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Skin cancers are among the most common cancers worldwide and are increasingly
prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of
melanocytes in the epidermis. Although CM shows lower incidence than other skin
cancers, it is the most aggressive and responsible for the vast majority of skin cancer-
related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even
after surgical excision. In CM, the photoprotective pigment melanin, which is produced by
melanocytes, plays a central role in the pathology of the disease. Melanin absorbs
ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS)
resulting from the radiation exposure. However, the scavenged ROS/RNS modify
melanin and lead to the induction of signature DNA damage in CM cells, namely
cyclobutane pyrimidine dimers, which are known to promote CM immortalization and
carcinogenesis. Despite triggering the malignant transformation of melanocytes and
promoting initial tumor growth, the presence of melanin inside CM cells is described to
negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity.
Emerging evidence also indicates that melanin secreted from CM cells is required for the
immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal
fibroblasts in cancer-associated fibroblasts, suppresses the immune system and
promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here,
we review the current knowledge on the role of melanin secretion in CM aggressiveness
and the molecular machinery involved, as well as the impact in tumor microenvironment
and immune responses. A better understanding of this role and the molecular players
involved could enable the modulation of melanin secretion to become a therapeutic
strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-
associated deaths.
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INTRODUCTION

CM is an increasingly concerning public health issue, mainly due
to its rising incidence, fast metastasis and high mortality rates
(1). CM arises from the malignant transformation of
melanocytes found in the skin epidermis, which produce the
photoprotective pigment melanin and are also involved in ROS/
RNS scavenging, thermoregulation and immunomodulation (2–
4). Even though it only represents 5% of all types of skin
neoplasms, CM is considered the most lethal, being responsible
for 60-75% of skin cancer-related deaths (5–7). From 1990 to
2019, incident cases of CM have increased by 170% worldwide,
faster than most neoplasms, mainly due to a rapidly aging
population, changes in lifestyle and better screening (8, 9).
Furthermore, CM has a higher potential to form metastasis in
surrounding tissues than other cancers (10), which vastly
contributes to its lethality and extremely poor prognosis. In
2020 alone, there were almost 60,000 CM-related deaths
worldwide and more than 300,000 new cases (11). Currently,
CM is classified based on tumor thickness, presence or absence of
ulceration, lymph node involvement, and presence or absence of
distant metastases (12). Whilst stage I and II CM do not form
metastases, stage III CM presents with lymph node involvement,
and stage IV CM with distant metastases (12). Patient prognosis
varies greatly depending on the stage – stage I CM is
characterized by a 5-year survival rate of 99.4%, which drops
to only 23% in patients with stage IV CM (13). Thus, early
detection of CM is crucial to improve prognosis and
patient survival.

Over recent years, advancements in the molecular biology of
CM have highlighted the relevance of the genomic profile of CM
for accurate prognosis and disease management (2). The most
frequently altered signaling pathway in CM is the Mitogen-
activated protein kinase/Extracellular signal-regulated kinase
(MAPK/ERK) pathway, with ~52% of patients displaying
mutations in the BRAF proto-oncogene - encoding a serine/
threonine kinase - most commonly V600E (14). Curiously, even
though BRAF mutations drive CM growth and proliferation,
they have also been identified in a large percentage of benign
nevi, and are insufficient per se to induce oncogenesis (15, 16).
Abbreviations: CM, Cutaneous melanoma; MEK, Mitogen-activated protein
kinase; UVr, Ultraviolet radiation; ROS, Reactive oxygen species; RNS, Reactive
nitrogen species; CPDs, Cyclobutane pyrimidine dimers; Tyr, Tyrosinase; TYRP1,
Tyrosinase-related protein 1; TYRP2, Tyrosinase-related protein 2; a-MSH, a-
Melanocyte stimulating hormone; MC1R, Melanocortin-1 receptor; cAMP, Cyclic
adenosine monophosphate; MITF, Microphthalmia-associated transcription
factor; SNP, Single-nucleotide polymorphism; SCF, Stem-cell factor; Rab, Ras-
like proteins in brain; EMT, Epithelial-mesenchymal transition; MMPs, Matrix
metalloproteinases; miR, MicroRNA; 5-S-CD, 5-S-cysteinyldopa; KIF13a, Kinesin
family member 13a; TLR2, Toll-like receptor 2; NMDA, N-methyl-D-aspartate;
ECM, Extracellular matrix; MVB, Multivesicular body; MAPK, Mitogen-activated
protein kinase; ERK, Extracellular signal-regulated kinase; AKT, Protein kinase B;
PI3K, Phosphoinositide 3-kinases; IL, Interleukin; IFN, Interferon; TNF, Tumor
necrosis factor; NF-kB, Nuclear factor kappa B; HIF-1a, Hypoxia inducible factor
1 subunit alpha; TGF, Transforming growth factor; VEGFA, Vascular endothelial
growth factor A; SLC2A1, Solute carrier family 2 member 1; SLC16A7, Solute
carrier family 16 member 7; SLC9A1, Solute carrier family 9 member A1; PDK1,
Pyruvate dehydrogenase kinase 1; ALDOA, Fructose-bisphosphate aldolase;
LDHA, Lactate dehydrogenase A; HK2, Hexokinase.
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Patients can also harbor other alterations in this pathway, such as
mutations in the proto-oncogene NRAS, encoding a small
GTPase, and Neurofibromin 1 (NF1) (~28% and ~14%,
respectively). This ultimately leads to the constitutive
activation of the MAPK/ERK pathway, promoting tumor cell
survival and proliferation. Furthermore, activating alterations in
the Phosphatidylinositol-4,5-bisphosphate 3-kinase/protein
kinase B (PI3K/AKT) pathway are also common (2, 14).

Additionally, targeted therapies and immunotherapies have
greatly improved CM treatment, significantly increasing the
overall survival of CM patients (2, 17–19). Despite surgical
excision being sufficient in cases where CM is detected at an
early stage, in advanced stages (III and IV), the disease becomes
disseminated and cannot be eliminated by excision alone (2, 20).
In the cases where BRAF mutations are present, selective BRAF
and Mitogen-activated protein kinase (MEK) inhibitors improve
patient clinical outcomes (17, 18, 21). However, acquired
resistance is common and only half of the patients seem to
benefit from targeted therapies (18, 22). Regarding
immunotherapies, immune-checkpoint inhibitors anti-
Programmed cell death protein 1 (anti-PD-1 - nivolumab,
pembrolizumab) and anti-Cytotoxic T-lymphocyte-associated
protein 4 (anti-CTLA4 - ipilimumab) have been shown to also
improve patient overall survival, leading to long lasting responses
(17, 20). In fact, due to its high mutational burden, CM is
considered one of the most immunogenic types of tumors, able
to modulate the immune microenvironment to its advantage and
favoring immune evasion and suppression (23). Hence,
immunotherapies have great potential to overcome these
tumor advantages by releasing effector T cell suppression,
allowing T lymphocytes to eliminate CM cells (23). Recently,
the 5-year overall survival of patients receiving a combination of
nivolumab and ipilimumab was documented to be 52% (24).
Immunotherapy is therefore considered the first-line option for
treatment of stage III and IV CM (20). Still, 40-65% of patients
show primary resistance to these therapies, and 20-30% of
responding patients end up developing secondary resistance
(17 , 25–27) . Moreover , the cos ts assoc ia ted wi th
immunotherapies are high, which can limit access to these
treatments, leading to under treatment (28). Thus, there is an
urgent need for new and improved therapeutic approaches to
decrease the overall global CM burden.
THE ROLE OF MELANIN IN CUTANEOUS
MELANOMA PROGRESSION

Melanocytes are specialized cells responsible for the synthesis,
packaging and transfer of melanin to neighboring keratinocytes
in the skin epidermis (29–31). The role of melanin in CM
remains controversial, despite it being extensively studied and
considered unquestionably involved in the progression of this
type of cancer. This is probably due to melanin behaving as a
“double-edged sword”. Indeed, melanin has photoprotective
functions, as it absorbs ultraviolet radiation (UVr) and
scavenges ROS/RNS resulting from this exposure (32).
However, the scavenged ROS/RNS were found to modify
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melanin and contribute to mutations triggering CM cell
immortalization and carcinogenesis (33). Moreover, changes in
the molecular machinery responsible for regulating melanin
synthesis in melanocytes have been linked to the phenotypic
switch from proliferative to invasive CM states (Figure 1 and
Supplementary Table 1) (29, 30). In contrast, it has been
described that the presence of melanin inside CM cells
decreases their invasiveness by increasing cell stiffness and
reducing elasticity (34, 35). Interestingly, several regulators of
melanin secretion have also been found altered in CM (Figure 1
and Supplementary Table 1), and in advanced CM stages
melanin can be found in the dermis, where it contributes to
microenvironment modulation and CM progression (36–40).
MELANIN: A “DOUBLE-EDGED SWORD”
IN CUTANEOUS MELANOMA INITIATION

Melanin is the pigment responsible for skin photoprotection
against solar UVr-induced damage (32, 41–43). Supporting this
protective role of melanin, skin phototypes are darker in
equatorial and tropical regions of our planet, where UVr is
more intense (32). Despite its protective role, melanin can
become harmful. Indeed, ROS/RNS generated by UVr induce
the formation of cyclobutane pyrimidine dimers (CPDs), even
hours after UVr exposure (33, 44). In part, CPDs are directly
induced by UVB exposure but a major part of DNA lesions is
induced by modified melanin (33, 44). Importantly, CPDs are
known as signature DNA lesions in CM cells and require UVr
and oxidized melanin to form (33, 44). In agreement with this
notion, epidemiological studies have shown that dark skin
individuals display a much higher frequency of CM and a
lower frequency of other non-CM skin cancers, when
compared to albinos, in which CM is very rare and carcinomas
occur frequently (45, 46). Therefore, these studies suggest that
melanin is required for the development of CM. Another study
compared light and dark skin individuals living in South Africa
and found that CM incidence in the latter represents only 10% of
the total incidence observed in the caucasian population (47). In
addition, another study found that lightly or intermediately-
pigmented skin explants irradiated with high UVr doses have
≥ 80% of melanocytes containing CPDs, while only 15% of
melanocytes in darkly-pigmented skin explants show CPDs
upon the same irradiation conditions (48–50). Altogether,
these studies raise the importance of melanin in CM initiation
and show that melanin in lightly pigmented skins presents
distinct biochemical and physical properties, being more prone
to contribute to CM pathology than melanin in darkly
pigmented skins.

Melanocytes produce two types of melanin in lysosome-
related organelles called melanosomes, namely black/brown
eumelanin and yellow/red pheomelanin (32, 51). Importantly,
the type of melanin is also a key determinant of skin
pigmentation, in addition to its amount (32). Although both
types of melanin may be produced by a single melanocyte, dark
skin individuals produce more eumelanin, while light skin
Frontiers in Oncology | www.frontiersin.org 3
individuals have increased levels of pheomelanin (52). Both
eumelanin and pheomelanin require the same precursors - L-
tyrosine or L-DOPA - but differ on the presence and activity of
specific melanogenic enzymes and intermediate substrates (32,
53). Therefore, after the oxidation of tyrosine or DOPA to
DOPAquinone by the key melanogenic enzyme Tyrosinase
(Tyr), two distinct outcomes are possible (32, 53). In the
presence of the amino acid cysteine, pheomelanogenesis is
favored, while when cysteine is consumed in melanocytes,
eumelanogenesis takes place (51, 53, 54). Even though the
mechanism is not fully understood, the concentration of
cysteine is strictly regulated by the Major Facilitator
Superfamily Domain Containing 12 (MFSD12) importer and
the cystinosin exporter channels located at the membrane
of melanosomes (53, 55, 56) . Eumelanosomes and
pheomelanosomes have different composition and structure
(57, 58). The most striking difference in the context of CM is
the oxidative potential observed in the presence of pheomelanin,
contrasting with the reduction potential of eumelanosomes (57).
Indeed, pheomelanin synthesis produces higher levels of ROS/
RNS that can be harmful for melanocytes and may lead to CM
initiation, even without UVr exposure (59, 60). In general,
pheomelanin is considered phototoxic, while eumelanin is
photoprotective (57, 61). Importantly, both Tyrosinase-related
protein 1 (TYRP1) and 2 (TYRP2) enzymes control
eumelanogenesis rate, by fine tuning Tyr activity, even though
they are not required for pheomelanogenesis. Additionally, Tyr
activity is lower in pheomelanogenesis. Interestingly, Tyr has
higher activity in the slightly acidic lumen of melanosomes,
whose pH is strictly controlled by different ion channels located
at the melanosome membrane, including vacuolar proton
ATPases, copper importers, sodium/proton exchangers,
potassium-dependent calcium/sodium exchangers, and
NAADP-dependent calcium exporters (51, 53, 55, 62). The ion
channel crosstalk at the melanosome membrane, the different
activity and presence/absence of melanogenic enzymes, as well as
different melanosome properties and organization were observed
in eumelanosomes and pheomelanosomes. These and other
molecular mechanisms should be further studied to better
understand what determines if melanin has harmful or
protective properties and how this quality control is done by
melanocytes in order to avoid CM initiation and progression.

Besides the duality previously mentioned concerning
photoprotection and UVr-induced photosensitization, melanin
can contribute to the pathology of CM in other ways. Indeed,
melanin has been shown as an immunomodulator biopolymer and
it is known that CM involves a high burden of immunosuppression
associated with the tumor microenvironment (33, 63). Langerhans
cells, macrophages, monocytes, T lymphocytes and mast cells are
important players in skin homeostasis and pigmentation (64, 65).
Specifically, macrophages are implicated in skin integrity, by
protecting against external pathogens, and also in wound repair
and ion balance (65). Mast cells also regulate the skin barrier, mainly
by enhancing fibroblast growth and vascular development through
growth factor secretion (66). Furthermore, immune cells in the skin
microenvironment release soluble factors that can impact skin
May 2022 | Volume 12 | Article 887366
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FIGURE 1 | Overview of cutaneous melanoma-related molecular mechanisms involved in melanin synthesis, transport and secretion, and their contribution to an
immunosuppressive microenvironment. Several receptors at the plasma membrane [Melanocortin 1 receptor (MC1R), c-Kit receptor tyrosine kinase (c-Kit), c-Met
receptor tyrosine kinase (c-Met) and Endothelin receptor type B (ETBR)] recognize distinct keratinocyte/fibroblast-derived soluble factors [a-Melanocyte stimulating
hormone (a-MSH), Stem-cell factor (SCF), Hepatocyte growth factor (HGF) and Endothelin (ET)], inducing several signaling pathways, which in turn activate the
cAMP response element-binding protein (CREB) and subsequently the Microphthalmia-associated transcription factor (MITF). MC1R can transactivate c-Kit receptor
by recruiting the tyrosine kinase Src. MITF stimulates the synthesis of the melanogenic enzymes Tyrosinase (Tyr) and Tyrosinase-related protein 1/2 (TYRP1/2), which
are transported from the Golgi to melanosomes to initiate melanogenesis. Melanin production requires melanosome maturation, a process that can be divided in four
different stages (I to IV). Stage I melanosomes are early endosome-derived organelles containing intraluminal vesicles, which serve as platforms for the deposition of
the glycoprotein PMEL. PMEL is later cleaved to form the internal fibrillar striations of stage II melanosomes, giving them an elliptical shape. Then, Tyr and TYRP1/2
are delivered to stage II melanosomes in Golgi-derived Rab38-positive vesicles. Moreover, Tyr and TYRP1/2 can also be delivered from recycling endosomes in a
Rab4a-dependent manner and/or through tubular extensions dependent on the complex Rab22/KIF13a. In stage III melanosomes, melanin starts to deposit onto
PMEL fibrils and melanosomes reach full maturation in stage IV. Melanosomes interact with the cytoskeleton via two tripartite complexes: Rab1/SKIP/Kinesin on
microtubules and Rab27a/Melanophilin/MyosinVa on the cortical actin network at the melanocyte periphery. For melanosome secretion, Rab11b interacts with the
exocyst tethering complex, while Rab11a is involved in melanin secretion mediated by Toll-like receptor 2 (TLR2). Moreover, Rab3a regulates melanin exocytosis
induced by keratinocyte-conditioned medium. Myosin X, Rab17 and N-methyl-D-aspartate (NMDA) receptor are involved in melanin release through filopodia. The
molecular regulators described above participate in cutaneous melanoma (CM) proliferation, migration, invasion and/or metastasis (see Supplementary Table 1).
Melanogenesis intermediates also suppress the immune microenvironment, namely by modulating cytokine expression in monocytes, macrophages and T
lymphocytes. The binding of a-MSH to MC1R at the surface of circulating monocytes or local macrophages, as well as its recognition by MC5R at the surface of T
lymphocytes activates Protein kinase A (PKA) though cAMP, which in turn inhibits Nuclear factor kappa B (NF-kB) translocation to the nucleus. Consequently, the
translation of several pro-inflammatory cytokines is inhibited. Furthermore, a-MSH induces the production of anti-inflammatory cytokines (IL-10, TGFb), possibly
through CREB activation, thereby increasing the infiltration of regulatory T cells in the CM microenvironment. In macrophages, inhibition of NF-kB by a-MSH also
decreases the levels of nitric oxide synthase (iNOS), which in turn inhibits nitric oxide production. L-DOPA has been shown to decrease DNA synthesis and pro-
inflammatory cytokine production in T lymphocytes, but molecular mechanisms behind it remain mostly unknown. Interestingly, T lymphocytes can express DOPA
decarboxylase, which converts L-DOPA into dopamine. Through autocrine signaling, dopamine can bind to dopamine receptors at the surface of T lymphocytes (e.g.
D1R) and suppress these cells. Melanin itself might also suppress pro-inflammatory cytokine production in monocytes/macrophages, but the molecular mechanisms
underlying this process remain elusive.
Frontiers in Oncology | www.frontiersin.org May 2022 | Volume 12 | Article 8873664
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pigmentation, especially during inflammation triggered by UVr,
pathogens or chemicals (64, 67). For instance, Langerhans cells,
monocytes and macrophages are able to produce Interleukin (IL)-
18, a cytokine that increases Tyr expression, upregulating melanin
biosynthesis (68). Granulocyte macrophage-colony stimulating
factor (GM-CSF) and IL-33 secreted by macrophages or T
lymphocytes, and mast cells, respectively, also promote
melanogenesis (65, 69). Conversely, T lymphocytes, macrophages,
and monocytes are able to produce Interferon (IFN)-g, IL-17, and
Tumor necrosis factor (TNF), which have been shown to prevent
melanosome maturation and decrease Tyr levels (70, 71). IL-4
secreted by T lymphocytes can also decrease Tyr, TYRP1, and
TYRP2 expression via the JAK2-STAT6 signaling axis (72).

On the other hand, melanin is known to suppress the
production of pro-inflammatory cytokines by T lymphocytes,
monocytes, macrophages, fibroblasts and endothelial cells (73–
76). Moreover, UVr-induced melanin chemiexcitation enhances
the production of a,b-unsaturated melanin-carbonyl and RNS,
which have been shown to inhibit the immune response of T
lymphocytes in CM microenvironment (33, 77, 78). In fact, CM
is an immunogenic type of tumor in which the immune system
in the tumor microenvironment is manipulated and has a crucial
role in CM progression (79, 80). Moreover, melanin may have an
important role in this immunomodulation. Interestingly, in mice
with abnormal expansion of melanocytes in the dermis, i.e.
dermal melanocytosis, melanin seems to be captured and
transported to regional lymph nodes by Langerhans cells (81,
82). Although the role of melanin in CM initiation is well
described, its role in advanced CM stages is poorly understood.
However, it needs to be the subject of future studies because the
immunomodulatory properties of melanin raise a crucial role for
melanin in CM progression.
MELANOGENESIS MACHINERY
CONTRIBUTES TO CUTANEOUS
MELANOMA PROGRESSION

Melanin plays an essential role in CM pathology through the
malignant transformation of melanocytes (32, 33, 41–44). Skin
pigmentation is maintained by the crosstalk between the main
cell types of the skin, namely melanocytes, keratinocytes,
fibroblasts, and immune cells such as macrophages and mast
cells. Factors released by keratinocytes and fibroblasts upon UVr
exposure stimulate melanin synthesis by melanocytes, in a
process known as adaptive pigmentation or “tanning”. These
factors include a-Melanocyte stimulating hormone (a-MSH),
which is released by keratinocytes and binds to Melanocortin-1
receptor (MC1R) on the surface of melanocytes, activating a
signaling pathway dependent on the secondary messenger Cyclic
adenosine monophosphate (cAMP). This leads to an increase in
the levels of Melanocyte inducing transcription factor (MITF),
the master regulator of the expression of melanogenic enzymes
like Tyr, as well as melanocyte dendricity, proliferation and
differentiation (83, 84). Moreover, keratinocyte- and fibroblast-
Frontiers in Oncology | www.frontiersin.org 5
derived soluble factors can bind to specific receptors on the
surface of melanocytes and lead to the activation of MITF by
inducing downstream signaling pathways. Interestingly, some of
these soluble factors or their receptors were reported to have a
role in CM initiation and progression (Figure 1 and
Supplementary Table 1). For instance, MC1R is a highly
polymorphic gene that can shift the ratio of eumelanin/
pheomelanin depending on single-nucleotide polymorphisms
(SNPs) present in melanocytes (85). Some of these SNPs,
especially those favoring pheomelanin production, are
associated with an increased risk of CM (86, 87). MC1R is
associated with CM proliferation and survival through the
MAPK/ERK-signaling pathway, as well as with increased
migratory capacity, by controlling the expression of the
transmembrane protein Sidecan-2 (88–90). MC1R was also
reported to transactivate the tyrosine kinase c-Kit receptor,
which is activated by the Stem-cell factor (SCF) derived from
skin keratinocytes and fibroblasts (89). Upon activation,
oncogenic c-Kit receptor mutants stimulate CM proliferation
and survival through MAPK/ERK and PI3K/AKT signaling
pathways (91–93). Another keratinocyte-derived soluble factor
involved in CM progression is Endothelin (ET), which induces
CM proliferation and survival; neoangiogenesis by upregulation
of Vascular endothelial growth factor (VEGF); migration
through increased expression of avb3 and a2b1 integrins and
focal adhesion kinase overactivity; epithelial-mesenchymal
transition (EMT) by switching the expression of E-cadherin to
N-cadherin; and invasion by enhanced activity of Matrix
metalloproteinases (MMPs) (94–98). Additionally, hepatocyte
growth factor, which is released by both keratinocytes and
fibroblasts upon UVr exposure, binds to its receptor (c-Met) at
the plasma membrane of CM cells and increases proliferation
and survival through the MAPK/ERK pathway, as well as
migration and invasion through ROS-mediated signaling (99,
100). These are only a few examples of keratinocyte- and
fibroblast-derived molecules that can be recognized by CM
cells and disrupt the signaling pathways mentioned above, in
order to favor their pathologic transition. Importantly, the
crosstalk between the signaling pathways linked with these
receptors and the ability to produce several of these soluble
factors in advanced CM stages, can contribute to autocrine
regulation of CM progression and entail CM plasticity and
increased drug-resistance (101). In addition to intercellular
communication through soluble factors, other interactions are
crucial for CM progression. CM cells were shown to locally
change the differentiation pattern of keratinocytes in vitro and in
vivo, usually by aberrant expression of basal Keratin-14 in
suprabasal epidermal layers, accompanied by loss of Keratin-10
(102, 103). Importantly, the expression of typical keratins from
the bottom two layers of epidermis, namely basal and spinous
layers, are associated with low overall survival in CM patients
(104). Indeed, skin function and homeostasis are not only
modulated by melanocyte and CM cell capacity to produce
and transfer melanin. Upon stress conditions like UVr-
exposure, melanocytes also enhance the secretion of several
soluble factors such as cytokines, extracellular matrix
May 2022 | Volume 12 | Article 887366
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components, classical neurotransmitters, neuropeptides and
hormones (52, 105–110). Interestingly, after UVr-exposure
(specially UVB), the neuroendocrine property of skin cells is
crucial to locally mediate an homeostatic response, and release
soluble factors into blood/lymph circulation. This humoral
response also activates the hypothalamic-pituitary-adrenal
(HPA) axis, composed by the global homeostatic regulatory
elements hypothalamus, pituitary, adrenal glands, and immune
system (52, 111, 112). This two-way communication between the
brain and skin occurs mainly due to the ability of melanocytes
and CM cells not only to produce and secrete several regulators
of the HPA axis, but also to express their receptors on the cell
surface and hence, exert an autocrine, paracrine and intracrine
regulation of their functions. Moreover, these HPA axis
regulators follow a production and expression hierarchy, as
observed in the HPA axis, namely Corticotropin-releasing
factor (CRF) ! Pro-opiomelanocortin (POMC) ! POMC-
derived peptides such as Adrenocorticotropic hormone
(ACTH), b-Endorphin, and a-, b- and g-MSH (52, 107, 111,
113, 114). Noteworthy, POMC and POMC-derived peptides
show increased expression from nevi to advanced CM cells,
indicating their crucial role in CM progression. CM can subvert
the stress sensory capacity and neuroendocrine functions to
modulate melanogenic activity, suppress local and systemic
immune responses, increase CM tumor survival in its
microenvironment, and therefore, favor CM cell growth and
invasiveness (112, 115–118).

Not surprisingly, as the master regulator of several
melanocyte functions including melanogenesis, MITF is also a
key player in CM initiation and progression (Supplementary
Table 1). Generally, in early CM stages, there is a hyperactivation
of MITF and CM cells display dysregulated melanin synthesis,
accumulating the pigment intracellularly and leading to heavy
pigmentation, as well as a high proliferative rate. MITF activation
is then progressively reduced from early to advanced CM stages,
being involved in the phenotypic switch from proliferation to
invasion (29, 30, 105, 119–121). However, CM cells with high or
low MITF levels coexist in CM tumors, which can originate from
a reversible phenotypic switch that is responsible for intratumor
heterogeneity, CM plasticity and increased therapeutic resistance
(119, 122–125). This complexity of CM could explain the
controversial results reported in the literature. For instance,
MITF repression was shown to reduce proliferation, as well as
migration and invasion by increasing the number of focal
adhesions, while inducing EMT (126). Oncogenic BRAF, which
favors CM proliferation, is found in approximately 52% of
human CMs (14), and was recently shown to suppress MITF
expression. Despite MITF being usually found to promote
proliferation, when MITF expression is enhanced in BRAF-
mutated CM cells, their proliferation is inhibited (127). MITF
activation is also associated with increased melanogenesis.
Indeed, many melanogenic substrates and enzymes, as well as
some melanosomal markers have been associated with CM
progression (Supplementary Table 1). The ratio between the
melanogenic substrates L-DOPA/L-tyrosine is increased in the
serum of patients with invasive and metastatic CM and higher in
Frontiers in Oncology | www.frontiersin.org 6
patients with evolutive disease, compared with stable patients
(128). Curiously, both L-tyrosine and L-DOPA have a role as
“hormone-like” signaling molecules in melanocytes, besides
functioning as melanogenic substrates (129). They were shown
to bind to plasma membrane and nuclear envelope proteins,
stimulating the expression of POMC, POMC-derived peptides
and MSH receptors, without changing insulin binding capacity
(129–133). This illustrates the receptor-dependent regulatory
capacity of melanogenic substrates on CM cell functions
during disease progression. Moreover, these two melanogenic
substrates can change melanocyte and CM cell metabolism in a
receptor-independent manner by phosphorylating glycoproteins,
activating the transcription of antioxidant response elements,
and switching cellular energy metabolism between aerobic and
anaerobic modes (129, 134–138). L-tyrosine or L-DOPA
conversion to DOPAquinone is catalyzed by Tyr (51, 53, 54).
Interestingly, the levels of a DOPAquinone-derived metabolite
called 5-S-Cysteinyldopa (5-S-CD) are usually augmented in the
urine and serum of patients with early CM stages and its levels
seem to increase gradually with disease progression, peaking in
metastatic CM patients. Thus, the concentration of the
pheomelanogenic substrate 5-S-CD in blood and urine was
suggested to be a good prognosis indicator of CM progression
and treatment efficacy (139–141). Similar to 5-S-CD, the
presence of Tyr in the blood of CM patients was also suggested
to be a reliable prognostic biomarker to assess disease
progression and treatment response (142, 143). However, the
production of melanin intermediates by Tyr involves the release
of cytotoxic free-radicals that induce CM cell death, which can be
suppressed by both TYRP1 and TYRP2 (144). Additionally,
TYRP1 mRNA sequesters the tumor-suppressor microRNA
(miR)-16 and induces CM growth. Therefore, the balance
between the physiologic and harmful role of TYRP1 can
depend on the abundance of its mRNA, SNPs and other miRs
(145, 146). Finally, the melanosomal marker HMB45, which
labels scaffold PMEL fibrils in melanosomes, has also been
associated with CM diagnosis. Usually, CM patient-derived
samples have diffuse or absent HMB45 expression, when
compared with benign nevi (147–149). Indeed, dysplastic nevi
and malignant CM show aberrant giant melanosome complexes
packaged into autophagosomes, which likely undergo at least
partial autophagic degradation (150–152). Moreover, transferred
melanin to CM-associated keratinocytes shows heterogeneous
granularity and the melanin clumps turn keratinocytes darker.
These findings suggest that CM cells can transfer the
melanosome/autophagosome complexes to surrounding
keratinocytes, inducing the hypermelanosis usually observed in
CM tumors (151, 152). Interestingly, melanosomes are
metabolically-active organelles that are known to switch energy
metabolism from oxidative to anaerobic glycolysis, regulate
intracellular calcium signaling, and bind cations or
biomolecules such as catecholamines, serotonin, and
prostaglandins in melanin-recipient cells (52, 105, 136, 137,
153–155). Proteomic analyses of melanosomes illustrate their
complexity and support the notion that these organelles can
regulate not only melanocyte function, but also the function of
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other neighboring cells, including keratinocytes (52, 156). Thus,
melanosomes are potential mediators of skin homeostasis and
participate in diverse environmental responses. Furthermore, the
presence of the supramentioned melanogenic derivatives in
serum circulation of CM patients, can also act on distant sites
and so affect not only skin homeostasis, but the homeostasis of
other tissues and organs (52, 155).

Membrane traffic regulators involved in melanogenesis, such
as Rab GTPases, were also described to have a role in CM
progression (Figure 1 and Supplementary Table 1). Rab22 is
known to assemble in a complex with the microtubule
transporter Kinesin family member 13a (KIF13a) to pull
multivesicular endosome membranes, which form tubules that
enable the transport of TYRP1 to melanosomes during
melanogenesis (157). Interestingly, RAB22 was found to be
upregulated in CM cells and patient-derived tumor samples.
This Rab protein has higher expression levels in metastatic CM
tumors, compared to primary tumors and was shown to induce
CM proliferation, migration and invasion (158, 159). In addition,
the Rab22 effector KIF13a induces membrane blebbing and
increases CM cell migration (160). Rab38 and Rab4a are also
regulators of both melanogenesis and CM progression. The
former was described as being crucial in the transport and
docking of Golgi-derived vesicles carrying the melanogenic
enzymes Tyr and TYRP1 to melanosomes (161). Rab38 was
also shown to increase CM invasion through MMP secretion and
is found upregulated in metastatic CM cells and CM patient-
derived tumor samples (158, 162). Finally, Rab4a regulates the
sorting of vesicles containing Tyr and TYRP1 from endosomes to
melanosomes, through microtubule-mediated transport (163).
In CM, this Rab protein induces lysosome secretion, which in
turn modifies tumor microenvironment and increases CM
tumorigenesis and metastasis (164). Altogether, these findings
demonstrate the importance of cell-to-cell communication and
intracellular trafficking in regulating melanin synthesis and
melanogenic machinery in CM progression.
MELANIN SECRETION IN CUTANEOUS
MELANOMA INVASION AND METASTASIS

An exacerbated expression and activity of melanogenic
machinery and high levels of intracellular melanin in CM cells
can contribute to the progression of this disease. However, the
presence of melanin inside CM cells decreases their invasiveness
and metastasis in mice, by increasing cell stiffness and reducing
elasticity (34, 35, 165). This suggests that melanin negatively
regulates advanced CM stages and therefore, CM cells may
reduce melanogenesis and secrete higher amounts of melanin
to enhance migration, invasion, intravasation into blood and
lymphatic vessels, extravasation and metastasis to distal organs.

Before undergoing malignant transformation, melanocytes
transport mature melanosomes to the cell periphery, followed
by secretion and transfer to neighboring keratinocytes (29–31).
The molecular mechanisms regulating these processes are now
well characterized. Rab1a-SKIP-Kinesin 1 complex regulates
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anterograde melanosome transport on microtubules (166). At
the periphery of melanocytes and in melanocyte dendrites,
melanosomes bind to the cortical actin cytoskeleton and are
kept there by the tripartite complex Rab27a-Melanophilin-
Myosin Va (36, 167). Finally, melanosomes need to be tethered
to the plasma membrane and primed for secretion. We reported
that Rab11b interacts with the exocyst tethering complex to
regulate the late steps of melanosome exocytosis (37, 168).
Recently, we also found that Rab3a regulates melanin
exocytosis stimulated by soluble factors released by
differentiated keratinocytes, but not by undifferentiated
keratinocytes (169). Furthermore, Toll-like receptor 2 (TLR2)
activation was found to increase melanin synthesis and stimulate
melanin secretion in a Rab11a-dependent manner (170).
Another Rab GTPase - Rab17 - was shown to induce melanin
release through filopodia formation (171). Myosin X and N-
methyl-D-aspartate (NMDA) receptor were also described to
promote melanin release through filopodia assembly (172, 173).

After secretion, melanin can be found in the dermis, where it
contributes to microenvironment modulation and CM
progression (73). Interestingly, several regulators of
melanosome transport and secretion in melanocytes were also
found to participate in CM progression (Figure 1 and
Supplementary Table 1). For instance, Rab1b is recruited to
the Golgi apparatus in CM cells and enhances secretion of pro-
invasive and pro-angiogenic proteins in vitro and in vivo (174).
The tripartite complex Rab27a-Melanophilin-MyosinVa was
shown to regulate CM cell migration and invasion, and higher
levels of these proteins are associated with advanced CM stages
in patient-derived tumor samples (38, 175). Rab27a also induces
extracellular matrix (ECM) degradation by promoting the
secretion of vesicles carrying the membrane type 1-MMP (39).
Interestingly, these vesicles contain TYRP1 and the
multivesicular body (MVB) marker CD63, suggesting a
functional crosstalk between MVBs and melanosome traffic
machinery in CM progression (39). Another secretory Rab -
Rab3d - enhances proliferation, migration and invasiveness of
several CM cell lines in vitro (176, 177). Rab3d has more than
80% sequence homology with Rab3a, which we described as a
regulator of melanosome exocytosis (169, 178, 179). Moreover,
we described that Rab3a regulates lysosome exocytosis, which is
involved in plasma membrane repair, among other functions
(180). Indeed, in CM cells, lysosome exocytosis enhances plasma
membrane repair after UVr exposure, as well as the release of the
lysosomal proteases Cathepsin B and K, which in turn degrade
the ECM, thereby promoting CM invasion and metastasis in
vitro and in vivo (181–184). Rab11 was also shown by us to
cooperate with Rab3a in plasma membrane repair in HeLa cells
(185). Curiously, both Rab11a and Rab11b regulate melanin
release from melanocytes and stimulate EMT in CM cells by
switching the expression of E-cadherin to N-cadherin at the cell
surface (168, 170, 186, 187). Furthermore, the exocyst subunits
Exo70 and Sec8, which were described by us to cooperate with
Rab11b to secrete melanin in melanocytes, also increase CM
invasiveness through invadopodia formation and release of
MMPs (37, 40). These proteins, found to induce melanin
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secretion by assembling filopodia in melanocytes, were also
shown to have a role in CM progression. Rab17 promotes CM
growth in vivo (146), whereas Myosin X has a crucial role in CM
proliferation and metastasis in vivo, and its higher expression is
associated with advanced CM stages in patient-derived tumor
samples (188). Finally, NMDA receptor promotes proliferation,
migration and invasion of CM cells, and enhanced NMDA
receptor activation is associated with faster disease progression
and lower overall survival (189, 190).

Hence, the molecular machinery used by melanocytes for
melanosome transport and secretion seems to have a dual role by
simultaneously regulating the exocytosis of melanin and other
factors such as MMPs, to promote CM progression. However,
more studies are required to assess the impact of melanin
secretion in CM, and better understand the molecular
mechanisms involved, to design efficient therapies to block
CM aggressiveness.
THE ROLE OF MELANIN IN IMMUNE
SYSTEM MODULATION

Tumor microenvironment is known to influence cancer
aggressiveness and therapy resistance. CM is considered one of
the most immunogenic types of neoplasms, with a high
immunomodulatory potential that enables it to suppress and
escape immune recognition (23). Besides their important role in
skin pigmentation, there is evidence that melanocytes are
immunocompetent cells (191–193). Indeed, they show
resemblance with antigen−presenting cells (APCs) in their
dendritic morphology and expression of APC surface markers
such as Cluster of differentiation (CD) 40, Human leukocyte
antigen DR (HLA-DR), Intercellular adhesion molecule 1
(ICAM-1), and TLRs (191, 192). IFN-g treatment leads to the
overexpression of CD40 and ICAM-1 by cultured melanocytes,
promoting T lymphocyte proliferation and IL-12 secretion. This
is thought to be one of the skin’s defense mechanisms to prevent
harm from external pathogens, which is also supported by the
phagocytic ability of melanocytes (192, 193). In this context, it is
reasonable to assume that melanin could also play an important
role in this immunomodulation, influencing CM progression
and therapy response.

Indeed, the presence of intracellular melanin increases
chemotherapy and radiotherapy resistance of CM cells,
suggesting melanogenesis as a possible therapeutic target for
the management of advanced CM stages (194, 195). Moreover,
the outcome of radiotherapy and chemotherapy is impaired in
patients with pigmented CM metastases, resulting in the
reduction of their overall survival, when compared with
patients with amelanotic metastases (196, 197). Interestingly,
monoclonal antibodies targeting melanin were shown as
promising radioimmunotherapy agents against metastatic CM
(198). On the other hand, melanocyte-related proteins involved
in melanogenesis, such as Tyr, TYRP1, TYRP2, and Melan-A
have been shown to be targets of anti-melanoma cytotoxic T
lymphocytes that, when successful, lead to the destruction of
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epidermal melanocytes (199–202). In fact, this process has been
proposed as one of the causes of vitiligo - an auto-immune
disorder characterized by the loss of epidermal melanocytes,
leading to depigmented skin patches - in some CM patients, an
indication of a strong anti-melanoma immune reaction (203–
205). Indeed, there is an accumulation of CD8+ T lymphocytes at
the margins of these depigmented areas. Vitiligo-like
depigmentation can also be an adverse effect of immune
−checkpoint inhibitor therapy, but this depigmentation is
associated with better clinical outcomes (206). However, due to
their high plasticity and immunomodulatory potential, CM cells
are able to develop mechanisms of immune evasion and
suppression, some of them linked to melanogenesis.

Some melanogenesis precursors, such as a-MSH, are linked to
immune tolerance and anti-inflammation (76, 207, 208). This
hormone is secreted upon exposure to UVr, binding to MC1R at
the surface of melanocytes and triggering a cascade of events that
enhances melanogenesis (83, 84, 209) (Supplementary Table 1).
However, human monocytes, macrophages, dendritic cells,
endothelial cells, fibroblasts and T lymphocytes can also express
melanocortin receptors, such as MC1R and MC5R (76, 210–212).
Binding of a-MSH to MC1R on the surface of monocytes or
macrophages can inhibit Nuclear factor kappa B (NF-kB)
translocation to the nucleus in a cAMP−dependent process, and
consequently inhibit production of pro-inflammatory cytokines,
such as IL-1, IL-2, IL−6, IL−13, as well as TNF-a and IFN-g (207,
208). IL-6 seems to inhibit the early stages ofCMformation, but has
the opposite effect in advanced metastatic CM, being indicative of
poor prognosis (213–216).a-MSH is also thought to inhibitNF-kB
in T lymphocytes, leading to a decrease in IFN-g production, whilst
triggering upregulation of the anti-inflammatory cytokine IL-10
and Transforming growth factor (TGF)-b, possibly through cAMP
responsive element binding protein (CREB). Thus, modulation of
cAMPsignaling bya-MSHcan convert effectorT lymphocytes into
regulatory T lymphocytes (212, 217, 218). Furthermore, a-MSH
was shown to also upregulate the production of IL-10 in
macrophages and monocytes, which might assist the expansion of
CM-initiating cells (216, 219). Inhibition of nitric oxide (NO)
production by macrophages in a NF-kB dependent manner
further supports the immunosuppressive role of a−MSH (76,
208, 220) (Figure 1).

Another player in the melanogenesis cascade that has been
implicated in immunosuppression is the melanogenic substrate L-
DOPA. In vitro data shows that L-DOPA inhibits lymphocyte
proliferation and activity by preventing DNA synthesis and
cytokine expression (195, 221). Thus, pigmented human CM cells
seem to more easily evade elimination by T lymphocytes, a feature
that is lost uponmelanogenesis inhibition (195).Theseobservations
further support thehypothesis thatmelanin intermediates assist in a
more immunosuppressive microenvironment, which might
contribute to CM cell proliferation and therapy resistance
(Figure 1). However, the molecular mechanisms underlying this
immunosuppressive role of L-DOPA are still poorly explored.
Evidence suggests that T lymphocytes are able to release
dopamine, of which L-DOPA is an important precursor.
Dopamine is thought to be a powerful immunomodulator, with
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different immune subsets expressing dopamine receptors that
trigger various suppression and activation pathways (222).

The induction of melanogenesis in CM cell lines also seems to
lead to higher Hypoxia-inducible factor 1 subunit alpha (HIF-1a)
levels (223). Indeed, higher pigmentation levels in CM are
correlated with the upregulation of HIF-1a and HIF-1a-
dependent genes, such as VEGFA, Solute carrier family 2 member
1 (SLC2A1), SLC16A7, SLC9A1, Pyruvate dehydrogenase kinase 1
(PDK1), Fructose-bisphosphate aldolase (ALDOA), Lactate
dehydrogenase A (LDHA) and Hexokinase 2 (HK2), involved in
glycolysis, angiogenesis and stress response, ultimately contributing
to increased CMaggressiveness (223).Melanogenesis also seems to
upregulate TGFB2, IL5, IL10 and IL17 expression by CM cells, but
its impact on cytokine expression was found to be overall limited
(223). On the other hand, an in vivo study showed that TGFb2
induces hypopigmentation in CM cells, and inhibits dendrite
formation, leading to higher cell motility. TGFb2 is also
upregulated in non-pigmented CM cells, being considered an
MITF antagonist (224). Recently, Pawlikowska et al. have also
published evidence that melanogenesis might promote an
immunosuppressive CM microenvironment, corroborating
previous studies. Using a co-culture system of pigmented CM
cells with peripheral blood mononuclear cells (PBMCs), the
authors showed that melanogenesis inhibition through Tyr
inhibitors induces the expression of proinflammatory cytokines
byPBMCs, such as IL-1b, IL-2, IL-6 and IL-12 (225). IL-12hasbeen
associated with anti-CM activity, and its suppression is considered
pro-tumoral in most cases (226, 227).

Interestingly, one study has correlated synthetic melanin levels
with the inhibition of proinflammatory cytokine production by
humanmonocytes, possibly indicating thatmelanin secretion itself,
and not justmelanogenesis intermediates,might have an important
immunomodulatory role. Syntheticmelanin suppressesTNF, IL-1b
and IL-6 production by interferingwith post-transcriptional events
(74). Finally, after secretion from CM cells, melanin was found to
transform dermal fibroblasts in cancer-associated fibroblasts
(CAFs), suppressing the immune system and promoting tumor
angiogenesis, thus sustaining CM progression and metastasis (73).

Even though evidence supporting the immunosuppressive role
ofmelanogenesis has emerged in the last decades, there is stillmuch
to explore when it comes to its contribution to the tumor
microenvironment and, consequently, to CM progression. Thus
far, research suggests that melanin synthesis and secretion
contribute to the inhibition of proinflammatory cytokine
expression by monocytes, macrophages and T lymphocytes, with
consequent suppression of T lymphocyte proliferation and activity,
whilst also stimulating the activity of regulatory T lymphocytes in
the tumor vicinity (Figure 1). This would promote an
immunosuppressive microenvironment, possibly supporting CM
aggressiveness and tumor evasion. However, further researchmust
be conducted to support these hypotheses, as they are sustained
mainly by few in vitro studies.More specifically, there is still a gap in
the knowledge concerning the effect of melanogenesis andmelanin
secretion on the recruitment of different subsets of immune cell
populations to the tumormicroenvironment, a phenomenon that is
known to impact CM progression and immunotherapy response.
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To our knowledge, there are currently no studies that directly relate
melanin production and secretion with immunotherapy response
through the immunomodulation of the CMmicroenvironment.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Recent evidence has implicated melanin in the promotion of CM
progression and capacity of CM cells to adapt throughout
distinct CM stages, i.e., CM plasticity. Indeed, several known
molecules involved in melanogenesis and melanin secretion play
distinct and pivotal roles in CM tumorigenesis and progression
(Supplementary Table 1). Therefore, the therapeutic targeting of
melanogenesis and melanin secretion molecular machinery may
be an efficient approach to impair CM cell migration, invasion
and, importantly, metastasis. However, considering the complexity
and variety of the roles thatmelaninplays inCMprogression,much
remains to be understood regarding its impact on CM pathology,
therefore warrantingmore studies. The literature suggests a role for
melanin in the malignant transformation of melanocytes and CM
cell immortalization, but its influence in CM progression remains
poorly understood and controversial, as melanin seems to have
distinct roles dependingon theCMstage. Several studies implicated
melanogenesis andmelanin release inCMplasticity in the course of
thedisease. Indeed, changes in themolecularmachinery responsible
for regulatingmelanin synthesis inmelanocytes have been linked to
the phenotypic switch from proliferative to invasive CM states
(SupplementaryTable 1).However, the presence ofmelanin inside
CM cells seems to decrease their invasiveness and metastasis,
suggesting that enhanced melanin secretion is crucial for CM cell
invasion andmicroenvironmentmodulation. Furthermore, several
known regulators of melanin transport in and secretion from
melanocytes also play a role in CM progression and modulation
of tumor microenvironment (Supplementary Table 1). Therefore,
a double therapeutic approach enhancing melanin synthesis and
blockingmelanin secretioncould impairCMtransition toadvanced
stages, which leads to a reduced patient overall survival. Thus,
further elucidation of this dual role for melanin synthesis and
release in CM progression might provide novel therapeutic
strategies to ensure the specific targeting of CM cells, depending
on the disease stage, as an attempt to improve CM patient overall
survival and quality of life.

Additionally, one must consider the potential role of melanin
synthesis and especially melanin secretion in the modulation of
CM microenvironment. Indeed, it is known that the interaction
between CM cells and the immune system has a strong influence
on CM prognosis and response to immunotherapy. As
discussed previously , evidence suggests that some
melanogenesis regulators and perhaps even melanin secretion
i t s e l f , m i g h t p r omo t e a n immun o s u p p r e s s i v e
microenvironment, which would further support CM
aggressiveness and consequent poor prognosis. However,
research exploring the immunomodulatory potential of
melanin has been stagnant in recent years and, consequently,
the molecular mechanisms underlying these processes are still
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vastly underexplored. Research in this field has relied on an
abundance of different CM cell lines as models (Supplementary
Table 2), and the range in pigmentation levels and different
genetic backgrounds has brought relevant insights into the dual
role of melanin in the pathogenesis of CM. However, the use of
these models does not seem to be enough to properly explore the
complex interactions between melanin and its regulators and
immune cells in the tumor vicinity. Recently, 3D cell culture
models have evolved to become more reliable and intricate, and
could in the future recapitulate the most important CM features,
including the tumor microenvironment. These types of
methodological advancements will be extremely advantageous
and are crucial to better understand the impact of melanin
secretion on the modulation of the immune microenvironment
and how it correlates to immunotherapy response.
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193. Tam I, Stępień K. Secretion of Proinflammatory Cytokines by Normal
Human Melanocytes in Response to Lipopolysaccharide. Acta Biochim Pol
(2011) 58(4):507–11. doi: 10.18388/abp.2011_2217

194. Brozyna AA, VanMiddlesworth L, Slominski AT. Inhibition of
Melanogenesis as a Radiation Sensitizer for Melanoma Therapy. Int J
Cancer (2008) 123(6):1448–56. doi: 10.1002/ijc.23664

195. Slominski A, Zbytek B, Slominski R. Inhibitors of Melanogenesis Increase
Toxicity of Cyclophosphamide and Lymphocytes Against Melanoma Cells.
Int J Cancer (2009) 124(6):1470–7. doi: 10.1002/ijc.24005
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