;
Jeanthon et al., 1999). Microbial community analyses, in situ
temperature gradients, and porewater geochemistry from push-
cores of surficial sediments have detected specific, phylogenetically
distinct ANME-1 populations of methanotrophic archaea in high-
temperature sediments at hyperthermophilic in situ temperatures
(ranging from ca. 60 to >90◦C), and concomitant δ13C-CH4

and DIC signatures of biogenic methane oxidation (Biddle et al.,
2012). These high-temperature ANMEs are not limited to Guay-
mas Basin, but are widespread in methane-rich hydrothermal
fluids at different vent sites (Merkel et al., 2012). Laboratory incu-
bations and enrichments of sulfate-dependent, anaerobic methane
oxidizing microbial populations from Guaymas Basin indicated a
temperature limit of ca. 70◦C (although with different ANME-
1 populations), and preferred temperatures around 50–60◦C
for thermophilic methane oxidizers (Holler et al., 2011). High-
pressure incubations with Guaymas sediment even showed low
methane-oxidizing activities near 80◦C (Kallmeyer and Boetius,
2004). When comparing the temperature ranges for methano-
genesis and anaerobic (sulfate-dependent) methane oxidation,

FIGURE 2 |The microbial gauntlet modifies the fluxes of deep

carbon and gasses toward the sediment surface. The top row shows
examples for sulfur-oxidizing microbial mats dominated by filamentous
Beggiatoaceae at well-documented hydrothermal seepage hot spots

on-axis (A, Biddle et al., 2012; B, McKay et al., 2012) and off-axis in
Guaymas Basin (C, Lizarralde et al., 2011). The Beggiatoaceae mats
intercept DIC for autotrophic assimilation, and sulfide for oxidation with
nitrate as the electron acceptor.
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methanogenesis persists into higher temperatures (80–110◦C)
than methane oxidation; the latter reactions might also be lim-
ited by the temperature ceiling of sulfate-reducing syntrophs that
participate in methane oxidation (Holler et al., 2011).

The thermal habitat requirements for sulfate- and sulfur-
reducing archaea show a similar, if less pronounced, temperature
gap. Different strains and species of the archaeal sulfate reducer
Archaeoglobus (also isolated from Guaymas Basin; Burggraf et al.,
1990) have upper temperature limits near 85–90◦C (reviewed in
Amend and Teske, 2005). Consistent with this temperature range
of cultured hyperthermophilic sulfate reducers, microbial sulfate
reduction in Guaymas Basin sediments has been detected at tem-
peratures near 90◦C (Elsgaard et al., 1994; Jørgensen et al., 1990;
but note a 120◦C outlier, Jørgensen et al., 1992). In contrast,
the elemental sulfur-reducing Thermococcales of Guaymas Basin
include Thermococcus and Pyrococcus strains that grow at tem-
peratures near 100◦C (Jannasch et al., 1992; Huber et al., 1995;
Canganella et al., 1998; Edgcomb et al., 2007; Teske et al., 2009;
Wang et al., 2011), approx. 10–15◦C higher than the sulfate reduc-
ers. Differences in the thermal stability of the cellular components
and enzymes of sulfate vs. sulfur reduction might account for this
gap. So far, these methane- and sulfur-cycling hyperthermophiles
have been isolated from surficial hydrothermal sediments of Guay-
mas Basin; similar organisms may exist in the deep surface of
Guaymas Basin, given the detection of Thermococcales in deep
hot oil fields (L’Haridon et al., 1995), and, together with differ-
ent ANME archaea, in very deep, geothermally heated marine
sediments (Roussel et al., 2008).

HIGH-TEMPERATURE HYDROCARBON OXIDATION
In the upper sediment column, towards the sediment surface,
and under generally more moderate environmental conditions at
off-axis locations, less extremophilic microbial groups will gain
a foothold, increase overall microbial biomass and activity, and
broaden the chemical spectrum of microbially catalyzed reac-
tions. Here we call attention to the mesophilic and thermophilic
sulfate-reducing bacteria that anaerobically oxidize the diverse
hydrocarbons in Guaymas Basin sediments and play a key role
in the selective degradation of specific substrate classes, such
as alkanes (Bazylinski et al., 1988). Guaymas Basin has devel-
oped into a preeminent sampling area to enrich and isolate
novel alkane- and aromatic-degrading sulfate reducers that use
different biochemical strategies to harness energy from hydrocar-
bons. The first aromatics-oxidizing, sulfate-reducing isolate from
Guaymas Basin sediments, Desulfothermus naphthae strain TD3,
grows optimally between 55 and 65◦C, and couples the oxida-
tion of C6–C16 alkanes and 3-methyloctane to sulfate reduction,
although its specific alkane activation and degradation mechanism
remains unknown (Rüter et al., 1994; Ehrenreich, 1996). Shortly
after the isolation of TD3, a benzene-utilizing enrichment cul-
ture was obtained from Guaymas sediments (Phelps et al., 1996),
which contained phylotypes that affiliate with members of the
Desulfobacterium anilini and Desulfobacter clusters (Phelps et al.,
1998); one of these Desulfobacterium phylotypes (SB-21) is pos-
sibly involved in benzene activation (Oka et al., 2008). Although
benzoate was detected as an intermediate in this enrichment cul-
ture, the source of the carboxyl group remains unidentified (Phelps

et al., 2001). The sulfate-reducing strain EbS7, isolated from
Guaymas sediments, is capable of ethylbenzene degradation via
addition to fumarate (i.e., “fumarate addition”; Kniemeyer et al.,
2003). More recently, several cultures utilizing gaseous alkanes
at mesophilic and thermophilic conditions were established with
Guaymas Basin sediments. The culture Propane60-GuB grows at
60◦C on propane via fumarate addition, and phylogenetic anal-
ysis revealed that the dominant phylotype belongs to the genus
Desulfotomaculum (Kniemeyer et al., 2007). From the same study,
another enrichment culture that utilizes butane at 60◦C yielded
dominant phylotypes that appear to be closely related to a deeply
branching bacterial lineage dominated by clones from Guaymas
Basin and other deep-sea sediment sites (Teske et al., 2002; Dhillon
et al., 2003; synonymous with “Hot seep cluster,” Holler et al.,
2011). The phylogenetic affiliation of this cluster is a matter of
debate; while it was included among the Deltaproteobacteria by
Holler et al. (2011), repeated tests with multiphylum full-length
16S rRNA gene alignments indicated that this group forms its
own deeply branching bacterial lineage (Teske et al., 2002; McKay,
2014).

Taken together, these studies indicate a mesophilic to ther-
mophilic temperature range (up to 65◦C) for alkane- and
aromatics-degrading sulfate reducers in Guaymas Basin, and
suggest that hydrocarbons can be microbially remineralized in
moderately heated sediments. As a caveat, sulfate may not be
strictly necessary when sulfate reducers that can utilize alkanes
also grow in syntrophic consortia (Callaghan et al., 2012). Further,
it has to be emphasized that the thermophilic spectrum of sulfate-
reducing bacteria is still poorly known. For example, a compar-
ative CARD–FISH hybridization study of Deltaproteobacteria in
different cold seep sediments and in Guaymas Basin hydrother-
mal sediments indicated that Guaymas Basin harbored reduced
proportions of Desulfosarcinaceae and Desulfobulbaceae but the
highest proportion of unidentified Deltaproteobacteria that did
not react with group-specific 16S rRNA hybridization probes
(ca. 44%), suggesting unexplored deltaproteobacterial diversity in
Guaymas Basin (Kleindienst et al., 2012). The recent description
of a novel autotrophic and thermophilic sulfur-disproportionating
Deltaproteobacterium, Dissulfuribacter thermophilus, underscores
the unexhausted potential of hydrothermal sediments for pure
culture research (Slobodkin et al., 2013).

Last but not least, we are also calling attention to the possibility
that hydrocarbon oxidation can be carried out at substantially
higher temperatures, in the hyperthermophilic spectrum near
and above 80◦C. Some hyperthermophilic archaea have been
characterized with respect to the anaerobic activation of non-
methane hydrocarbons. Although not isolated from Guaymas
Basin, Archaeoglobus fulgidus strain VC-16 serves as a model
archaeal strain of n-alkene (Khelifi et al., 2010) and alkane degra-
dation (Khelifi et al., 2014). The hyperthermophilic archaeon
Ferroglobus placidus strain AEDII12DO DSM 10642, isolated from
a sand-water mixture collected near Porto di Levante, Vulcano,
Italy (Hafenbradl et al., 1996), couples the reduction of Fe(III) to
the oxidation of aromatic compounds, including benzene; it is
proposed that the molecule is activated by carboxylation (Tor and
Lovley, 2001; Holmes et al., 2011). Thermococcus sibiricus, isolated
from a Siberian oil field, can grow anaerobically on hexadecane
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at 78◦C, although the activation mechanism is still unknown
(Mardanov et al., 2009). Given the isolation of Archaeoglobus spp.
(Burggraf et al., 1990), and other hyperthermophilic archaea from
Guaymas Basin, including Thermococcus spp, Pyrococcus (Jannasch
et al., 1992; Huber et al., 1995; Canganella et al., 1998; Wang et al.,
2011), and Geoglobus (Kashefi et al., 2002), Guaymas Basin serves
as an obvious platform to reconcile the gaps in our understanding
of anaerobic hydrocarbon transformation with the elucidation of
the metabolic versatility of Archaea.

BIOCHEMICAL POTENTIAL FOR HYDROCARBON OXIDATION
Guaymas Basin offers a test case where the temperature range
not only of specific organisms but of their biochemistry can be
tested; here we focus on sulfate-reducing alkane oxidation since
the organisms, substrates and processes are well-documented in
Guaymas Basin. Alkanes are among the least reactive hydrocar-
bons due to their strong C-H bonds. With respect to non-methane
alkanes, biodegradation is often initiated via addition of alka-
nes to the double bond of fumarate (“fumarate addition”) to
produce alkylsuccinates (Kropp et al., 2000). The process is anal-
ogous to the addition of aromatic hydrocarbons to fumarate by
benzylsuccinate synthase (BSS; Leuthner et al., 1998). Fumarate
addition has been reported for both linear alkanes in the C3–
C16 range (for review see Callaghan, 2013a) and for cycloalkanes
(Rios-Hernandez et al., 2003; Musat et al., 2010). This mechanism
may also be involved in the activation of solid paraffins, although
the requisite metabolites have not been detected (Callaghan et al.,
2010; Davidova et al., 2011). The addition of alkanes to fumarate
is presumably catalyzed by the glycyl radical enzyme alkylsuc-
cinate synthase (ASS; Callaghan et al., 2008b), also known as
methylalkylsuccinate synthase (MAS; Grundmann et al., 2008),
which has been used as a metabolic biomarker of anaerobic
alkane transformation in a variety of isolates, enrichment cultures,
and hydrocarbon-impacted environments (Callaghan, 2013a).
Alternative mechanisms of anaerobic alkane activation by sulfate-
reducing bacteria include carboxylation of n-alkanes, previously
proposed for the sulfate-reducing isolate, Desulfococcus oleovo-
rans Hxd3, and a nitrate-reducing enrichment culture growing
on n-hexadecane (So et al., 2003; Callaghan et al., 2009). Genome
sequencing of D. oleovorans inferred an enzyme complex similar to
ethylbenzene dehydrogenase (Callaghan et al., 2008a), and recent
investigations of strain Hxd3 suggest that this enzyme may play
a role in alkane activation via anaerobic hydroxylation (Sünwoldt
et al., 2012; Heider and Schühle, 2013). If proven, this homolog of
ethylbenzene dehydrogenase may serve as a new in situ biomarker
of anaerobic alkane transformation. Guaymas Basin sediments
and enrichments offer the opportunity to “bioprospect” for these
diagnostic enzymes and their genes.

An important feature of the Guaymas Basin is the complex
mixture of alkanes, including methane. Methane concentrations
in Guaymas Basin vent fluids range from 12 to 16 mM (Welhan,
1988). The conspicuous isotopic signatures of anaerobic methane
oxidation (AOM) in Guaymas Basin sediments coincide with
gene-based detection of ANME archaea; microbial methane oxi-
dation changes δ13C-CH4 from a background value of ca. −43‰
in hydrothermal sediments towards –20 or –15‰ (Biddle et al.,
2012). Elucidating the mechanism(s) of AOM is considered to

be the “holy grail” of anaerobic hydrocarbon metabolism because
it would provide insight to the cycling of the most important
hydrocarbon on Earth, particularly with respect to methane sinks.
To date, three hypotheses regarding AOM include: (1) “reverse
methanogenesis” (Zehnder and Brock, 1979; Hoehler et al., 1994;
Hallam et al., 2004), which is catalyzed by a homolog of methyl-
coenzyme M reductase (MCR; Krüger et al., 2003; Scheller et al.,
2010), (2) “intra-aerobic denitrification,” in which dinitrogen and
molecular oxygen are produced from two nitric oxide molecules,
the oxygen being used to functionalize methane by a methane
monooxygenase (Ettwig et al., 2010), and (3) AOM and sulfate
reduction being catalyzed by anaerobic methanotrophic archaea
(ANME-2) via the reduction of sulfate to zero-valent sulfur (S0)
and possibly to sulfide (Milucka et al., 2012). Alternatively, the
addition of non-methane alkanes to fumarate has also prompted
speculation that methane could be functionalized via fumarate
addition, and the thermodynamic constraints have been hotly
debated (for review see Callaghan, 2013a). Interestingly, methyl-
succinate has been detected in sulfate-reducing and methanogenic
subsurface environments such as oilfields and coal beds (Dun-
can et al., 2009; Gieg et al., 2010; Wawrik et al., 2012). However,
no studies have definitely linked the detection of methylsuccinate
with genetic biomarkers or other evidence indicative of a fumarate
addition pathway.

Due to the ubiquity of methane, the persistence of
methanogenic activity even in deep sediments, and the high
temperature ranges of microbial methanogenesis and methane
oxidation, the Guaymas Basin sediments provide a model sys-
tem to investigate these distinct methane oxidation pathways in
the deep subsurface.

DETECTING METABOLIC POTENTIAL AND ACTIVITY IN
GUAYMAS BASIN
Metabolite profiling, or metabolomics, has been a powerful tool
used to elucidate the requisite metabolic pathways of anaerobic
hydrocarbon activation (Callaghan, 2013b). Metabolomic studies
and the discovery of enzymes involved in anaerobic hydrocarbon
activation were together highly relevant for investigations of both
natural and engineered systems, namely in situ investigations of
contaminated groundwater and oil production water (Callaghan,
2013b). With a growing database of metabolic biomarkers and
functional key genes in hand, more challenging environments are
now being explored, such as coal-beds (Wawrik et al., 2012), the
deep-sea sediments of the Gulf of Mexico (Kimes et al., 2013),
and the oil-soaked sands associated with the Deepwater Horizon
oil spill (Aeppli et al., 2012). Thus far, only a few studies have
investigated Guaymas Basin for marker genes of anaerobic hydro-
carbon degradation. In sediment samples from below a microbial
mat in the Guaymas Basin (collected on Alvin dive 4573), two
ASS genotypes (assA) and two (2-naphthylmethyl)succinate syn-
thase genotypes (nmsA) were detected using targeted primers (von
Netzer et al., 2013). In another study, metagenome analysis of an
oil-immersed chimney in Guaymas Basin resulted in the detection
of genes involved in anaerobic hydrocarbon activation (assA, bssA,
and ethylbenzene dehydrogenase), although some inconsistencies
in the descriptions of the model organisms and their hydrocar-
bon activation genes have to be noted (He et al., 2013). These
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functional gene surveys have focused mainly on enzymes catalyz-
ing fumarate addition or anaerobic hydroxylation. However, with
the recent discoveries of other putative marker genes such as naph-
thalene carboxylase (Bergmann et al., 2011; Mouttaki et al., 2012)
and benzene carboxylase (Abu Laban et al., 2010; Holmes et al.,
2011), the potential for different hydrocarbon activation strategies
can be investigated in situ via metagenomic and/or metatranscrip-
tomic approaches. Although Guaymas Basin has not been mined in
situ for anaerobic hydrocarbon intermediates via metabolite anal-
ysis, functional key genes provide targets for metabolite profiling
efforts. Given recent advances in our understanding of the bio-
chemical pathways that govern anaerobic hydrocarbon oxidation,
we are well poised to exploit omic-based methodologies to address
questions regarding the metabolic strategies of thermophiles and
hyperthermophiles with respect to hydrocarbon oxidation.

HIGH TEMPERATURE LIMITATIONS IN THE SUBSURFACE
We hypothesize that the temperature zonation of different micro-
bial communities and biochemistries translates into a vertical
gradient or downcore sequence. How deep are the sediment layers
that combine hospitable geochemical regimes and temperatures?
In hydrothermal hot spots at the rift axis, microbially compati-
ble temperature regimes are often found only near the sediment
surface; downcore temperatures can increase to above 100◦C
within push coring range, ca. 30–50 cm depth (Jørgensen et al.,
1990, 1992; Weber and Jørgensen, 2002; Teske et al., 2009; McKay
et al., 2012). Such highly compressed temperature gradients in
hydrothermal sediments are problematic for biogeographical sam-
pling designs, since the microbial communities in these small-scale
sediment gradients show a high degree of connectivity (Meyer
et al., 2013). To avoid these shortcomings and to ensure a bet-
ter chance of capturing biogeographical zonation in the Guaymas
sediment column, sampling campaigns should move off-axis into
cooler sediments characterized by lower hydrothermal heat flow
and more gradual temperature (and chemical) gradients. In situ
temperature gradients of the Guaymas Basin subsurface have been
measured during DSDP Leg 64 in borehole 477, located in the
Southern Guaymas Rift (27◦01.85 N, 111◦23.93 W; 2003 m water
depth) and hole 481, located at the southern end of the northern
Guaymas Rift (27◦15.18 N, 111◦30.46 W; 1998 m water depth;
Kelts et al., 1982). In situ borehole measurements for site 477
yielded temperatures of 50◦C at 49 m (extrapolated equilibrium
temperature) and 87◦C at 168 mbsf near the bottom, after 16 h of
equilibration. For site 481, in situ borehole measurements yielded
3.6◦C at the sediment surface, 9.0◦C at 42 m depth and 56.8◦C
at 330 m depth, extrapolated from two temperature logs at the
bottom (26.2◦C after 3.5 and 51.0◦C after 20 h of equilibra-
tion; Shipboard Scientific Party, 1982). The in situ mineralogy
in hole 481 (sill/sediment contact metamorphism) is generally
associated with temperatures below 200◦C, and the oxygen iso-
topic composition of recrystallized calcites near the sill contact at
170 m depth indicates temperatures of 130–170◦C. At site 477,
the observed greenschist facies metamorphism implies tempera-
tures >200◦C below ca. 150 m depth. The stability of silica phases
suggested exposure to hydrothermal fluids near 300◦C (Gieskes
et al., 1982a,b; Kastner, 1982). Given the lower measured temper-
atures at hole 477, this hydrothermal regime must have cooled by

the time of drilling. In context, the temperature measurements
during DSDP leg 64 suggest that microbially compatible tempera-
tures extend into much of the subsurface in Guaymas Basin, since
drilling and sampling designs avoid the hot spreading center.

ENERGETIC POTENTIAL OF GUAYMAS BASIN SEDIMENTS
One of the key factors limiting microbial activity in any envi-
ronment is energy. In order to assess the energetic landscape in
Guaymas Basin sediments, geochemical data describing a repre-
sentative sample of these sediments, DSDP Leg 64 Site 481A, were
used to compute the Gibbs energy of redox reactions known to
support microbial communities. The potential catabolic reactions
chosen (Table 1) were determined by combining the likely elec-
tron donors in this setting, methane and a suite of short-chain
n-alkanes (Whelan et al., 1988), and the only electron acceptor
reported, sulfate (Gieskes et al., 1982a).

The Gibbs energy of sulfate reduction coupled to the oxidation
of methane and n-alkanes, C2–C8, in Guaymas Basin sediments
are shown as a function of depth in Figure 3A. Values of Gibbs
energies of reaction, �Gr , are given in units of kilojoules per mole
of electrons transferred, kJ (mol e−)−1 in order to facilitate com-
parison among the reactions. No results are shown at the depth
intervals between 170 and 200 m and below 325 m due to the
presence of impermeable sills. One of the more noticeable fea-
tures in Figure 3A is that the anaerobic oxidation of methane by
sulfate is thermodynamically not possible (positive values of �Gr)
throughout the sediment column (green line). However, the oxida-
tion of all of the n-alkanes by sulfate have the potential to provide
energy for microorganisms at all depths, ranging from about –5 to
–9 kJ (mol e−)−1. At almost all depths, the longer-chain alkanes
provide more energy per mole of electrons transferred. Further-
more, there is little variation in energy availability as a function
of depth. Because the concentration of octane was only reported
at two depths at Site 481A, values of �Gr are only reported for
these depths (black dots). For the other compounds, the lines rep-
resent calculations carried out at a number of depths along with
interpolated values.

In Figure 3B, the Gibbs energies of the reactions listed in Table 1
are plotted as energy densities – Joules per cm3 of sediment, units
that are comparable to those typically used to report biomass in
sediments, i.e., cells cm−3 (LaRowe and Amend, 2014). Although
the same concentration data were used to generate values of �Gr

for Figures 3A,B the choice of normalizing the energy available

Table 1 | Reactions considered to provide energy for microorganisms

in Guaymas basin sediments.

CH4 + SO4
2− + H+ HCO3

− + HS− + H2O

4C2H6 + 7SO4
2− 8HCO3

− + 7HS− + 4H2O + H+

2C3H8 + 5SO4
2− 6HCO3

− + 5HS− + 2H2O +H+

4C4H10 + 13SO4
2− 16HCO3

− + 13HS− + 4H2O + 3H+

C5H12 + 4SO4
2− 5HCO3

− + 4HS− + H2O + H+

4C6H14 + 19SO4
2− 24HCO3

− + 19HS− + 4H2O + 5H+

2C7H16 + 11SO4
2− 14HCO3

− + 11HS− + 2H2O + 3H+

4C8H18 + 25SO4
2− 32HCO3

− + 25HS− + 4H2O + 7H+
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FIGURE 3 | (A) Gibbs energy of sulfate reduction, �Gr , coupled to methane
and C2–C8 n-alkane oxidation in Guaymas Basin sediments (DSDP Leg 64,
Hole 481A) in units of Joules per mole of electrons transferred, J (mol e−)−1.
The reactions that these values of �Gr refer to are listed inTable 1.

(B) Energy availability in Guaymas Basin sediments (DSDP Leg 64, Hole
481A) in units of Joules per cubic centimeter of sediment, J cm−3, calculated
using the Gibbs energy of reaction and the number of moles of the limiting
substrate (n-alkane) in a cm3 of sediment.

per mole of electrons versus per cm3 yields considerably differ-
ent patterns. First of all, it should be noted that the number of
Joules available per mole of electrons transferred (Figure 3A) are
several orders of magnitude larger than those available per cm3 of
sediment. For instance, between about 10−7 and 10−2 J cm−3 are
available for the reactions listed in Table 1. This is due to the fact
that the concentration of alkanes at Site 481A are in the micro-
to nanomolal range. That is, if all of the, e.g., heptane, were oxi-
dized by sulfate in the shallowest portion of the sediment column
(red line in Figure 3B), then a microbial community could only
obtain about 10−6.5 J cm−3. This is substantially different than the
∼7500 J available per mole of electrons transferred for the same
reaction (red line in Figure 3A).

Replotting the energetic yields of the microbial reactions (per
mole of electrons transferred) as energy yield per sediment vol-
ume has interesting implications for subsurface life. For instance,
whereas the energy available per mole of electrons transferred
is relatively invariant with depth (Figure 3A), the amount of
energy per cm3 (Figure 3B) changes by orders of magnitude as
a function of depth. This can be seen for all of the reaction sub-
strates: the energy available per cm3 from the sediment–seawater
interface to the shallow sill increases by three to four orders of
magnitude. Between the two sills, there is also about an order
of magnitude difference in energy availability with depth. In
addition, the order of which reaction provides the most energy
changes from Figures 3A,B. The lighter alkanes tend to be more
energy rich (Figure 3B), though there is considerable variation
with depth due to crossing lines. Finally, one of the most com-
pelling features of calculating Gibbs energies per cm3 that is not
apparent in Figure 3A, is that the amount of energy available
for microbial metabolism is largest near the sills. Whether or not
microorganisms are there to exploit this energy is unknown, but
the potential for larger biomass numbers near the sills is evident
from the much larger amount of energy that is available there.

This intriguing result suggests that the emplacement of sills in
Guaymas Basin is associated with the generation of organic com-
pounds that sulfate-reducing microorganisms are known to be
able to metabolize for energy (Rüter et al., 1994; Kniemeyer et al.,
2007).

COMPUTATIONAL METHODS AND DATA SOURCES
The Gibbs energies of the reactions listed in Table 1 were cal-
culated using the revised HKF equation of state (Helgeson et al.,
1981; Tanger and Helgeson, 1988; Shock et al., 1992), thermody-
namic data from Shock and Helgeson (1988), Shock et al. (1989),
Shock and Helgeson (1990), Sverjensky et al. (1997) and Schulte
et al. (2001), the SUPCRT92 software package (Johnson et al.,
1992) and compositional data from Curray and Moore (1982),
Gieskes et al. (1982a) and Whelan et al. (1988). In order to carry
out these calculations, the concentrations of sulfide (0.01 mmol)
and DIC (15 mmol) were assumed based on porewater alkalinities
for sites 477 and 481 (Gieskes et al., 1982a), and limited (qual-
itative) sulfide detection at site 481 (Shipboard Scientific Party,
1982). Activity coefficients were calculated using the extended
Debye–Hückel equation (Helgeson, 1969) and the ionic strength
of seawater (0.7 mol). Thermal gradient data generated previously
(Curray and Moore, 1982) were used to calculate the temperature
as a function of depth (from 2.9◦C at 6.6 m depth to 44◦C at
325 m). Porosity data generated from Einsele (1982) were used
to convert the Gibbs energies of reaction per mole of substrate to
Joules cm−3, using alkanes as the limiting substrate.

OUTLOOK
The temperature tolerances and energy yields of microbial pro-
cesses in the Guaymas Basin subsurface strongly suggest that
microbial life is capable of colonizing these hydrothermally
impacted sediments to considerable depths. While the hottest
sediments in hydrothermal hot spots of the spreading center are
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likely to remain beyond the range of microbial life, moderately
heated sediments at a judiciously chosen distance from chan-
nelized hydrothermal flow (such as those targeted on DSDP Leg
64) provide a very reasonable chance to explore the depth extent,
density, genetic and functional diversity of subsurface life under
hydrothermal controls.
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