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Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting 
temperate and polar regions. Examples in mammals include changes in appetite and 
body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and 
seasonal reproduction. The timing of these seasonal cycles reflects an interaction of 
changing environmental signals, such as daylength, and intrinsic rhythmic processes: 
circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the 
focus of most mechanistic studies has been on neuronal systems in the hypothalamus. 
Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tany-
cytes as key pathways in seasonal timing. The pars tuberalis expresses a high density 
of melatonin receptors, so is highly responsive to changes in the nocturnal secretion 
of melatonin from the pineal gland as photoperiod changes across the year. The pars 
tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine 
signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem 
cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, 
and they also send elaborate projections through the arcuate nucleus, many of which 
terminate on capillaries in the median eminence. This anatomy underlies their function 
as sensors of nutrients in the circulation, and as regulators of transport of hormones and 
metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal 
changes in gene expression in tanycytes, for example, those controlling transport and 
metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role 
in the initial development of the brain, and experimental manipulation of thyroid hormone 
availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep 
and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse 
of developmental mechanisms in the adult hypothalamus and that tanycytes are key 
orchestrators of these processes.
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inTRODUCTiOn

Investigation of the central mechanisms underlying seasonal cycles in energy balance has provided 
new insights into the fundamental control systems of appetite and energy expenditure in the brain. 
Homeostatic mechanisms governing the short-term control of energy balance, for example, the tim-
ing of meals and the response to acute fasting, have been extensively studied in laboratory animal 
models. This body of work has given us great insight into the autonomic and endocrine signals 
emanating from the gastrointestinal tract and white adipose tissue that communicate to integrative 
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FigURe 1 | immunohistochemical identification of tanycytes in 
coronal sections through the mediobasal hypothalamus of a Siberian 
hamster. Polyclonal rabbit antisera detect glial fibrillary acidic protein, or the 
intermediate filaments nestin or vimentin. Sections are also stained with a 
goat polyclonal directed against the melatonin-related receptor GPR50. Scale 
bars = 75 μm. Image from Fowler and Ebling, University of Nottingham.

FigURe 2 | Schematic summary of photoperiod-induced changes in 
gene expression in tanycytes in Siberian hamsters exposed to long 
summer photoperiods (LD) or short winter photoperiods (SD). dio2, 
deiodinase 2; nmu-2, neuromedin 2; gpr50, G-protein-coupled receptor 50 
(=melatonin-related receptor); oatp1c1, organic anion transporter 1C1; 
rarres2, chemerin; glast, glutamate transporter; gs, glutamine synthetase; 
raldh1, retinaldehyde dehydrogenase; stra6, retinol transport protein 
stimulated by retinoic acid gene 6 homolog; ttr, transthyretin; crbp-1, cellular 
retinol binding protein; crabp-2, cellular retinoic acid binding protein-2; rar/rxr, 
retinoic acid and rexinoid receptors; nestin, type VI intermediate filament 
nestin; dio3, deiodinase 3; mct8, monocarboxylate transporter 8; vimentin, 
type III intermediate filament vimentin; gp, glycogen phosphorylase; pfk-c, 
phophofructokinase C.
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centers of the hypothalamus and brainstem (1). However, the 
evidence that changes in homeostatic gene expression underlie 
long-term season cycles in energy balance is very limited (2, 3). 
In seasonal mammals, rheostatic mechanisms that govern the 
long-term control of energy balance reflect a higher order set of 
processes controlling the neuroendocrine system (4). A key ele-
ment of this rheostatic system comprises hypothalamic tanycytes 
(Figure 1). These are radial glial cells whose cell soma in embed-
ded in the ependymal lining of the third ventricle (Figure  1). 
They possess elaborate projections that communicate with 
hypothalamic nuclei implicated in energy balance (5). Subtypes 
of tanycyte have been identified on the basis of their location 
and their proximity to hypothalamic nuclei: α1 and α2 tanycytes 
appose the dorsomedial and ventromedial nuclei, whereas β1 and 
β2 tanycytes border the arcuate nucleus and median eminence. 
Interestingly, β2 tanycytes differ from the other subtypes as they 
have direct access to circulating plasma (6). These tanycytes in 
the ventral region of the third ventricle are uniquely fenestrated 
and selectively permeable, allowing passive and active transport 
of molecules from the circulating blood supply in the median 
eminence into the cerebroventricular fluid in the third ventricle 
(7). While there is conflicting evidence for homeostatic-induced 

gene expression changes in tanycytes, there is consistent evidence 
between studies and species for seasonal/photoperiodic-induced 
changes in gene expression (Figure  2). In particular, tanycytes 
have been identified as key determinants of long-term seasonal 
changes in ingestive behavior and energy metabolism through 
their role in transport and regulation of thyroid hormone avail-
ability in the hypothalamus (8). The aim of this review is to sum-
marize our current understanding of tanycyte biology and outline 
their key roles in nutrient and hormone sensing, and in directing 
neuroplasticity, and thereby regulating hypothalamic control of 
energy metabolism.

HYPOTHALAMiC TAnYCYTeS AS 
MeDiATORS OF eneRgY HOMeOSTASiS

The blood–brain barrier (BBB) is a feature of the cerebral vascu-
lature that restricts and regulates access of molecules to the brain, 
and therefore acts as a gatekeeper to the hypothalamic nuclei and 
beyond (9–11). However, despite the prominence of tanycytes 
within the ependymal layer of the third ventricle and their 
expression of a wide range of hormone receptors and nutrient 
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sensors, their role in energy homeostasis is hotly debated. Early 
studies on tanycytes focused upon their barrier function (6). In 
response to food deprivation and a resulting fall in blood glucose, 
tanycytes undergo morphological changes and increase vascular 
permeability via enhanced secretion of VEGF-A (10). These 
reversible morphological alterations at the BBB suggest that 
nutritional state modulates the access of metabolic signals via 
tanycytes from the periphery to hypothalamic nuclei critical for 
energy homeostasis. However, the role of tanycytes as mediators 
of energy homeostasis extends beyond the morphological to the 
adaptive homeostatic and neuroendocrine.

In response to a fast, the hypothalamus–pituitary–thyroid 
(HPT) axis is downregulated through a reduction of thyrotropin-
releasing hormone (TRH) synthesis in the paraventricular nucleus 
(PVN). The neurons of the PVN project to the median eminence 
and the terminals are in close proximity to the projections of β2 
tanycytes. These cells express pyroglutamyl peptidase II (PPII), 
an ectopeptidase that hydrolyzes TRH, and thus controls the 
amount of TRH available to cause thyroid-stimulating hormone 
(TSH) synthesis and secretion in the anterior pituitary. In situ 
hybridization studies demonstrated that PPII and deiodinase 2 
(DIO2) were increased in tanycytes following a fast (12). DIO2 
removes an outer ring iodine atom, so converts the inactive form 
of thyroid hormone (thyroxine; T4) into the biologically active 
form triiodothyronine (T3). This is a common theme in tany-
cyte biology. Interestingly, increased DIO2 activity in tanycytes 
suppresses TRH secretion from the PVN via the local increase 
in T3 availability in the hypothalamus, and subsequent studies 
demonstrated that DIO2 in tanycytes is essential for regulation 
of the HPT axis (13–15).

An intriguing feature of tanycyte biology is that these cells are 
also activated by signals emanating from the adjacent pars tuber-
alis in the pituitary stalk. For example, TSH receptors located in 
tanycytes are activated by TSHβ produced in the pars tuberalis. 
This signal is transduced via both activation of adenylate cyclase 
and phosphorylation of extracellular signal-regulated kinases 
(ERK1/2), resulting in increases in DIO2 mRNA expression (16). 
In addition to fasting, overnutrition results in changes in tany-
cyte biology; ghrelin uptake/transport is attenuated following 
neonatal overfeeding (by reducing litter size) in the mouse (17). 
The lipopolysaccharide-induced cytokine upregulation of DIO2 
expression in tanycytes and the stimulatory actions of pituitary 
adenylate cyclase-activating polypeptide both occur via increased 
intracellular cAMP and the NF-κB pathway (18, 19).

Interestingly, tanycytes express the insulin-independent 
glucose transporters GLUT1 and GLUT2, and also glucokinase. 
Indeed, in hypothalamic slice cultures, tanycytes respond to 
exogenously administered glucose, which stimulates Ca2+ ion 
fluxes and ATP release; effects that are then propagated across 
neighboring cells (20). This is further evidence that they func-
tion as nutrient sensors (21, 22). Furthermore, tanycytes express 
a number of enzymes involved in lipid metabolism, and mono-
carboxylate transporters, a family of transporters that mediate 
the facilitated diffusion of lactate, pyruvate, and ketone bodies. 
This suggests further possible mechanisms, whereby tanycytes 
mediate neuronal responses in the hypothalamus to changes in 
peripheral carbohydrate and fat metabolism (23, 24). Recently, a 

metabolic link between tanycytes and astrocytes, likely to impact 
hypothalamic lipid sensing, has been suggested (25). In addition, 
in leptin receptor deficient mice (db/db) and in mice treated with 
a leptin antagonist, leptin accumulates in the median eminence 
but fails to appear in the mediobasal hypothalamus, providing 
evidence that leptin’s signaling cascade begins in tanycytes in the 
median eminence, and then transitions to hypothalamic nuclei 
and neurons (26).

Further evidence supporting the neuroendocrine roles of 
tanycytes is provided by a series of experiments that targeted the 
fibroblast growth factor receptor 1 c isoform (FGFR1c). It was pre-
viously shown that antibody-mediated targeting of the FGFR1c 
receptor reduced body weight, adiposity, and insulin resistance in 
animal models of obesity and type II diabetes (27–29). Subsequent 
in situ hybridization studies in the Siberian hamster revealed a 
high level expression of the FGFR1c in tanycytes, consistent with 
previous qPCR studies in the mouse (30, 31). Targeting of the 
FGFR1c in the long day (LD) obese Siberian hamster peripherally 
and centrally via intracerebroventicular infusion of a monoclonal 
FGFR1c antibody reduced food intake and body weight, which 
was associated with a decrease in expression of DIO2 in the 
ependymal cell layer containing tanycytes (31). This further sup-
ports the hypothesis that tanycytes are an important component 
of the mechanism by which the hypothalamus integrates central 
and peripheral signals to regulate energy homeostasis. It also 
highlights a potential role in seasonal metabolic cycles, as the 
response to tanycyte manipulation was attenuated in short-day 
(SD) lean animals.

HYPOTHALAMiC TAnYCYTeS AS 
MeDiATORS OF SeASOnAL CYCLeS

In response to seasonal changes in daylength, mammals such as 
the Siberian hamster and the F344 strain of photoperiodic rat 
undergo substantive behavioral and physiological adaptations, for 
example, in body composition, growth, and reproductive activity 
(32, 33). The retina is crucial to such adaptations; for example, optic 
nerve transection or bilateral enucleation prevents the synchro-
nicity of seasonal reproduction (34, 35). Photoneuroendocrine 
pathways, where retinal information is conveyed to the suprachi-
asmatic nucleus, are well characterized, as is the neurochemical 
index provided by the secretion of melatonin by the pineal gland 
in response to changes in daylength (36). More recently, we have 
begun to appreciate the role and importance of the pars tuberalis, 
part of the pituitary stalk that contains a high density of mela-
tonin receptors in all seasonal mammals and communicates to 
adjacent tanycytes in the hypothalamus (37). Emerging evidence 
suggests that tanycytes are an integral part of the mechanism that 
facilitates seasonal physiology and behavior in seasonal mam-
mals. In addition to melatonin-regulated changes in secretion of 
paracrine factors including TSHβ and neuromedin U (NMU), 
this region undergoes structural changes in response to chang-
ing photoperiod, particularly in the thyrotrophs, which produce 
TSH (38–40). One consequence of this is that a significantly lower 
percentage of cells display exocytotic activity in SD, supporting 
the hypothesis that the pars tuberalis functions as an interface 
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between photoperiodic stimuli and the endocrine system (41). 
Furthermore, the regulation of thyrotrophs is a melatonin-
dependent process; pinealectomy blocks the SD-induced down-
regulation of TSHβ production, and treatment with melatonin 
can mimic the actions of SD (42, 43). As noted above, the TSHβ 
subunit has been shown to signal to tanycytes, and studies on the 
Syrian hamster, photoperiodic rat, and sheep have revealed that 
tanycytes express the TSH receptor, while local infusion of TSHβ 
into the third ventricle upregulates DIO2 in these glial cells (44, 
45). It is of note that in juvenile photoperiodic rats, TSHβ also 
downregulates deiodinase 3 (DIO3) expression in the ependymal 
cell layer (44).

DIO3 is an enzyme in the tanycyte cell layer that opposes the 
action of DIO2, as it removes an inner ring iodine, and therefore 
deiodinates T4 into reverse T3, which is biologically inactive. 
Furthermore, it deiodinates T3 into the inactive metabolite di-
iodothyronine (T2). In the adult Siberian hamster, rather than a 
LD-induced upregulation of DIO2 (Figure 2) that increases the 
local availability of T3, DIO3 is upregulated in response to SD 
(Figure 2), inactivating T3 or converting the precursor to T2 (32). 
This phenomenon is not limited to the Siberian hamster, it is also 
seen in male sheep exposed to SD for 14 weeks (46). It is predicted 
that the enhanced expression of DIO3 would have the same effect 
on local thyroid hormone availability in the hypothalamus as the 
downregulation of DIO2 observed in most other photoperiodic 
species (32). The biological significance of this predicted change 
in hypothalamic T3 concentrations was directly tested in the 
Siberian hamster by surgically inserting micro T3 implants into 
the hypothalamus, and exposing hamsters to changes in photo-
period. Such implants blocked the SD-induced weight loss and 
catabolism of fat depots and prevented SD-induced testicular 
regression (8). Correspondingly, T3-releasing implants stimu-
lated appetite and induced body weight gain and reproductive 
recrudescence when placed in hamsters previously exposed to 
SD (47). The T3 microimplants blocked the SD-induced increase 
in VGF expression in the dorsomedial posterior arcuate nucleus, 
a potential regulator of seasonal changes in appetite and energy 
expenditure (8).

In addition to the clear effects of TSHβ derived from the 
pars tuberalis on deiodinase gene expression in tanycytes, other 
paracrine mechanisms may also be important in the regulation 
of deiodinases and tanycyte function. For example, ICV infu-
sion of NMU decreases food intake and in obese mouse models 
increases physical activity, energy expenditure, and thermogen-
esis. Furthermore, NMU−/− mice exhibit hyperphagia, increased 
body weight, and reduced energy expenditure. The actions of 
NMU are conferred by the NMU-2 receptor (48). Interestingly in 
photoperiodic rats in LD, NMU gene expression is upregulated 
in the pars tuberalis, while its receptor is upregulated in tanycytes 
(44, 49). It was subsequently shown that local infusion of NMU 
into the third ventricle of photoperiodic rats held in SD upregu-
lated DIO2, thus mimicking the LD state (44). Similarly, the 
GPR50 receptor, which is homologous to the melatonin receptor 
MT1 but does not bind melatonin, is expressed in tanycytes 
(Figure  1) and has been implicated in adaptive thermogenesis 
and torpor (50). GPR50-null mice are resistant to diet-induced 
obesity; however, when fasted, they more readily enter a state 

of torpor. These effects appear to be mediated through TRH, as 
entry into torpor is reversed by treatment with TRH receptor 
agonists (51, 52). In the Siberian hamster exposed to SD, GPR50 
expression is significantly reduced in tanycytes (Figure 2); this 
may contribute to bouts of adaptative thermogenesis, torpor, and 
more broadly energy balance (53). In response to SD, the thyroid 
hormone transporter monocarboxylate 8 (MCT8) is increased 
in tanycytes in the Siberian hamster, while fasting reversed this 
effect, further evidence supporting the role of thyroid hormone 
and tanycytes in the photoperiodic regulation of seasonal biol-
ogy (54). Additionally, the thyroid hormone transporter organic 
anion transporter family member 1C1 (Oatp1c1) is photo-
periodically regulated in tanycytes so potentially contributes to 
seasonal alterations in thyroid hormone transport [Figure  2; 
(55)]. Interestingly, the lactate (MCT2) and glutamate (GLAST) 
transporters, as well as glutamine synthetase, are reduced in 
tanycytes during SD (Figure 2), suggesting glutamate uptake and 
production of glutamine are diminished. Furthermore, glycogen 
phosphorylase and phosphofructokinase-C, rate-limiting steps in 
the metabolism of glycogen to glucose, are increased in tanycytes 
during SD [Figure 2; (56)].

Interestingly, T3 rapidly induces the RA-synthesizing enzyme 
retinaldehyde dehydrogenase 1 (RALDH1) in tanycytes (57). 
In photoperiodic rats, RALDH1 and -2 expression is reduced 
in SD, while the retinol transport protein stimulated by reti-
noic acid gene 6 homolog (STRA6) is reduced by SD (58, 59). 
Furthermore, expression of transthyretin (TTR), a common 
transporter for vitamin A and its metabolite retinoic acid, is 
downregulated under SD in the tanycytes of photoperiodic rats, 
while cellular retinoic acid binding protein (CRBP1), a retinoic 
acid transport protein, is downregulated in SD photoperiods in 
tanycytes in Siberian hamsters. The latter effects are reversed by 
pinealectomy, which suggests that the mechanism is dependent 
upon melatonin (53). Furthermore, cellular retinoic acid binding 
protein-2 (CRABP-2) and members of the nuclear retinoic acid 
receptor and retinoid X receptor families are reduced in response 
to SD in the Siberian hamster (53, 60). Interestingly, retinoic acid 
regulates the ability of tanycytes to proliferate and generate new 
cells in the hypothalamus highlighting another possible role for 
tanycytes (5).

HYPOTHALAMiC TAnYCYTeS AS A STeM 
CeLL niCHe

A number of studies support the existence of hypothalamic stem 
cells capable of generating new neurons in a variety of species. 
However, the location and identity are hotly disputed. Recent 
in vitro and in vivo studies have suggested that they are located 
within the mediobasal hypothalamus parenchyma and could 
represente NG2-expressing oligodendrocyte progenitor cells (61, 
62). Contrasting studies have suggested that subpopulations of 
tanycytes constitute the source (63–66). This in itself, however, 
is controversial as both α- and β-tanycytes have been identified 
as the possible neurogenic niche, as well as a possible role for 
insulin-like growth factor (63, 65, 67). Interestingly, in one study, 
exposure of mice to a high fat diet depleted numbers of putative 
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hypothalamic stem cells, which was associated with impaired 
glucose tolerance and subsequent obesity (68). However, rather 
contradictory results were reported in the study that demonstrated 
increased numbers of cells labeled with the thymidine analog 
BrdU in the hypothalamic ventricular zone in mice maintained 
on a high fat diet (64). Furthermore, in the latter study, focused 
irradiation of the hypothalamus inhibited cell division that was 
associated with reduced body weight gain on a high fat diet, 
suggesting that new cells produced in the hypothalamus might 
have an anabolic function (64). More recently, increased ciliary 
neurotrophic factor signaling was detected in tanycytes close to 
the median eminence in obese mice on high fat diet, further sup-
porting the hypothesis that positive energy balance is associated 
with enhanced hypothalamic neurogenesis (69).

In addition to high fat diet, photoperiodic stimuli regulates 
cell division in the adult hypothalamus. Exposure to SD increased 
vimentin labeling in hypothalamic tanycytes of sheep and 
increased numbers of BrdU-positive cells in the sheep hypo-
thalamus, though a substantive proportion of these expressed 
a microglia marker so were not destined to become neuronal 
(70, 71). Following the transition from LD to SD, an increase in 
cellular proliferation is apparent in the hypothalamus of Syrian 
hamsters; in the Siberian hamster, the intermediate filament 
protein, and neural stem cell marker nestin is downregulated 
during SD (53, 72). Further studies are clearly required to deter-
mine whether the reported seasonal changes in BrdU uptake or 
expression of cell cycle markers such as Ki67 truly reflect altered 
neurogenesis, or whether new cells integrate into functional 
circuits in the hypothalamus. However, given the evidence above 
regarding photoperiod-induced changes in thyroid hormone 
availability in the hypothalamus, and the extensive evidence that 
the thyroid hormone system is implicated in neural division and 
differentiation, it seems very likely that plasticity of cell division 
and connectivity in the hypothalamus will be identified as a core 
feature of seasonal cycles (73, 74). Finally, it has been observed 
that the ability of tanycytes to proliferate postnatally declines with 
age: incorporation of the S-phase marker BrdU in β-tanycytes 

deteriorates between P7 and P45, while no incorporation is 
seen by 12 months of age (63). Furthermore, tanycyte numbers 
declines by almost 30% with increasing age as well as inducing 
significant morphological and anatomical changes; processes 
become thicker and disorganized in the pericapillary zone, with a 
loss of perpendicular orientation (75). This poses further tantaliz-
ing questions regards their metabolic role in relation to aging, and 
whether seasonal cycles might be considered as arrested or even 
reversible aging.

COnCLUSiOn

Identifying the mechanisms by which mammals naturally 
regulate appetite and body composition across the year should 
provide insights into how long-term improvements in metabolic 
health could be promoted in man. Tanycytes are the only cell 
type in the hypothalamus that shows major changes in gene 
expression across a seasonal cycle, so are a likely regulator of 
long-term changes in energy balance. Tanycytes have a privileged 
position as a nutrient and hormone sensor with projections to the 
metabolic brain, and potentially function as a neural stem cell 
niche, highlighting a number of mechanisms that could influence 
energy intake and expenditure in the long term. Experimental 
studies in the hamster have already confirmed that changes in 
thyroid hormone processing by tanycytes are part of this seasonal 
programming of the hypothalamus.
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