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Exploring the Contribution of (Poly)phenols to the Dietary
Exposome Using High Resolution Mass Spectrometry
Untargeted Metabolomics

Yuan-Yuan Li,* Blake Rushing, Madison Schroder, Susan Sumner, and Colin D. Kay*

Scope: This study presents a workflow to construct a Dietary Exposome
Library (DEL) comprised of phytochemicals and their metabolites derived
from host and gut microbiome metabolism for use in peak
identification/annotation of untargeted metabolomics datasets.
Methods and Results: An evidence mapping initiative established target
analytes related to the consumption of phytochemical-rich foods. Analytes
were confirmed by ultra-performance liquid chromatography–mass
spectrometry (UPLC-MS(n)) analysis of human biospecimens from dietary
intervention studies of (poly)phenol-rich diets. One hundred and sixty six
verified compounds were subsequently analyzed on an untargeted
metabolomics platform to acquire chromatographic and high-resolution mass
spectral data for construction of a DEL. The DEL facilitated
identification/annotation of 123 metabolites associate with exposure to
(poly)phenol enriched diets, which included aromatic ketones, benzoic acids,
ellagic acids, caffeoylquinic acids, catecholamines, coumarins, hippuric acid,
hydroxytoluenes, phenylamines, stilbenes, urolithins, valerolactones, and
xanthonoids, in untargeted metabolomics datasets acquire from human
plasma and urine reference materials.
Conclusions: The DEL focusing on (poly)phenols and their metabolites of
dietary exposure facilitated identification/annotation of ingested food
components and their associated pathways in untargeted metabolomics
datasets acquired from human biospecimens. The DEL continues to expand
with the aim to provide evidence-based data for dietary metabolites in
exposome research and inform the development of dietary intervention
strategies.
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1. Introduction

Untargeted metabolomics plays a crit-
ical role in exposome research, where
metabolic phenotyping is used to reveal
the metabolic heterogeneity among pop-
ulations, the relationship to exposures,
and the biological response to treat-
ment. Untargeted metabolomics analy-
sis of biospecimens can result in tens of
thousands of signals, and with the devel-
opment of data mining technologies and
access to public databases, large num-
bers of signals/peaks related to host and
microbial metabolism, and lifetime expo-
sures (e.g., tobacco use, medications and
drugs, environmental chemicals) have
been identified or annotated. However,
the vast majority of the acquired signals/
peaks still remain unknown, creating
“metabolomics dark matter.”[1] Consid-
ering the high abundance of plant mat-
ter in diets (i.e., fruits, vegetables, tea,
coffee, herbs, spices, botanicals etc.), it
is highly likely metabolomics dark mat-
ter is composed of signals that represent
dietary phytochemicals and the metabo-
lites produced by the host and micro-
bial metabolism. (Poly)phenols are a log-
ical initial target to explore metabolomics
dark matter as they are among the
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Figure 1. Workflow for Dietary Exposome Library (DEL) construction and its application in Biomarker Discovery and Nutrition Research.

most abundant phytochemicals in western diets,[2] are well char-
acterized in foods[3] and linked to a diversity of health effects.[4]

However, there is a lack of publicaly? available metabolomics
databases characterizing the metabolites arising from phyto-
chemical metabolism.
The human microbiota produces diverse small molecule phy-

tochemical catabolites,[5] which are detected at relatively high
concentrations in human plasma and urine.[6,7] Many of these
molecules are structurally similar or analogous to host metabo-
lites, including catecholamine, tyrosine, and phenylalanine path-
way intermediates, which are involved in keymetabolic pathways
such as phase I and II metabolism or metabolism of neurotrans-
mitters and vitamin cofactors.[8–10] Furthermore, some of these
metabolites are structurally similar to drug metabolites, such as
intermediates in salicylic acid and paracetamol metabolism.[11]

Even though a large number of phytochemicals are included in
major online databases such as PubChem and HMDB/FoodDB,
many diet-related components reflect precursor structures (i.e.,
molecular structures present in plants/foods) which are often
poorly bioavailable[12] and less likely to be detected in biospec-
imens (e.g., urine and plasma). Further, those bioactive and
circulating phytochemical metabolites derived from host and
microbial metabolism are poorly characterized, and may com-
prise large components of unknown signals in the untargeted
metabolome. The absence of these compounds in mass spec-
tral databases limits the ability of metabolomics researchers to
discern how diet interacts with the metabolome in health and
disease contexts when analyzing biospecimens. Therefore, there
is a need to build and continually expand libraries that accu-
rately reflect the circulating exposome, to aid in the identifica-
tion/annotation of unknown signals inmetabolomics datasets re-
lated to food ingestion. More recently, databases such as HMDB,
MetaboLights, GNPS, PhytoHub,Metlin, and Biotransformer are
beginning to provide greater focus on the circulating metabolites
associated with the biotransformation and metabolism of dietary
phytochemicals, which will be invaluable resources for expand-

ing knowledge of the dietary exposome and aiding future nutri-
tion and exposomics studies.
In the present manuscript we present a workflow (Figure 1)

to construct a Dietary Exposome Library (DEL) for untargeted
metabolomics, demonstrating this approach with analysis of di-
etary phytochemicals including their precursor form and their
metabolites derived from host and gut metabolism for use in
peak identification/annotation of untargeted metabolomics data.
The present paper is focused on development of chemical li-
braries to support untargeted metabolomics efforts in Expo-
somics research. Others have compared the pros and cons of us-
ing high resolution MS and triple quadrupole MS in untargeted
and quantitative applications.[13,14] Starting from an evidence
mapping strategy utilizing systematic literature reviews, a tar-
geted analysis by UPLC-MS(n) was used to verify the existence of
selected phytochemicals in biospecimens from dietary interven-
tion studies focused on (poly)phenol rich diets.[15–23] These ver-
ified compounds were analyzed on an untargeted metabolomic
platform to acquire chromatographic and high-resolution mass
spectra data for construction of a DEL. In addition, we demon-
strate the ability of using the DEL to identify/annotate these
(poly)phenols, their metabolites, and pathway intermediates in
untargeted metabolomics datasets acquired for human plasma
and urine reference materials.

2. Experimental Section

2.1. Materials

Reference standards were purchased from: Arcos Organics,
(Geel, Belgium), Alfa Aesar (Tewksbury, MA, USA), Ark Pharm
(Libertyville, IL, USA), Chem Impex, (Wood Dale, IL, USA),
Chromadex, (Los Angeles, CA, USA), Extrasynthase SA (ZI Lyon
Nord, France), Matrix Scientific (Columbia, SC, USA), Oxchem
(Wood Dale, IL, USA), Polyphenols, (Sandnes, Norway), Sigma
(St. Louis, MO, USA), TCI America (Portland, Oregon, USA),
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Toronto Research Chemicals (Toronto, Canada), or were synthe-
sized in project sponsored by the BBSRC (UK Biotechnology and
Biological Sciences Research Council; BB/H004726).

2.2. Dietary Exposome Library (DEL) Construction

2.2.1. Library Target Identification

Compounds associated with the intake of (poly)phenol-rich foods
were first extracted and summarized in an ongoing systematic
evidence mapping initiative (search criteria Table S1, Supporting
Information). The evidence map focused on bioavailable phyto-
chemical metabolites from highly consumed (poly)phenol-rich
foods, as confirmed by NHANES and USDA’s FoodAPS Na-
tional Household Food Acquisition and Purchase Survey,[24,25] in-
cluding: coffee, tea (black, green), grain (i.e., barley, rye, wheat,
rice,maze/corn), banana, apple, grape, citrus (grapefruit, orange,
lime), berry (blueberry, strawberry, cranberry, raspberry), co-
coa/chocolate and onion. A refined list of target compounds were
verified in biospecimens collected across 11 controlled nutrition
intervention studies (e.g., placebo and controlled feeding stud-
ies) that focused on consumption of foods high in (poly)phenolic
compounds using LC-MS/MS[15–23] and were selected to be ana-
lyzed by an untargeted metabolomics method for construction of
a DEL.

2.2.2. Library Data Acquisition on Untargeted Metabolomics
Platform via Ultra-High-Performance Liquid
Chromatography-High-Resolution Mass Spectrometry
(UHPLC-HRMS)

Stock solutions (1 mg mL−1) for each of the selected compounds
(Tables S2, Supporting Information) were prepared by dissolv-
ing individual reference standards in DMSO, methanol, or water
depending on solubility. Standard mixtures with a final concen-
tration at 500 ngmL−1 for each compound were prepared bymix-
ing 7-to-12 individual stock solutions with water-methanol (95:5).
Isomeric compounds were prepared separately in individual so-
lutions. A 5 µL aliquot of each standard mixture was injected for
the UPLC-HRMS analysis. The DEL was composed of commer-
cially available reference standards as indicated by the CAS num-
bers provided in supplement Table 2 (Table S2, Supporting Infor-
mation).
Chromatographic and HRMS data were acquired on a Van-

quish UHPLC system coupled to a Q Exactive HF-X Hy-
brid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher
Scientific, San Jose, CA) using conditions according to pub-
lished untargeted metabolomics methods.[26,27] The chromato-
graphic data were acquired via an HSS T3 C18 column (2.1 ×
100 mm, 1.7 µm, Waters Corporation) at 50 °C with binary mo-
bile phases of water A) and methanol B), each containing 0.1%
formic acid (v/v). The linear gradient consisted of an initial com-
position of 2% B, increased to 100% B over 16 min, and was held
at 100% B for 4 min, with a flow rate at 0.4 mL min−1. The spec-
tral data was acquired from 70 to 1050m/z using data-dependent
scanning mode. Progenesis QI (version 2.1, Waters Corporation)
was used for peak picking, data extraction [retention time (RT),

accurate mass (MS), and MS/MS spectral data], and construction
of searchable library files. Library files also contained structural
data from SDF files downloaded from Pubchem or HMDB and
edited by Progenesis SDF studio.

2.3. Application of the Dietary Exposome Library in Biological
Reference Materials

Urine and plasma reference materials were received from
the Child Health Exposure Analysis Resource (CHEAR)
consortium[28] and extracted following previously published
methodology.[26] Briefly, a 50 µL aliquot of CHEAR plasma or
CHEAR urine was mixed with 400-µL methanol containing
500 ng mL−1 L-tryptophan-d5 and vortexed at 5000 rpm for
2 min. After centrifugation at 16 000 rcf for 10 min at 4 °C,
350 µL of the supernatant was dried and reconstituted with
100 µL water-methanol (95:5, v/v). A 5 µL aliquot was injected
for analysis. Untargeted metabolomics data was acquired using
the instrument and method parameters described above.
The UHPLC-HRMS data from the reference materials was

processed by Progenesis QI (version 2.1, Waters Corporation)
for peak picking, alignment, and normalization. Peaks were
matched to compounds in the Phytochemical DEL by retention
time (RT), exact mass (MS), and/or MS/MS fragmentation pat-
tern. The evidence basis for each identification was established
based on an ontology level (OL) system consisting of three levels
(OL1, OL2a, OL2b). Peaks thatmatched to compounds in theDEL
by RT (±0.5 min), MS (mass error <5 ppm), and MS/MS (pat-
tern similarity >30) were labeled as OL1, whereas peaks match-
ing RT and MS, but not MS/MS, were labeled as OL2a. OL1 and
OL2a matches were considered the highest levels of confidence.
An OL2b label was provided for peaks that matched by MS and
MS/MS to a compound in the Phytochemical DEL, but were out-
side the retention time drift tolerance (±0.5min) compared to the
purified standard.

2.4. Pathway Analysis of Detected DEL Metabolites

Compounds that were identified/annotated in the CHEAR
reference urine or CHEAR reference plasma by matching
with the DEL were entered into pathway analysis software,
including MetaboAnalyst (www.metaboanalyst.ca)[29] and Re-
actome (reactome.org)[30] knowledge/databases to determine
which host metabolic pathways are associated with these DEL
metabolites.[31,32] KEGG identifiers for each compound were
established by cross-referencing PubChem and HMDB iden-
tifiers in MetaboAnalyst (www.metaboanalyst.ca). The p-values
and false discovery rates (FDR; Benjamini-Hochberg approach
and p-values; binomial test) reported describe the probability of
observations (metabolites) within a given pathway exceeding the
number that would be randomly expected.[33]

3. Results

3.1. Library Target Identification

From our ongoing evidence mapping initiative focusing on
bioavailable phytochemical metabolites from highly consumed
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Figure 2. Selected phytochemical-metabolites for Dietary Exposome Library in the untargeted platformA) pie-chart ofmetabolite composition compound
class; B) Venn diagram of detection results for the selected compounds.

(poly)phenol-rich foods, 166 of an initial 1029 targeted com-
pounds were confirmed based on retention time and MS/MS
spectramatching with commercially available standards, and pri-
oritized for incorporation in the DEL. The 166 compounds were
established from the total target list by their prioritization as be-
ing reported bioavailable, having available authentic reference
standards, and being identified in serum or plasma of previous
human nutritional intervention studies feeding polyphenol-rich
foods/diets.[15–23]

3.2. Library Data Acquisition in UHPLC-HRMS Untargeted
Platform

A total of 166 phytochemical/(poly)phenol related compounds
(Table S2, Supporting Information) were selected to be analyzed
by the UHPLC-HRMS untargeted platform (Figure 1), including
57 benzoic acids, benzaldehydes, benzene-methanol and ben-
zene derivatives, 12 cinnamic acids, 16 phenylacetic acids, 11
(phenyl)propanoic acids, 9 purine derivatives, 8 hippuric acids,
5 tryptophan-indole derivatives, 3 pyridinecarboxylic acids, 2
catecholamines and 1 amino acid analogue, coumarin, cyclohex-
anecarboxylic acid, dicarboxylic acid, fatty acid conjugate, gamma
amino acid, glutamic acid, phenylcarboxylic acid, hydroxy fatty
acid, imidazolyl carboxylic acid, valerolactone, and a vitamin
cofactor (Figure 2A). The majority of the metabolites (151 out of
166) were detected in either positive or negative ionizationmode,
with 90 compounds detected in both modes (Figure 2B). Some
compounds, such as purines and tryptophan-indoles, showed
strong signal responses in positive mode, which was expected

due to the nitrogen-containing heterocyclic groups. In general,
molecules with substituent groups (e.g., methyl, hydroxyl) in the
benzene ring or the carboxylic acid side chain, and/or molecules
with unsaturated carboxylic acid side chains, showed stronger
signal intensities. Cyclohexanecarboxylic acid derivatives, such
as chlorogenic acid (5-O-caffeoylquinic acid, 4-O-feruloylquinic
acid, or 3-O-feruloylquinic acid) were not detected in the
untargeted platform in either the positive or the negative
mode.

3.3. Identification of Phytochemical DEL Metabolites in CHEAR
Reference Urine and Plasma

After alignment and peak picking, 9708 and 11 915 signals
were obtained from plasma and 22 852 and 15 230 from
urine (positive and negative mode, respectively). Signals were
matched with the established phytochemical DEL via exact mass,
RT, and MS/MS pattern. Due to the complexity of the sam-
ple matrix, a number of molecules appeared to be structural
or stereoisomers, or products of in source fragmentation, hav-
ing similar accurate mass (<5 ppm tolerance) but different RT
to reference standards; or could not be sufficiently resolved
(Figure 3; an example of 3,4-dimethoxybenzoic acid). The major-
ity of compounds (123 of 166) included in the DEL (Table S2,
Supporting Information) were identified or annotated in urine
and/or plasma by the untargeted platform, and were supported
by evidence from three data quality ontology levels; OL1 (MS,
RT, and MS/MS match), OL2a (MS and RT), or OL2b (MS and
MS/MS).
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Figure 3. Identification/annotation of 3,4-dimethoxybenzoic acid (3,4-DTA) and its derivatives in urine sample. Black trace: Extracted-ion Chromatogram
(EIC) of [M+H]+, Red trace: EIC of [M+Na]+. A number of peaks matched with 3,4-DTA regarding exact mass (MS, with error <5ppm). Within the re-
tention time (RT, matching range ± 0.5 min) and tandem mass (MS/MS, profile similarity >30), two peaks (labeled in red star) satisfied the OL1
identification (MS, RT, and MS/MS). One peak (yellow star) satisfied OL2a identification, due to the matching of RT, MS but not MS/MS. One peak
(blue star) satisfied OL2b annotation, due to the matching of MS, MS/MS but not RT. The peak that was annotated in OL2b level is not 3,4-DTA but a
derivative related or similar to 3,4-DTA

Figure 4. Phytochemical metabolites identified/annotated in CHEAR reference plasma and urine via the untargeted HRMS platform. A) Number of
metabolites identified/annotated in positive and negative mode; B) number of metabolites identified/annotated in plasma and urine.

Overall, more phytochemical DEL matches were found in the
CHEAR plasma/urine samples in positive mode compared to
negativemode (Figure 4). A total of 123metabolites from theDEL
were identified/annotated across both CHEAR reference materi-
als (Table S3, Supporting Information): 67 of the 123 metabolites

were identified in both reference materials, 56 metabolites were
exclusive to urine, and one metabolite was exclusive to plasma
(Figure 4B). These results indicate that metabolites in the phy-
tochemical DEL are more likely to be detected in urine sam-
ples compared to plasma. For example, aromatic alcohols and
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aldehydes (e.g., benzaldehydes and benzene methanols) were
identified/annotated from both plasma and urine samples, while
aromatic acids (e.g., benzoic acids and benzeneacetic acids) were
more likely to be detected in urine. Compounds that could be de-
tected in both plasma and urine samples included purine deriva-
tives, hippuric acid derivatives, pyridinecarboxylic acids, and
tryptophan-indole derivatives. Flavonoids, including the aglycone
and glycoside forms, were not found in either plasma or urine
samples.

3.4. Pathway Analysis

Based on the identified/annotated phytochemical metabolites
in the CHEAR reference material, we conducted pathway
analysis using Reactome[30] and MetaboAnalyst[29] knowledge-
base/databases, to understand the potential interaction between
these phytochemicals and host metabolism. Of the 123 an-
alytes identified in the plasma and urine CHEAR reference
standards, 66 analytes had KEGG identifiers (54% coverage).
Hippuric acid, methylxanthines, indoleacetates, pyridoxic acid,
cataecholamines, biotin, and hydroxyphenylacetic acids mapped
in Reactome, with FDR<0.1, to four major pathway categories
(Table S4, Supporting Information): cell membrane, neuro-
transmission, metabolism and host defense. MetaboAnalyst
analysis of the identified compounds having KEGG identifiers
mapped to integral metabolic processes (FDR<1), including
caffeine, tyrosine, phenylalanine, vitamin B6, biotin, histidine,
tryptophan, arginine, proline, and purine metabolism (Table S5,
Supporting Information).

4. Discussion

Metabolism is a principal driver of human health, and metabolic
phenotypes (metabotypes) are influenced by a variety of in-
ternal and external factors, including genetics, diet and the
environment.[34] In the present study, we investigated the ability
to detect and identify metabolites associated with (poly)phenolic
rich diets using an untargeted UHPLC-HR-MS platform. The
phytochemicals investigated were selected from prior reports
on the composition of phytochemical-dense foods and/or their
metabolites post consumption, and confirmation via quantitative
targeted analysis of nutrition intervention study sets (including
published[15–23] and unpublished study sets). Our workflow
focused on dietary metabolites that are confidently linked to
ingestion of foods high in (poly)phenols, and this general-
ized workflow can be used to build DEL related to other food
commodities. This information is critical for use in expanding
public libraries and allowing researchers access to this dietary
exposome data, in conjunction with big data analytics, to support
present and future initiatives in nutrition for precision health.
Databases containing phytochemical metabolite data, such

as HMDB, MetaboLights, GNPS, PhytoHub, Metlin, and
Biotransformer are beginning to address gaps in our knowl-
edgebase; however, significant gaps still exist for potential
human/microbial biotransformation products, or chemical
forms which can be empirically identified/annotated in human
biospecimens following consumption of specific foods. Addi-
tionally, experimental data, particularly structurally informative

tandemmass fragmentation data, are unavailable in the majority
of these databases. For this reason, we have endeavored to
develop and continually expand a DEL which takes these factors
into consideration to aid signal identification/annotation for
untargeted metabolomics data.
When discussing methodology to identify (poly)phenols, it

is important to clarify that the term “(poly)phenol” refers to
the collective of polyphenolic and phenolic compounds, which
comprise a large subset of phytochemical subclasses, includ-
ing flavonoids, stilbenes, and lignans, commonly referred to as
polyphenols, and hydroxybenzoic and hydroxycinnamic acids,
commonly referred to as phenolics or phenolic acids. In the
literature, polyphenols such as flavonoids are most commonly
reported identified using positive mode ionization, while their
phenolic metabolites are most commonly identified using neg-
ative mode ionization.[35] In the present study we observed that
the majority of the selected (poly)phenol metabolites were well
ionized in positive mode, forming one or more adducts (e.g.,
[M+H]+, [M+Na]+, [M+CH3OH]+), and demonstrated that un-
targeted scanning in positive mode is adequate to capture the
majority of (poly)phenol metabolites (Figure 2).
One difficulty in analyzing datasets containing high numbers

of small aromatic molecules is the large numbers of possi-
ble isomers and artifacts. The present analysis revealed many
molecules which are either unknown structural or stereoisomers
or products of in-source fragmentation, having similar accurate
mass (<5 ppm tolerance) but different retention times (RT) to the
library reference standards. This highlights the importance of
ascribing ontology levels (i.e., data quality/certainty thresholds)
when presenting HRMS evidence. Identification or annotation
ontology should include exact mass, RT, and/or MS/MS spectra
matches, providing evidence for the assignment of signals/peaks
to metabolites and their isomers or analogues. For example, the
highest level of certainty is ascribed to analytesmatching accurate
mass (MS), RT, and MS/MS spectra; assigned herein as ontology
level 1 (OL1). Accordingly, aMS and RTmatch would be assigned
as ontology level 2 (OL2a) (Table S3, Supporting Information).
When matching the untargeted metabolomics dataset of the
CHEAR reference materials against the DEL, numerous peaks
had an accurate mass match (error <5ppm) for many of the phy-
tochemical analytes, especially for those in the low mass range
(150–300 Da) (Figure 3). Therefore, additional information such
as RT andMS/MS spectramust be included to ensure confidence
in the identification. Nevertheless, it is still difficult to achieve
“one-peak-one-compound” identification, even when using RT
and MS/MS information due to the complexity of biological ma-
trices. In situations where multiple peaks match to a compound
via MS, RT, and MS/MS (OL1) or MS and RT (OL2a), there is a
high confidence that this compound exists within the biological
sample; however, it is unclear which peak (and its corresponding
intensity) is the best selection to represent that compound. In
situations where one or multiple peak(s) match to a compound
via MS and MS/MS but not RT, an ontology level 2b is assigned
(OL2b), indicating the presence of derivative(s), isomer(s), or con-
jugate(s) related to the matched compound. While determining
the exact chemical identity in these cases is difficult, the informa-
tion obtained still provides relevant exposure andmetabolic infor-
mation for that compound. These cases signify the importance
of reporting an evidence basis for peak identification, such as
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the ontology system presented in this study, in addition to those
required under the Metabolomics Standards Initiative (MSI).[36]

The present study describes a workflow for creating a DEL
which uses experimental data from physical reference standards
to aid signal identification/annotation in biospecimens using
an untargeted metabolomics workflow. The focus of this study
is not to investigate the ability of HRMS to improve targeted
methodologies, nor to compare performances of untargeted
metabolomics with targeted assays. Untargeted metabolomics
is a discovery tool that simultaneously captures global signals
from biospecimens without the need of a priori knowledge of
its chemical composition. The generated dataset contains signal
features and associated relative signal intensity that can be inte-
grated along with sample metadata and research outcomes (e.g.,
states of disease, health, or wellness) to identify signals that are
statistically associatedwith study outcomes and/or providemech-
anistic insights. These signal(s) can be identified/annotated and
interpreted by compound libraries, such as the DEL, and other
data mining technologies. Targeted quantitative assays are nor-
mally used to then verify results from untargeted metabolomics.
Even though it is recognized that the DEL has utility for targeted
andMS/MS workflows, we have not provided voltages or MS/MS
spectra which would support method development for such en-
deavors, as this is beyond the scope of the present manuscript,
and more suited for a database. Further details, such as MS/MS
data and chemical identifiers (InChI, SMILES etc.) will be re-
leased as part of a future online library database, which will be
made publicly available.
By leveraging our established DEL, we not only provide

identification for dietary metabolites based on matches with
RT, MS, and MS/MS spectra (OL1 and OL2a), but also anno-
tation for signals that shared similar MS/MS spectra with the
DEL reference standards without matching with RT (OL2b).
These annotations represent clusters of biologically meaningful
compounds that are structurally similar to, or share significant
chemical moieties with, the matched reference standard, such
as conjugates, analogs, and/or derivatives, which may lead to fu-
ture identifications and discoveries. In cases where investigators
choose to work towards identification of unknowns (i.e., mass
matches), techniques such as enzyme hydrolysis are useful in
characterizing phase II conjugation, while structural elucidation
can be explored using NMR, MS/MS, or chemical synthesis. A
vast majority of dietary plant-based phytochemicals are poorly
bioavailable in their precursor forms and are instead highly
biotransformed by the gut microbiome.[5–7,12] These metabolic
products are often structurally similar or analogous to host
metabolites and can therefore be implicated in host metabolic
processes.[8–10] In order to understand biological insight in-
fluenced by dietary phytochemicals, online pathway analysis
tools such as Reactome and Metaboanalyst[29,30] were used to
predict involved metabolic pathways based on the chemical
identifiers (i.e., KEGG, HMDB-ID) of the identified/annotated
metabolites. We have found that a number of dietary metabolites
identified/annotated from CHEAR references urine and plasma
by using DEL (Table S5, Supporting Information) are also in-
cluded in the pathway database of Metaboanalyst and Reactome.
Phenylacetic acids, purine derivatives (e.g., hypoxanthine) and
tryptophan-indole derivatives (e.g., indole acetates), benzoic
acids, and catecholamines, were found represented in a wide

variety of biological pathways, including membrane transport,
host defense, neurotransmission, and several metabolic path-
ways, including vitamin/xenobiotic metabolism, amino acid
metabolism, purine metabolism, and phase II conjugation
reactions (Tables S4,S5, Supporting Information).
Pathway databases and knowledge databases are primarily

built upon genomics and proteomics data which traditionally
capture endogenous enzyme and reaction data. Therefore, most
pathway identifiers are associated with endogenous compounds;
however, some of these compounds will also be of dietary ori-
gin. For example, hippuric acid, methylxanthines, indoleacetates,
pyridoxic acid, cataecholamines, biotin, and hydroxyphenylacetic
acids are mapped in Reactome to four major human pathway
categories. These compounds could be considered both of en-
dogenous and dietary origin. Hippuric acid can be derived from
dietary (poly)phenols, or it could be derived endogenously by
phenylalanine. Indoleacetate is also produced endogenously by
tryptophan, and tryptophan is an essential amino acid which
also has dietary origins. Therefore, compounds in the DEL are
closely intertwined with endogenous metabolic pathways and
overlap with endogenous metabolites themselves under certain
circumstances. For these compounds, their effects on endoge-
nous metabolism are more completely understood, and their im-
plications on hostmetabolism can bemore easily interpreted. For
other compounds that are more strictly dietary (e.g., flavonoids),
their interactions with host pathways are often less clear, and
more studies are needed to better understand how they inter-
act with host metabolic processes. However, research over the
past several years has shown that (poly)phenols modulate the
activity of endogenous metabolic pathways, including amino
acid synthesis, proteostasis, oxidative pathways, autophagy, an-
abolic/catabolic signaling, and others.[37–40] And when pheno-
typic data and peak statistic information is available, these known
interactions of polyphenols with endogenous metabolic path-
ways can be utilized to better interpret metabolic perturbations
between study groups.
By leveraging our comprehensive in-house physical standard

library that includes over 1000 metabolites of the host and mi-
crobial systems, in conjunction with these phytochemicals as-
sociated with Dietary Exposome, our untargeted metabolomics
platform is capable of simultaneously detecting and identifying
metabolites of the host and microbial systems, together with life-
time exposure including dietary exposome. Using this approach,
one data capture can be used to explore the relationships between
dietary intake, perturbations in host and microbial metabolism,
and human health and disease. The ability tomeasure these com-
pounds and detect their differences across phenotypes will sig-
nificantly impact the interpretation of metabolomics data, and is
a strong rationale for continuing to expand libraries to include
compounds from the dietary exposome.
One of the most challenging parts of dietary exposome re-

search lies in pathway analysis, as only a small number of phy-
tochemical metabolites have KEGG identifiers and are therefore
included in pathway mapping. In this study, 46% of the metabo-
lites identified/annotated in the CHEAR reference urine and
plasma via matching to the DEL did not have KEGG identifiers,
preventing their inclusion into the pathway analysis. In some
cases, these compounds may not warrant a KEGG ID, as they
may not act as substrates, products, or co-factors for biochemical
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reactions. However, in some cases, many conjugates clearly inter-
act with metabolic pathways involving phase II detoxification re-
actions as they are found conjugated with sulfate and glucuronic
acid, suggesting they can induce detoxification pathways.[10] In
other cases, they simply may not have a KEGG ID because their
contribution to biochemical reactions has not been established.
Compound subclasses without KEGG identifiers were primarily
benzene derivatives (benzyene diols, alcohols, aldehydes, methyl
esters, catechols), hippuric acid derivatives, methoxyphenylacetic
acids, and (phenyl)propanoic acids. Many of these compounds
are structurally similar to known endogenous metabolites such
as tryptophan/indoles, phenylalanine, and catecholamines, indi-
cating their potential to modify metabolic pathways, likely dis-
playing some affinity for endogenous receptors. This indicates
that more efforts are needed to understand the biochemical inter-
action between chemicals/bio-chemicals within the dietary expo-
some (primarily the benzene derivatives) and host metabolism,
to further increase pathway coverage in metabolomics.
With the established workflow, we will continue to expand the

DEL to include more bioavailable metabolites that are associated
with the dietary exposome and gradually build theDEL, including
chemical IDs, molecular structures, MS and MS/MS spectra, as
well as information regarding the source of exposure and bioac-
tivity, available for public use for the analysis of untargeted data.
Future research to address limitations of this study include the
need for more controlled feeding trials to determine the com-
pounds that arise in biological samples after the consumption
of foods rich in specific dietary components. Additionally, mech-
anistic studies are required to better understand the role these
compounds play in host metabolism. This knowledge will allow
for a deeper understanding of the types of compounds in our di-
ets which affect metabolic processes. Understanding the interac-
tions between food components and host metabolism will pave
the way to use food as interventions to prevent and/or manage
diseases related to metabolic disorders, such as obesity, diabetes,
cardiovascular diseases, and cancer, andwill improve individual’s
quality of life throughout their lifespan.
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