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Abstract: Nickel–titanium (NiTi) archwires are used in dentistry for orthodontic treatment. NiTi
alloys have favourable mechanical characteristics, such as superelasticity and shape memory, and
are also known as a corrosion-resistant alloy. In specific cases, an archwire could be attacked by
certain types of corrosion or wear degradation, which can cause the leaching of metal ions and a
hypersensitive response due to increased concentrations of Ni in the human body. A systematic
search of the literature retrieved 102 relevant studies. The review paper focuses on three main fields:
(i) electrochemical properties of NiTi wires and the effect of different environments on the properties
of NiTi wires (fluoride and low pH); (ii) tribocorrosion, a combination of chemical and mechanical
wear of the material, and (iii) the biocompatibility of NiTi alloy and its subsequent effect on the
human body. The review showed that corrosion properties are affected by microstructure, pH of
saliva and the presence of fluorides. A high variation in published results should be, therefore,
interpreted with care. The release of nickel ions was assessed using the same unit, showing that the
vast majority of metal ions were released in the first few days of exposure, then a stable, steady state
was reached. In tribocorrosion studies, the increased concentrations of Ni ions were reported.
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1. Introduction

In dentistry, metals are used for restorative work, dental implants and orthodontic
devices [1] (Figure 1). The components used in dental applications are usually made from
noble metals (e.g., Au, Pt, Pd, Ag) or highly corrosion-resistant alloys (e.g., Ti alloys and
stainless steels). The metals used for such purposes are listed in Table 1.
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It is essential that all products are safe for the human body, so no toxic materials
should be used for dental applications. Biesiekierski presented the potential hazards of
various metallic elements to the human body, detailing the toxicity, carcinogenicity and
allergic effect of different elements in Ti alloys [2].

Table 1. Metals used in medical applications, summarized according to [1] with permission from
Elsevier *.

Filling Au Foil; Ag-Sn-(Cu); Amalgam

Inlay, crown, bridge, . . . Au-Cu-Ag; Au-Cu-Ag-Pt-Pd; Ti; Ti-6Al-7Nb; Co-Cr;
Stainless steels 304 and 316L

Crown—Porcelain to metal Au-Pt-Pd; Ni-Cr
Solder Au-Cu-Ag; Au-Pt-Pd

Dental implant Ti; Ti-6Al-4V; Ti-6Al-7Nb; Au

Orthodontic wire Stainless steels 304 [3,4] and 316L; Co-Cr; Ti-Ni; Ti-Mo,
Ti-Ni-X (X = Co, Cu, . . . ) [5]

Magnetic attachment Sm-C; Nd-Fe-B; Pt-Fe-Nb; Stainless steels 444, 447J1
and 316L

* Reprinted from Metals for Biomedical Devices, 1st Edition, Niinomi, M., Metals for Biomedical Devices, Page 7, 2010,
with permission from Elsevier.

The choice of material selected for dental devices depends upon a number of fac-
tors including corrosion behaviour, mechanical properties, fabricability, cost, availability,
biocompatibility and aesthetic value [6]. In order to achieve the results desired while
maintaining absolute safety, implants and other devices intended for biomedical use are
regulated globally by various bodies, such as the U.S. Food and Drug Administration
(FDA) and the International Organization for Standardization (ISO) [7].

The biocompatibility, i.e., corrosion resistance and release of ions of certain metals
and alloys, is maintained by a passive film of surface oxide; the main concern regarding
biocompatibility is, therefore, the leakage of metal ions, which happens after the passive
film has been damaged [8]. The ion leakage, thus, causes unwanted concentrations of
Ni ions in human tissues, which can result in a hypersensitivity response in a certain
percentage of patients [1].

NiTi archwire is one of the most common materials used in the 2nd stage of orthodon-
tics treatment. The NiTi alloy is usually composed of about 50% nickel and 50% titanium [9].
The differences in composition are reflected in the properties of the alloy. NiTi alloy pro-
vides a constant and controlled force to dental movement and has some special mechanical
properties such as superelasticity and shape memory. The biocompatibility of NiTi alloy is,
however, still under discussion. It is known that the effect of an aggressive environment
is important, especially since titanium and Ti alloys have been found to be sensitive to
solutions containing fluoride [10–12]. The electrochemical properties of Ti alloys, such as
the widely used Ti-6Al-4V alloy, in media containing fluoride have been investigated [12].
It was found that a higher concentration of NaF (≥0.1%) aggravates passive films [12].

Some review papers have been written concerning materials in dentistry, focusing on
the properties of titanium [10], the release of metal ions from orthodontic appliances [13,14],
nickel–titanium alloys [15], Ti-based shape memory alloys [2], nickel alloys [16], corrosion
of certain alloys used in dentistry [6] and, lately, focusing on additive manufacturing
methods in the fabrication of NiTi alloys [17].

The present literature review focuses on published research concerning the electro-
chemical properties of NiTi dental alloy archwire and the effect of corrosion upon it. Special
emphasis is given to research done in the field of tribocorrosion on NiTi alloy. Research
studies exploring the biocompatibility of NiTi archwire are summarized and evaluated.

2. Corrosion Properties of NiTi Alloys

NiTi dental archwire is, in its nature, a biomaterial, exposed to a corrosive environment,
namely saliva in the human mouth. Biomaterials are, in general, highly corrosion resistant



Materials 2021, 14, 7859 3 of 18

materials, but they are prone to corrosion in certain specific circumstances and when
exposed to aggressive corrosive environments. It is, therefore, very important to study the
corrosion phenomena of NiTi. There are many studies available that report the corrosion
properties of NiTi dental alloys, estimated from electrochemical measurements [18–26].
Corrosion test methods are now covered in the lately released standard ISO 10271:20 in
the field of dentistry [27] as a result of worldwide demand for standardized test methods
for the determination of the acceptability of materials in relation to corrosion. Various
solutions are used when studying the properties of biomaterials in body environments
in vitro, including a simulated physiological solution, SBF (simulated body fluid) [28],
Hank’s solution [21,23,29,30] and solutions with different concentrations of NaCl [31]. To
evaluate the electrochemical (corrosion) properties of dental materials, various simulated
salivas, such as simulated saliva according to the Fussayama recipe [32,33] or the Duffo
recipe [3,4,34,35], have been used. Variations in hygiene and dietary habits can lead to
the presence of fluoride, peroxide and/or complex ions in the saliva, which subsequently
affect the electrochemical response of the dental alloy. Furthermore, when dental material
is exposed to saliva, the pH may change, which can also affect corrosion [32,36,37].

Different types of corrosion on NiTi dental alloys have been reported [21,23,30]. The
appearance of crevices [21,30] and pitting corrosion [23] were reported in studies of cor-
rosion of NiTi alloy in simulated saliva. Concerns of galvanic corrosion due to a com-
bination of different materials in the mouth (oral cavity) have been reported in several
studies [6,10,11,38]. The presence of a galvanic couple can cause significant corrosion in
the material, which can lead to significant elimination of metal ions [10].

The present paper focuses and further elaborates on three factors that influence the
corrosion behaviour of NiTi material: (i) sample shape and microstructure, (ii) a low pH
environment and (iii) the presence of aggressive ions, namely fluoride.

2.1. Effect of Production Procedure and Microstructure

Previous research has reported that the microstructure of NiTi alloy significantly
impacts its electrochemical properties [4,21]. Longitudinal or cross-sectional pieces may
result in different electrochemical behaviour. NiTi dental wires and NiTi sheet material
have been electrochemically compared in order to study the effect of the microstructure [4].
Polarization resistances of cross-sections of the wire and the sheet were smaller than polar-
ization resistances of longitudinal surfaces, pointing at greater susceptibility to corrosion of
cross-sections [4]. Figueira et al. [21] also studied different sizes (8 and 2 mm diameter) of
the NiTi metal samples. From polarization curves and visual examination, they confirmed
a greater tendency for crevice corrosion in the case of the smaller sample.

NiTi wire in the austenitic state is more resistant to corrosion than when in the
martensitic state [39]. The same study reports that in dry conditions, plastic deformation
predominates in the martensitic state, while fatigue wear predominates in the austenitic
state [39]. Another study reports that alloys in the austenitic state had higher breakdown
potentials than alloys in the martensitic state [23]. They also claimed that oxide formed on
the austenitic phase of NiTi had different chemical properties than oxide formed on the
martensitic state [23].

It was also shown that the corrosion resistance varies with the microstructure, which
depends on the processing of the material and the direction of observation (longitudinal vs.
cross-sectional) [4]. The electrochemical curves and the microstructures of the materials
investigated are presented in Figure 2. NiTi dental wires in an artificial saliva solution show
passive behaviour [3,40]. The electrochemical properties, as deduced from the presented
curves, are presented in Table 2.
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Figure 2. Potentiodynamic curves and representative microstructures of four different NiTi samples:
the surface of a 2 mm NiTi sheet, longitudinal and cross-sectional elements of wire A and longitudinal
section of NiTi wire B; scan rate: 1 mV/s.

Table 2. Electrochemical parameters of NiTi samples with different microstructures.

Sample Ecorr/V jcorr /nA cm−2 Eb/V

Sheet (abraded) –0.291 74.0 1.10
Wire A—longitudinal (abraded) –0.267 15.5 1.20
Wire A—cross-section (abraded) –0.200 82.1 1.12

Wire B—longitudinal (as received) –0.225 5.41 1.13

Figure 2 shows the potentiodynamic curves (left) and microstructures (right) of various
differently shaped metal samples from two types of dental archwire in both the longitudinal
and cross-sectional directions and a NiTi sheet. The NiTi samples were as follows: NiTi
3M super elastic archwire, Af = 5–25 ◦C (denoted as wire A), GAC Dentsply NeoSentalloy
archwire, Af = 32.7 ◦C (denoted as wire B) and a 2-mm NiTi sheet, superelastic, flat
annealed, Af = 0 ◦C (Memry, Gmbh).

The microstructures were analysed using the etching reagents HF, HNO3 and H2O.
The corrosion current densities, jcorr, of NiTi were higher in the sheet and cross-

sectional forms of wire A, at 74.0 and 82.1 nA/cm2 respectively, with the comparative
values of the longitudinal sections of dental archwires being approximately six times
smaller, at 15.5 and 5.41 nA/cm2 for wires A and B, respectively. These results confirm
the importance of studying the exact shape of any material being investigated, since
the microstructure and subsequent electrochemical properties could differ substantially
according to the shape of the electrodes—sheet or wire.

These materials, despite having a similar chemical composition, are manufactured
using two completely different technological processes: the wire using rolling and pulling
procedures and the sheet produced by hot and cold rolling. Various thermal treatments are
carried out during and after these manufacturing processes in order to achieve the desired
microstructure and consequent properties of the alloy or product. The microstructures of
the samples are shown in Figure 2. The microstructure of the NiTi sheet metal (Figure 2) is
martensitic. The average crystal grain size is 30–40 µm (average size G 6.5 according to
ASTM standard E112-10 [41], Standard Test Methods for Determining Average Grain Size).
Grains are uniformly oriented in all directions due to the hot treatment process. Some
non-metallic inclusions are relatively large and have a diameter of about 2–5 µm. The
microstructure of the dental wire A (Figure 2) is predominantly martensitic due to the cold
deformation process and metallographic examination, whose temperature is lower than
the temperature at which phase transformation (martensite to austenite) occurs. Crystal
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grains are relatively small. The average crystal grain size of the dental wire could not be
determined because it was not possible to sufficiently detect all the crystal boundaries
by etching. It is noticeable that the crystal grains are slightly elongated in the direction
of drawing (Figure 2, wire A—longitudinal). In the cross-section of wire A (Figure 2,
wire A—cross-section), there are many inclusions that are more concentrated in the core
of the cross-section. The inclusions are stretched longitudinally in the direction of the
rolling process, which occurs when producing the dental wire. Computer analysis of the
images for wire A showed that inclusions in the cross-section represented 8.8% of the
surface area, while, for the sample in the longitudinal direction, inclusions represented,
4.3% of the surface area. A comparison of the size of crystalline grains in wire A and
sheet metal revealed a much smaller microstructure in the wire than that in the sheet.
The microstructure of the (longitudinal) NiTi wire B predominantly consisted of a fine,
needle-like martensite. From the metallographic investigation, it can be concluded that
austenite is also present in the microstructure (Figure 2). The inclusions could not be
detected or observed.

As evident from the electrochemical results shown in Figure 2 and Table 2, the electro-
chemical properties of wire B were better than those of wire A when exposed longitudinally
(5 cm of wire exposed to saliva). This could be a result of microstructural properties, since
larger crystal grains were observed in archwire B. It is also evident that sheet metal has a
higher corrosion current density than the longitudinal surface of the archwire. As seen from
the results, the cross-section and longitudinal surface of NiTi dental archwire exhibited
different electrochemical responses. The differences in electrochemical properties of NiTi
alloy are affected by the austenite/martensite transformation temperature, as well as by
the procedures during surface finishing by different manufacturers.

It was shown that the composition, shape and microstructure of alloys affect the
electrochemical properties of the material investigated and that it is essential to study any
particular material in a clearly defined environment. These facts must be taken into account
when comparing results in the literature.

2.2. Effect of Low pH, Fluoride Concentration and Their Mutual Presence

There are a number of studies of corrosion on dental NiTi wires that focus on the effects
of low pH, the presence of fluoride and a combination of both factors [11,26,36,42–45].
In general, Ti alloys are sensitive to fluoride-containing solutions [10–12], resulting in
various types of corrosion attack [11,21]. It has been reported that, in the presence of
chlorides, the type of corrosion attack is pitting corrosion [26,42]. A low pH also affects
the electrochemical properties of Ti alloys [36,46]. Moreover, dental wires are exposed to
variations in temperature through cold and hot food and drink, which can also affect their
properties [47].

Fluoride therapy is recognized as one of the principal methods in the prevention of
dental caries [32]. The concentrations of fluorides in various commercial dental hygiene
products (ppm in µg/mL, molar and mass concentrations) are presented in Table 3. Table 3
also contains the concentrations of simulated solutions of artificial saliva containing fluoride
used in electrochemical studies investigating the properties of NiTi.
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Table 3. Concentration of fluoride ions in products for dental hygiene.

Example of Use
F–

(ppm
µg/mL)

M(NaF)
(mol/L)

Mass
% w/w NaF

Studies Using the
Same Concentration

Products
without fluoride 0 0 0 [3,21,32,40,47–53]

Mouthwash
100 0.0053 0.022 [54]
450 0.0237 0.098 [3,32,53]

Children’s
toothpaste 500 0.0263 0.109 Not found in reviewed

literature

Toothpaste 1000 0.0526 0.217 [40,54,55]
1450 0.0763 0.315 [3]

Figure 3 represents the logarithmic values of polarization resistance gathered from
data across the literature. Rp values for NiTi archwires in saliva at a neutral pH were de-
fined at three different concentrations of fluoride: 0.014, 0.024 and 0.076 M [3]. It can be seen
from Figure 3 that, in all reported studies, the Rp values of NiTi alloys decreased as the F
concentration increased. Fluoride concentrations higher than 0.076 M NaF are not expected
in tooth care products. It can also be seen that very different values of Rp values are re-
ported under similar conditions (e.g., at NaF concentration of around 0.02 mol/L) [3,32,53].
Furthermore, very different values of Rp were found at a fluoride concentration of zero,
with values varying from 10 kΩ/cm2 to 5 MΩ/cm2 [3,21,32,40,47–53].
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It is recommended that people wearing NiTi dental appliances limit their use of
fluorinated gels [32]. According to research, fluoride is considered to be harmful to the
TiO2 oxide layer only in acidic environments [44,46]. However, fluoride ions at a neutral
pH also have a minor effect on the electrochemical properties [3]. For example, in neutral
saliva with a 0.076 M concentration of fluoride ions, a local type of corrosion was indicated
by positive hysteresis of the CP curve [3].

When Ti alloy, namely TiO2, comes into contact with NaF in an acidic environment,
hydrofluoric acid can form causing the Ti oxide layer to dissolve, which results in corro-
sion [56].
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In acidic media, HF dissolves the titanium oxide layer. In the presence of H+ ions,
NaF can be converted to HF (Reaction (1) [46]). HF is known for its effect on titanium oxide
layers (Reactions (2)–(4)) [46].

H+ + NaF→ Na+ + 3 HF (1)

Ti2O3 + 6 HF→ 2 TiF3 + 3 H2O (2)

TiO2 + 4 HF→ TiF4 + 2 H2O (3)

TiO2 + 2 HF→ TiOF2 + H2O (4)

When Ti2O3 dissolves, TiF3 is formed (Reaction (2)). When TiO2 dissolves (Reactions
(3) and (4)), TiF4 or TiOF2 are formed. Both TiF3 and TiOF2 are soluble species, meaning
that TiO2 is no longer protective for the underlying alloy. If the oxide layer is damaged or
dissolved, the NiTi alloy is no longer protected, which may result in general or localized
corrosion. Soluble nickel chlorides can also form, leading to an increased dissolution and
elimination of metal ions.

The literature has reported some information regarding the stability of TiO2 passive
film. Huang reported that when NaF was higher than 0.1%, titanium-fluoride containing a
complex compound, Na2TiF6, was formed, thus destroying the TiO2 [57]. Nakagawa et al.
investigated the limiting conditions for the destruction of a titanium passive layer and
found that, for pure Ti, the limit values of pH at which the corrosion resistance of titanium
could be maintained were 4.0 and 4.3 in 0.05% NaF and 0.1% NaF, respectively [46].

Oxide films on Ti alloy have better corrosion properties if the alloy contains Ag, Cu, Pd
or Pt [58,59]. Specifically, Ti-30Cu-10Ag, Ti-0.5Pd and Ti-0.5Pt alloys promote passivation
and, therefore, show better corrosion resistance in the presence of fluoride compared to
CP-Ti, Ti-6Al-7Nb and Ti-6Al-4V [58–60]. Newly developed Ti alloys combined with one
of the elements Mo, Nb, Ta, Zr or Hf have also shown promising biocompatibility and
mechanical properties for biomedical applications [60].

A low pH in the oral cavity can result from bacterial activity due to inflammation [61]
or be caused by the presence of food or beverages with a low pH. Soft drinks can have
a pH of 3.7 (orange juice) right down to pH 2.4 (Coca-Cola). In acidic saliva, NiTi alloy
has showed lower resistance to corrosion compared to other dental alloys (TiAl6V4, pure
Ti) [32].

Figure 4 represents Rp values for NiTi archwires in low-pH solutions (from 2.5 to 4),
since the pH of the commercially available fluoridated mouthwashes is around 4 and lower.
Two types of data are presented, namely low-pH values (black dots) and low-pH values
with different concentrations of fluoride (red dots).
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In controlled experimental conditions, one would expect the lowering of log Rp values
in line with the lowering of the solution pH, but no clear correlation can be seen regarding
the effect of pH. Secondly, at the same pH level, the presence of fluorides leads to a lower Rp
value compared to an environment not containing fluoride. The amount of non-dissociated
HF present at different pH values might vary according to the initial concentrations of
fluoride at a neutral value.

The effect of low pH, with or without the presence of fluoride, was analysed from
the results reported in the literature; large differences in Rp values were observed in the
various experimental conditions reported.

3. Tribocorrosion and Wear Properties of NiTi Alloy

Biomaterials in dental applications can degrade by two main mechanisms, namely
corrosion and/or mechanical wear. These types of degradation shorten the lifetime of
dental materials and, therefore, affect the patient’s quality of life. Furthermore, these
degradations can result in metal ion release into the body. Irregularities in the mechanical
surface may occur as a result of a number of different things, including the manufacturing
process, handling during orthodontic treatment, the mechanical interaction between the
archwire and the bracket or the chemical interaction between the archwire and the oral
environment. In all cases, such degradation affects the total wear of any given dental mate-
rial [62]. Loss of material can be even greater when mechanical, chemical or electrochemical
processes occur concurrently in a saliva-representing corrosive environment [62]. Most
of the published tribocorrosion studies have investigated passive alloys such as stainless
steels, titanium alloys or CoCrMo alloy [63–68]. In general, these materials are intended for
use in a biomedical environment or an environment in which they are exposed to chloride
media and/or low-pH environments [69]. Tribocorrosion research on NiTi alloy [4,33,70]
is relatively rare; even rarer are tribocorrosion studies on dental wires [3–5]. A schematic
representation of the different types of study is presented in Figure 5.
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In order to appropriately plan the experiment to mimic how the wire is used in clinical
practice, one must first be aware of the relative advantages and disadvantages of the
experiments planned. Within such experiments, the mechanical and physical properties
are defined, which enables appropriate selection of the archwire. Each of the archwire–
bracket combinations has a unique set of physical properties that affect its performance [81].
Frictional force in the archwire–bracket slot combination affects tooth movement [75]. To
simulate the load of the wire in service with values in range from 0.196 to 0.98 N, the normal
load during experiments should be around 1 N [5]. Tooth displacement can be simulated
by combining small reciprocating sinusoidal movements and slow linear movements [33].
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A low friction coefficient is favoured in orthodontic applications in which lower forces
affect dentition in a lower activation period with the desired biological response [5]. The
Young’s modulus of NiTi (around 30 GPa) [81] is higher than that of the human bone
(around 20 GPa) [82] but is still lower than that of many other alloys (such as stainless
steel [2]).

Several tribological experiments have been performed on NiTi alloy in a dry environ-
ment [39,71,72,74], with the focus on the wear performances of austenitic and martensitic
microstructures [39,71,72]. It has been reported that, in dry tribological conditions, the
martensitic state is dominated by plastic deformation and the austenitic state by fatigue
wear [39]. A decrease in wear rate at the NiTi–steel contact has been reported due to
the cold work hardened surface at the tribological contact [71]. Zhang et al. compared
the tribological resistance of NiTi alloy to pure Ti and Ni and found it to be, respectively,
30 times (Ti) and 10 times (Ni) higher [72]. Gialanella et al. reported tribological testing of
two different phase NiTi alloys, austenitic and martensitic, with different counter body and
loading [73]. The authors concluded that the wear mechanisms depended on a combination
of different thermal, mechanical and environmental operating conditions [73]. A study of
the effects of friction coefficients on the wear of various dental wires in dry tribological
conditions revealed a linear relationship with the hardness of materials, which should be
as high as possible for minimum wear [5].

In the focused tribological literature in dental applications, friction tests with great
and with small (µm) displacement were found [74], in which fretting, i.e., small oscillating
displacement, experiments were more related to the clinical environment [74]. Common
mechanical tests in orthodontics practice are three-point bending with a distance deflected
of 2–3 mm [77,79,80] and pulling tests with a wire–bracket–ligature connection [77]. These
are simplified tests that mimic the application of orthodontic archwire.

These tests are done in dry conditions, but in order to estimate the effect of a corrosive
environment and mechanical load acting simultaneously, tribocorrosion tests should be
conducted.

In the tribocorrosion study of Ti alloy in an oral environment conducted by Golvano
et al., the authors summarized that tribocorrosion experiments under OCP (open circuit
potential) better resembled in vivo conditions, since tribocorrosion experiments under
potentiostatic control can give us additional insights into the underlying tribocorrosion
mechanisms [83].

Research into the influence of inhibitors on tribocorrosion of grade 2 Ti in artificial
saliva shows that the addition of citric acid or an anodic inhibitor (sodium nitrate) to
artificial saliva has little positive effect on material loss (lower wear rate and slightly lower
corrosion), due to redox reactions in the contact area [84]. In the presence of a cathodic
(calcium carbonate) or organic inhibitor (benzotriazole), significant increases in wear and
corrosion rate were observed [84]. In research conducted by Holmes et al., the presence
of hard particles (such as alumina) in artificial saliva increased the wear material loss of
stainless steel AISI 316L [67]. It is reported that different forms of anodized films affect
tribocorrosion behaviour., e.g., rutile in TiO2 film significantly decreased mechanical impact
during sliding [85].

All the studies of tribocorrosion behaviour reported above were conducted using disc
samples. Complex shapes and finalized oxide surfaces, such as dental archwires, present a
challenge when planning tribocorrosion tests. As a result, to the best of the authors’ knowl-
edge, very scarce or no literature data on tribocorrosion tests on archwires are available up
to date. Tables 4 and 5 summarize different tribological and tribocorrosion setup conditions
in the reviewed literature. It can be observed that only a few studies have been conducted
on archwires. These tests have been primarily done in a dry environment [81]. Only a few
studies were conducted in a corrosive solution [4,5].
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Table 4. Differences in experimental conditions in studies of dry tribology and tribocorrosion in dental archwires.

Material Second
Body T (◦C) Media Load

(N)
Sliding Velocity

(mm/s) COF Author

AISI 304 316L 37 A. sal. 10 Pin-on disc 0.5236 rad/s 0.32 [5]

NiTi 0.56 [5]

TiMo 0.39 [5]

Ti 0.41 [5]

NiTiCu 0.47 [5]

NiTi Al2O3 25 A. sal. 1 Reciprocat. 5 0.8 [4]

NiTi 25 A. sal. 2 Reciprocat. 5 0.7 [4]

SS 34 dry 6 0.166 0.187 [81]

Co-Cr 34 dry 6 0.166 0.200 [81]

NiTi 34 dry 6 0.166 0.277 [81]

β-Ti 34 dry 6 0.166 0.467 [81]

Table 5. Various mechanical parameters of NiTi alloy derived from dry tribological and tribocorrosion tests.

Type of Sample Intender Load Roughness Ra (µm) Vicker’s Hardness Type of Tribo
Experiment Author

Wire 10 N 0.40 170 Tribocorrosion [5]
Wire 9.8 N / 403 Tribocorrosion [4]
Wire 200 N 0.16 298 Dry [86]

Wire SE 200 N 0.16 391 Dry [86]
Wire HE 200 N 0.20 276 Dry [86]

Wire 9.8 N 0.39 170 Dry [74]

It was shown that the total wear of the NiTi sheet increases with an increasing load [4].
Total wear, in general, is as a result of mechanical wear and corrosion process in corrosive
solution, such as saliva. Their mutual action can result in higher wear. This synergistic
effect depends greatly on the environmental conditions. In the reported study, it was
also shown that the electrochemical responses of NiTi sheet and NiTi archwires are very
different due to the differences in the microstructure in these two materials.

It is worth pointing out that tribocorrosion properties must be acquired on representa-
tive samples in conditions, representative of its use (e.g., archwire in saliva).

4. Biocompatibility and Ni Release

Concerns have been raised over NiTi alloy and the fact that nickel is a known allergen
that exhibits one of the highest sensitivities in a metallic allergen test [2]. The biocom-
patibility of biomaterial is related to its corrosion resistance and the degradation of the
metal being used [79]. Metal loss adversely affects the biocompatibility of the particular
metal [79]; however, no metal or alloy implant is completely inert.

Since high corrosion resistance minimizes the release of Ni ions, it is one of the main
prerequisites for good biocompatibility, meaning it is necessary to ensure optimum surface
quality for specific applications [87]. Nickel is the most common cause of metal-induced
allergic contact dermatitis in humans [88]. It has been reported that 4.5% of the human
population has nickel hypersensitivity, with a significantly higher prevalence in females
(8% females compared to 0.8% males) [89]. Orthodontic treatment may induce nickel sensi-
tivity [90]. Even if the Ni release does not reach the average dietary intake of nickel, Ni ions
may cause a local hypersensitivity reaction at oral soft tissue sites [88]. Nickel-containing
orthodontic appliances can, in some cases (e.g., patients with Ni hypersensitivity), cause
gingival hyperplasia, labial desquamation, inflammation around lips and swelling and
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burning sensations affecting the oral mucosa [91,92]. Biocompatibility is a complex field of
research that may seem outside the area of interest in orthodontic practice [62].

In general, there are three known methods for investigating the release of metal ions,
namely, in vitro, in vivo [93] and a combination of laboratory testing (in vitro testing of
in vivo samples). Most studies are conducted under laboratory conditions and report
in vitro conditions [91,94,95], but such research cannot simulate bioplastic situations on
real samples, so they are sometimes not relevant for clinical use.

There are important clinical, in vivo studies that analysed patients’ saliva and mon-
itored nickel release from orthodontic appliances before and during orthodontic treat-
ment [96–98]. The results from research in the years 1997 to 2016 on the concentration
of Ni in patients’ saliva in patients with fixed orthodontic treatment were summarized
in meta-analysis study [97]. Another study reports the monitoring of nickel release from
coated and uncoated NiTI wires after 2 months of orthodontic treatment, in which slightly
elevated concentration of Ni were observed in all cases, mostly in the case of uncoated
NiTi [99].

In vitro research of the biocompatibility of NiTi with osteoblasts and fibroblasts re-
vealed that NiTi alloy released more Ni into the cell culture media than stainless steel [100].
After two days, however, the concentration of Ni released from both samples stabilized at
the same level [100]. Similar findings were reported regarding the release of Ni ions, which
increased in the early stages (0–2 weeks), before typically stabilizing due to the formation
of a stable oxide film [94,95]. The release of Ni is dependent on the structure of the oxide
film. In general, the surface of NiTi will vary across products depending on the preparation
process. The main component is stable TiO2, which is combined with small amounts of
nickel oxides, NiO and Ni2O3, and metallic Ni [101]. Despite the high proportion of nickel
in NiTi alloy, in some studies, Ni-ion release is lower than in the case of other alloys (e.g.,
stainless steel and Co-Cr-Mo-Ni-Fe alloy) [102]. Another study that reported reduced
Ni release focused on reusing and recycling NiTi archwire by using a heat treatment at
temperatures of 500 and 600 ◦C in order to sterilize and potentially restore the original
properties. In this study, the Ni release observed in the solution was smaller in the case of
the reused wire [103].

Research investigating the 4 week exposure of different archwires (25 samples of
stainless steel and 25 samples of nitinol) in artificial saliva reported that the estimated
release rates from full-mouth orthodontic appliances are less than 10% of the reported
daily dietary intake for nickel [95,104]. Different toxicity levels of Ni ions in the human
body are collated in Table 6. Different concentration levels are reported in addition to
different measures of contact, for example, whether Ni is consumed via water as an ion
or as a Ni alloy in contact with the human skin. It is reported that the release of metals
from metallic materials used for biomedical purposes is below the toxicity limit [93] but
may lead to allergic reactions [94]. Furthermore, Shabalovskaya reported that the release
of Ni ions can occur without any visual signs of corrosion on the NiTi alloy surface [105].
In a review paper focused on the biocompatibility of NiTi alloy in biomedical appliances,
authors Es-Souni et al. emphasized the issue of applications involving wear and the low
repassivation kinetics of NiTi alloys, which potentially lead to a stronger release of Ni
ions [87].

Table 7 summarizes data that have been published from the literature concerning
the release of Ni ions from dental archwire or orthodontic devices with NiTi wire during
exposure to different artificial saliva. Table 7 contains information (given by authors) on
the original values of measured Ni ion concentrations and reported units, the area of
exposed surfaces, techniques for analysing the metal ion release and the type and pH of the
corrosion media. The reported concentration levels were restated in terms of the mass unit
of Ni leached from 1 cm2 of material per week, as also reported in the EU document [106].
Recalculation into this unit was carried out in order to be able to compare the reported
results. As can be seen from Table 7, experimental setups differ to a great extent between the
various studies. The pH values of artificial saliva are between 6 and 7, and in some cases,
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studies included acidic environments with a pH level around 3.5 [36,39]. The concentration
of leached metal ions is higher in more aggressive environments (low pH) and during the
early stages of exposure (also seen in Figure 6).

Table 6. Toxicity limits of Ni concentrations across different fields of interest.

Limit Field of Interest Source Reference

0.5 µg/(cm2·week) Skin contact

Directive EU, 2004/96/EC, Amending Council
Directive 76/769/EEC, as regards restrictions on the
marketing and use of nickel for piercing post
assemblies for the purpose of adapting its Annex I to
technical progress

[106]

7.3 µg/kg body weight Body burden Sunderman et al., Biological monitoring of nickel in
humans, 1993 [107]

200–300 µg/day Daily dietary intake Barret et al., Biodegradation of nickel and chromium
in vitro, 1993 [95]

500 µg/day
or less Daily dietary intake Schroeder et al., Abnormal trace metals in man-

nickel, 1962 [104]

2500 ng/L (ppb) (Inflict) Cell damage
Vreeburg et al., Induction of immunological
tolerance by oral administration of nickel and
chromium, 1994

[108]

82–406 µg/day/person From food WHO 1998 report [109]
5–25 µg/day/person From drinking water WHO 1998 report [109]

>0.2 µg/L Healthy serum concentration
Es-Souni et al., Assessing the biocompatibility of
NiTi shape memory alloys used for medical
applications, 2005

[87]

1–3 µg/L Healthy urinary excretion
Es-Souni et al., Assessing the biocompatibility of
NiTi shape memory alloys used for medical
applications, 2005

[87]

0.02 mg/L Drinking water guideline value WHO 1998 report [109]
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Table 7. Ni release from NiTi archwire or orthodontic devices with NiTi wire on exposure to saliva or biological fluid.

Concentration Unit Time
(Days)

Type of
Sample Technique

Solution/V
for

Exposure
pH Author

Recalculated
Conc.

(µg/cm2/week)

11.77 ppb/day 1

Orthodontic
devices with

NiTi wire

HR-
ICP/MS

A. sal.
50 mL

6.75

[94]

3.56
10.83 ppb/day 6 3.27
6.13 ppb/day 7 1.85
3.38 ppb/day 14 1.02
835.1 ppb/day 1

3.5

252
459.5 ppb/day 6 139
138.9 ppb/day 7 42.0
61.9 ppb/day 14 18.7

4.29 ppb 1
Orthodontic
devices with

NiTi wire

AAS

A. sal.
100 mL

6.75 [95]

1.13
8.41 ppb 7 0.32
2.76 ppb 14 0.052
1.58 ppb 21 0.02
0.70 ppb 28 0.0066

0.62 ppm 1

Orthodontic
devices with

NiTi wire

A. sal.
25 mL

6.69 [88]

0.075
0.234 ppm 4 0.0071
0.395 ppm 7 0.0068
0.452 ppm 9 0.0061
0.669 ppm 14 0.0058
0.917 ppm 21 0.0053
1.267 ppm 28 0.0055

0.44 µg/L 1

NiTi wire ICP-MS A. sal.
100 mL

6.5 [3]

0.39
0.49 µg/L 2 0.22
0.4 µg/L 3 0.12

0.37 µg/L 7 0.047
0.33 µg/L 14 0.021
0.28 µg/L 21 0.012

0.00122 ng/mm2 7
NiTi wire AAS HBBS / [110]

0.000122
0.00160 ng/mm2 14 0.00008
0.00204 ng/mm2 30 0.00005

Cca. 5 ng/L 14
NiTi wire ICP-OES 0.9 M NaCl

25 mL
/ [111]

0.000043
Cca. 11 ng/L 30 0.000047
Cca. 20 ng/L 60 0.000043

Cca. 1 µg/cm2 1

NiTi wire AAS A. sal.
2 mL

3.75

[36]

7.0
Cca. 1 µg/cm2 3 2.3

Cca. 2.5 µg/cm2 7 2.5
Cca. 3 µg/cm2 14 1.5
Cca. 5 µg/cm2 28 1.25

Cca. 0.1 µg/cm2 1

6.25

0.7
Cca. 0.3 µg/cm2 3 0.7
Cca. 0.8 µg/cm2 7 0.8
Cca. 1.9 µg/cm2 14 0.95
Cca. 2.0 µg/cm2 28 0.5

The recalculated concentrations from Table 7 that had been exposed to a neutral pH
were plotted into a diagram of concentration vs. time of immersion (Figure 6). In the
diagram, the limit of 0.5 µg/cm2·week is also outlined, which represents the limit for
biocompatibility of Ni alloy in contact with the human skin [106]. Various authors [3,88,94],
who have determined the daily release of metal ions from orthodontic archwire, have
observed that the most significant releases of metal ions occurred during the first days of
exposure. Similarly, the highest Ni ion release from orthodontic devices reported in the
first few weeks were in in vivo studies [96,97]. Generally, the concentration of the released
Ni ion was below the daily intake level [96,98,99].
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In a previous study written by the authors of this review paper, Ni release from new
NiTi and stainless steel archwires was monitored during exposure to artificial saliva at
37 ◦C for 3 weeks [3]. A tribocorrosion experiment was then conducted with a low force
and sliding speed in order to mimic the daily use of NiTi and SS orthodontic archwire in
saliva. It was found that the Ni concentrations released over one simulated day of use
exceeded the limit for safe use of dental archwire. The values of Ni release after simulating
1 day of use was 69.4 µg/cm2/week for NiTi wire and 32.6 µg/cm2/week for SS wire,
which exceeded the limit of 0.5 µg/cm2/week by 134 times for NiTi and 65 times for
SS [3]. This study showed that the synergistic impact of chemical and mechanical wear is
an important factor affecting the total wear of orthodontic archwire, which subsequently
affects the release of metal ions.

5. Conclusions

This paper reviews state-of-the-art research reported on NiTi dental alloy used as
archwires for orthodontic treatment from a material science perspective. Challenges and
future perspectives were further discussed.

Firstly, existing electrochemical data in the published literature were researched and
compared. Great differences were revealed in the data, as a result of the corrosive solution
used, the shape and microstructure of the samples and the technological finish of the NiTi
samples investigated.

Secondly, the effect of low pH and fluoride presence were thoroughly investigated,
also showing a high variation in results, which should be interpreted with care.

The third chapter discussed and compared the data published regarding issues sur-
rounding the release of nickel ions. The concentrations released were assembled using the
same unit in order to compare the results. It was shown that the vast majority of metal ions
released dissolved in the first few days of exposure, then a stable, steady state was reached.

The key part of this review is the overview of the published literature on mechanically
influenced corrosion. Very little published data are available, so the tribocorrosion studies
can be a powerful tool to predict the performance of NiTi in a complex environment.

In summary, the corrosion and tribocorrosion studies call for a joint effort among
various areas of research.
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corrosion properties of nickel-titanium orthodontic wires. Angle Orthod. 2014, 84, 1041–1048. [CrossRef]

49. Briceño, J.; Romeu, A.; Espinar, E.; Llamas, J.M.; Gil, F.J. Influence of the microstructure on electrochemical corrosion and nickel
release in NiTi orthodontic archwires. Mater. Sci. Eng. C 2013, 33, 4989–4993. [CrossRef] [PubMed]

50. Rondelli, G.; Vicentini, B. Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires.
Biomaterials 1999, 20, 785–792. [CrossRef]

51. Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics
wires. Biomaterials 2004, 25, 4535–4542. [CrossRef]

52. Kao, C.-T.; Huang, T.-H. Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different
electrolyte solutions. Eur. J. Orthod. 2010, 32, 555–560. [CrossRef] [PubMed]

53. Lee, T.-H.; Huang, T.-K.; Lin, S.-Y.; Chen, L.-K.; Chou, M.-Y.; Huang, H.-H. Corrosion Resistance of Different Nickel-Titanium
Archwires in Acidic Fluoride-containing Artificial Saliva. Angle Orthod. 2010, 80, 547–553. [CrossRef] [PubMed]

54. Barcelos, A.M.; Luna, A.S.; Ferreira, N.A.; Braga, A.V.C.; do Lago, D.C.B.; De Senna, L. Corrosion evaluation of orthodontic wires
in artificial saliva solutions by using response surface methodology. Mater. Res. 2013, 16, 50–64. [CrossRef]

55. Kassab, J.E.; Gomes, J.P. Assessment of nickel titanium and beta titanium corrosion resistance behaviour in fluoride and chloride
environments. Angle Orthod. 2013, 83, 864–869. [CrossRef] [PubMed]

56. De Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F. Orthodontic wires and its corrosion—The specific
case of stainless steel and beta-titanium. J. Dent. Sci. 2015, 10, 1–7. [CrossRef]

57. Huang, H.H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials 2003, 24,
275–282. [CrossRef]

58. Nakagawa, M.; Matono, Y.; Matsuya, S.; Udoh, K.; Ishikawa, K. The effect of Pt and Pd alloying additions on the corrosion
behavior of titanium in fluoride-containing environments. Biomaterials 2005, 26, 2239–2246. [CrossRef] [PubMed]

59. Al-Mayouf, A.M.; Al-Swayih, A.A.; Al-Mobarak, A.; Al-Jabab, A.S. The effect of fluoride on the electrochemical behaviour of Ti
and some of its alloys for dental applications. Mater. Corros. 2004, 55, 524–530. [CrossRef]

60. Rodrigues, A.V.; Oliveira, N.T.C.; Dos Santos, M.L.; Guastaldi, A.C. Electrochemical behaviour and corrosion resistance of
Ti-15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions. J. Mater. Sci. 2015, 26, 1–9.

61. Vasilescu, E.; Drob, P.; Ivanescu, S.; Dan, I.; Vasilescu, C. Electrochemical behaviour of a new dental alloy for restorative works in
simulating extreme functional conditions. Rev. Chim. 2009, 60, 783–786.

62. Daems, J.; Celis, J.P.; Willems, G. Morphological characterization of as-received and in vivo orthodontic stainless steel arch-wires.
Eur. J. Orthod. 2009, 31, 260–265. [CrossRef]

63. Mathew, M.T.; Ariza, E.; Rocha, L.A.; Fernandes, A.C.; Vaz, F. TiCxOy thin films for decorative applications: Tribocorrosion
mechanisms and synergism. Tribol. Int. 2008, 41, 603–615. [CrossRef]

64. Mathew, M.T.; Ariza, E.; Rocha, L.A.; Vaz, F.; Fernandes, A.C.; Stack, M.M. Tribocorrosion behaviour of TiCxOy thin films in
bio-fluids. Electrochim. Acta 2010, 56, 929–937. [CrossRef]

http://doi.org/10.1016/S0142-9612(03)00188-1
http://doi.org/10.1002/jbm.a.30340
http://doi.org/10.1016/0109-5641(95)80007-7
http://doi.org/10.1016/j.matdes.2009.05.031
http://doi.org/10.1016/j.msec.2013.01.026
http://doi.org/10.1134/S2070205112030185
http://doi.org/10.1016/j.corsci.2010.11.010
http://doi.org/10.1016/j.electacta.2010.08.090
http://doi.org/10.1016/j.jobcr.2020.07.006
http://doi.org/10.1177/00220345990780091201
http://doi.org/10.1093/ejo/cjr055
http://doi.org/10.2319/090413-651.1
http://doi.org/10.1016/j.msec.2013.08.024
http://www.ncbi.nlm.nih.gov/pubmed/24094215
http://doi.org/10.1016/S0142-9612(98)90233-2
http://doi.org/10.1016/j.biomaterials.2003.11.042
http://doi.org/10.1093/ejo/cjp146
http://www.ncbi.nlm.nih.gov/pubmed/20139132
http://doi.org/10.2319/042909-235.1
http://www.ncbi.nlm.nih.gov/pubmed/20050751
http://doi.org/10.1590/S1516-14392012005000172
http://doi.org/10.2319/091712-740.1
http://www.ncbi.nlm.nih.gov/pubmed/23448158
http://doi.org/10.1016/j.jds.2014.07.002
http://doi.org/10.1016/S0142-9612(02)00315-0
http://doi.org/10.1016/j.biomaterials.2004.07.022
http://www.ncbi.nlm.nih.gov/pubmed/15585225
http://doi.org/10.1002/maco.200303770
http://doi.org/10.1093/ejo/cjn104
http://doi.org/10.1016/j.triboint.2007.11.011
http://doi.org/10.1016/j.electacta.2010.08.067


Materials 2021, 14, 7859 17 of 18

65. Benea, L.; Ponthiaux, P.; Wenger, F.; Galland, J.; Hertz, D.; Malo, J.Y. Tribocorrosion of stellite 6 in sulphuric acid medium:
Electrochemical behaviour and wear. Wear 2004, 256, 948–953. [CrossRef]

66. Bidiville, A.; Favero, M.; Stadelmann, P.; Mischler, S. Effect of surface chemistry on the mechanical response of metals in sliding
tribocorrosion systems. Wear 2007, 263, 207–217. [CrossRef]

67. Holmes, D.; Sharifi, S.; Stack, M.M. Tribo-corrosion of steel in artificial saliva. Tribol. Int. 2014, 75, 80–86. [CrossRef]
68. Sun, Y.; Rana, V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5M NaCl solution. Mater. Chem. Phys. 2011, 129, 138–147.

[CrossRef]
69. Landolt, D.; Mischler, S. Tribocorrosion of Passive Metals and Coatings; Woodhead Publishing Limited: Sawston, UK, 2011. [CrossRef]
70. Tan, L.; Dodd, R.A.; Crone, W.C. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation.

Biomaterials 2003, 24, 3931–3939. [CrossRef]
71. Abedini, M.; Ghasemi, H.M.; Ahmadabadi, N.N. Tribological behaviour of NiTi alloy against 52100 steel and WC at elevated

temperatures. Mater. Chem. Phys. 2010, 61, 689–695.
72. Zhang, C.; Farhat, Z.N. Sliding wear of superelastic TiNi alloy. Wear 2009, 267, 9394–9400. [CrossRef]
73. Gialanella, S.; Ischia, G.; Straffelini, G. Phase composition and wear behaviour of NiTi alloys. J. Mater. Sci. 2008, 43, 1701–1710.

[CrossRef]
74. Grosgogeat, B.; Jablonska, E.; Vernet, J.-M.; Jaffrezic, N.; Lissac, M.; Ponsonnet, L. Tribological response of sterilized and

un-sterilized orthodontic wires. Mater. Sci. Eng. C 2006, 26, 267–272. [CrossRef]
75. Yu, J.H.; Huang, H.L.; Wu, L.C.; Hsu, J.T.; Chang, Y.Y.; Huang, H.H.; Tsai, M.T. Friction of stainless steel, nickel-titanium alloy and

beta-titanium alloy archwires in two commonly used orthodontic brackets. J. Mech. Med. Biol. 2011, 11, 917–928. [CrossRef]
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