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Introduction: Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This 
synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles 
(AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make 
them biocompatible.
Methods: UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while 
transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier trans-
form infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating.
Results: UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. 
As a result of the emergence of a transmission peak at 804.53 and 615.95 cm−1 in the spectrum of the infrared light emitted by atoms 
in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray 
(EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser 
beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, 
suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm.
Conclusion: The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme- 
positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making 
nanostructures that have antimicrobial and anticancer properties.
Keywords: Silver nanoparticles, UV-Vis spectroscopy, transmission peak, dynamic light scattering

Introduction
The oxidation/reduction process of metallic ions by the organic biological moiety is used in the green production of 
nanoparticles (NPs). The green and convenient synthesis of silver nanoparticles (AgNPs) is a bottom-up technique.1 It 
includes the treatment of silver nitrate solution with reducing substances using extracts derived from plants. The gold 
NPs are mixed with silver nitrate solution following the standard operating procedure explained earlier.2 The most 
common synthesis methods in green chemistry are hydro(solvo)thermal synthesis, ball milling, ultrasoundassisted 
sonochemical synthesis, microwave irradiation, photocatalysis, magnetic field-assisted synthesis, solvents, and 
catalysis.3 Compared to physical and chemical methods, nanoparticles produced using green technology have many 
advantages. For example, green synthesis reduces chemical costs and energy consumption. It also generates environmen-
tally benign products and by-products,4 including fungi, algae, bacteria, and plants. It is important to note that there has 
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been widespread criticism of the excessive use of plant components such as leaves, fruits, roots, stems, and seeds in the 
production of NPs.5 Many scientists now choose green synthesis over conventional chemical and physical approaches 
because it is toxic-free, zero-pollution, eco-friendly, cost-effective, safer, and more sustainable.2–6 There are, however, 
some things about this method that could be improved.

Silver nanoparticles are presently being evaluated as potentially useful anticancer treatments because they affect the 
cell cycle, inhibit the multiplication of cancer cells, produce oxidative stress, and promote the process of programmed 
cell death (apoptosis).7

As silver nanoparticles and their conjugates with anticancer medicines produce reactive oxygen species (ROS) and 
oxidative stress, DNA damage occurs, cell cycle arrest occurs, and tumor cells die.8,9

The actions of silver nanoparticles as an antimicrobial agent involve: 1) Nanoparticles of silver produce silver ions 
(Ag+) that disrupt cell walls and cytoplasmic membranes 2) By denaturing ribosomes, silver ions inhibit protein 
synthesis.10 The antimicrobial properties of AgNPs derived from plant extracts have been demonstrated to suppress 
both Gram-negative and Gram-positive bacteria.11 In green synthesis, harmful chemicals are eliminated. Both reducing 
and capping agents may be found in plants.12 Moreover, eco-friendly green synthesised nanoparticles using medicinal 
plants are crucially important because of their potential therapeutic uses.13,14

Previously, the potential of biogenic AgNPs as cancer theranostic agents and their underlying processes were 
investigated.15 Interest in cancer research has surged because of AgNPs due to their easy manufacturing and surface 
modification, significant increases, and better biocompatibility.16,17 Over the last decade, researchers have focused their 
attention on developing strategies for synthesizing AgNPs using biological and green chemical processes.18 A study was 
conducted to enhance in vivo environmental biocompatibility of silver nanoparticles (AgNPs) by functionalizing them 
with lipopeptide biosurfactant extracted from Brevibacterium casei LS14.19 Based on the study’s findings, biosurfactants 
could be used to functionalize AgNP so that it could be used in biomedical and environmental applications. A variety of 
nanoparticles modified to have unique physical, chemical, structural, electrical, and magnetic properties have gained 
recognition in advancing nanobiotechnology, including biomedicine, sensors, and wastewater management.20 By using 
a unique combinatorial approach based on first-principles density functional theory and simulations, the research shed 
light on the role of diverse AgNPs-protein interactions, thus paving the way for understanding their intrinsic properties.21 

The study evaluated the anti-proliferative and apoptotic properties of AgNPs biofabricated from Microchaete aqueous 
extract.22

Seeds of wheat and corn were germinated in water or soil with different doses of irradiation, and the paramagnetic 
centers in their seedlings were compared. Research pertaining to the formation of inorganic nanophase magnetic particles 
in biological systems is of great importance for the development of the field of biomineralization.23 Silver nanoparticles 
were synthesized using aqueous extracts of chickpea (Cicer arietinum L.) (CA) leaves. X-ray diffraction (XRD), FTIR, 
UV-visible spectrophotometer, TEM, SEM, EDX, and zeta potential (ZP) were used to analyze the synthesized AgNPs.24

It was found that olive leaf extracts could be used to synthesize silver nanoparticles where absorption peak occurred 
between 405 nm and 425 nm. The SEM images was shown the spherically-shaped Ag-NPs with polydisperse and size 
range of 7.12 to 18.8 nm.25

In 2020, there was a study of green synthesis of Ag-NPs from Neurada procumbens where a strong absorption 
maximum occurred between 400 and 455 nm for Ag-NPs fabricated using Neurada procumbens extract.The TEM and 
SEM images demonstrated the existence of spherically-shaped Ag-NPs with a size range of 20 to 50 nm. The Ag-NPs 
shown effective efficacy against the isolated multi-drug resistant gram-negative rod from suspected patients at Buraidah 
Central Hospital, Saudi Arabia when tested against bacterial cultures.

The highest concentration of Ag-NPs that could be obtained ranged from 75 to 100 µg, with a 15–17 mm zone of 
inhibition.26

The current research aims to utilize Neurada procumbens as an eco-friendly plant to prepare AgNPs. Additionally, the 
low bioavailability of Neurada procumbens may be countered by using AgNPs as a carrier. AgNPs conjugated with 
Neurada procumbens are being studied for their possible cytotoxic and anticancer impact for microbial theranostics and 
ameliorative effect against cancer invasion. To this end, UV-visible spectrum, PL spectrum, DLS, TEM micrographs, 
EDX, and FTIR are used.
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Methods and Materials
Reagents and Materials
Both pure rifaximin and rifaximin in the form of gastrobiotic tablets, each containing 550 mg of rifaximin, were provided 
by the Al Andalous Medical Company, Egypt. Boric acid with (99.5%), citric acid (99.5%), and acetic acid (99.7%) were 
all available from the company Winlab, United Kingdom. Furthermore, sodium tetraborate decahydrate (99.99%), 
sodium acetate (99.99%), sodium monobasic phosphate (99.99%), sodium citrate dihydrate (99.99%), sodium dibasic 
phosphate (99.99%), silver nitrate (99.99%), and ethanol (99.82%) were purchased from Sigma-Aldrich, Germany.

Preparation of AgNPs Using an Aqueous Neurada Procumbens Flora Extract
The Neurada procumbens plant samples were collected from the Almuzahemiah region near Riyadh in February 2019, 
and identified by Dr. Mohamed El-Zaidy in the Herbarium, Department of Botany and Microbiology, King Saud 
University (KSU). A voucher specimen (No.: JC20190210) was stored at the Research Laboratory, Department of 
Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

After being air-dried, the leaves of Neurada procumbens were macerated overnight at room temperature in a mixture 
of double-distilled hot water at a ratio of 1:10. This mixture was continually shaken. The obtained extract was filtered. 
After that, about 5 mL of the aqueous leaf extracts were combined with 50 mL of 1.0 mM AgNO3. After heating the 
reaction mixtures to 60 °C and stirring them constantly until the color changed from clear to brown (about one hour), the 
color was changed into brown. In order to keep the nanoparticles from clumping together, the mixing container was taken 
off the stirrer after the solution achieved its maximum color intensity and placed in the dark at room temperature. The 
formation of silver nanoparticles was demonstrated by the color change (Scheme 1).

MTT Assay
Dimethyl sulfoxide (DMSO), crystal violet, and trypan blue dye were procured from Sigma (St. Louis, Mo., USA), while 
Fetal Bovine serum, DMEM, RPMI-1640, HEPES buffer solution, L-glutamine, gentamicin, and 0.25% Trypsin-EDTA 

Scheme 1 An illustration of the AgNPs’ route of synthesis utilizing Neurada procumbens Flora extract.
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were sourced from Bio Whittaker ® Lonza, Belgium. The Hela (human cervical cancer cells) obtained from American 
Type Culture Collection, USA, whereas the MCF-7 cells (human breast cancer cell line) were obtained from VACSERA 
Tissue Culture Unit. The cells lines were grown in a CO2 incubator at 37 °C for 24 h after being seeded at a density of 
30×104 per well in μL of cell culture media. After incubation, media in 96-well plates were discarded, and cells were 
exposed to plant extract + NPs with culture medium in concentrations of (0, 1, 2, 4, 8, 24, 48, and 80) μg/mL. Then, 96 
wells were incubated for a whole day in a CO2 incubator at 37 °C. The MTT powder was diluted in PBS at a pH of 7.4 to 
5 mg/mL, and 20 L was added to each well. The plates were then incubated at 37 °C for 3h. Following incubation, cells 
were rinsed in PBS, and DMSO (200 L/well) was added to dissolve the formazan crystals. For 15 minutes at room 
temperature, the plates were incubated on a shaker to achieve thorough dissolution. At 570 nm, the absorbance of each 
sample was evaluated with the assistance of a microplate reader manufactured by Synergy-HI: BioTek, USA.

Antimicrobial Activity Assay
14gm of Nutrient Agar powder were dissolved in 500 mL of distilled water and autoclaved afterwards. The agar was 
poured in 20mL for each Petri dish. The researchers waited 15 minutes for the agar to solidify, and then plates were 
swabbed with the overnight culture of human pathogens: Escherichia coli ATCC 35218; from the King Khalid University 
Hospital in Riyadh, Saudi Arabia, obtained Staph aureus ATCC 43300, Enterococcus faecalis ATCC 29212, and Bacillus 
cereus ATCC 11778 (clinical isolate).

A well was made in the solid medium by carefully punching it with a sterile cork borer (four wells per plate), and 
each of the four corners was an equal distance away from the dish’s center. After that, the hole was filled with the 
material in three different concentrations (1000 L, 500 L, and 250 L), which were introduced carefully until the hole was 
saturated. The mixture was then incubated for 24 h at 37 °C. After incubation, the zone of inhibition was measured and 
outlined as a millimeter (mm) in diameter.

Fusarium oxysporum, Alternaria alternate, and Trichoderma were used to test the extracts’ antifungal efficacy. These 
fungi were cultured on a plate of Potato Dextrose Agar at a temperature of 28 °C. The 19 grams of medium in 500 mL of 
distilled water were autoclaved before use. The material was diluted to two different quantities (1000 μL and 500 μL), 
added, and then put onto sterile petri plates with gentle mixing. A 6-mm-diameter fungal disc was removed from the edge 
of the fungus cultures that were 7 days old. It was then aseptically placed on the poisoned plate and cultured for 7 days at 
28 °C to test this theory.

The diameter of the fungal colonies was measured, and the percentage of mycelia growth inhibition was used to 
determine the antifungal activity. The inhibition % was assessed on 7th day, when the mycelia in the control plate had 
extended to the edge of the Petri dish.

Results and Discussion
In the presence of plant extracts, it would be able to see the color shift and follow the reduction of silver ions to AgNPs 
using spectroscopic techniques. N. procumbens was used to create AgNPs, first validated by the reaction solution’s color 
shift from almost colorless to yellowish and eventually brown. This effect was seen as a result of AgNPs’ surface 
plasmon vibration resonance being excited.27

The UV-Vis spectrum of formed AgNPs showed a single absorption at 422 nm which is matched with the literature26 

(Figure 1). This indicates an isotropic nature of these nanoparticles27 due to the resonance of excited longitudinal 
plasmon vibrations in a sample solution of AgNPs. This highlights Mie’s theory, which proposes that asymmetry in 
a sphere causes the longitudinal plasmon resonance to expand and redshift and the transverse plasmon resonance to 
arise.28–30 Several studies have shown that the presence of a sharp SPR in the range of 350–600 nm confirms the 
formation of colloidal silver nanoparticles, while others have reported that the surface plasmon resonance of AgNPs at 
wavelengths of 410–450 nm may indicate spherical nanoparticles.31–33 The synthesised Ag NPs have a broader asym-
metric band in their UV spectra, with one peak and one shoulder toward long wavelengths. This might provide evidence 
for size distribution and the existence of larger NPs, as postulated by Mishra et al.34 Aggregation effects may have 
contributed to this expansion. It has also been shown that the strength, width, and form of the absorption band are 
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affected by the surfactant agent, the dielectric constant of the surrounding medium, and the chemicals adsorbed on the 
surface.35,36

Emission from silver nanoparticles is caused by the recombination of electron-hole pairs between the d-band and the 
sp-conduction band above the Fermi level,37,38 which occurs at a credible 421.3nm when stimulated by 320 nm light. 
Emission intensity is increased in part because of the material absorbed during the formation of silver nanoparticles. 
Figure 2 depicts silver nanoparticles’ photoluminescence (PL) spectrum when the excitation wavelength ranges from 400 

Figure 1 The UV-visible spectrum of an aqueous suspension of prepared AgNPs.

Figure 2 PL spectrum of prepared Ag NPs.
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to 700 nm. The illumination of silver may be triggered by irradiating the metal surface with an electron, photon, or laser 
beam; the proven emission peak locations range from 300 to 550 nm.39,40

Nanoparticles, whose diameters are orders of magnitude smaller than the wavelength of light, are generally accepted 
to behave as dipoles in an optical field. About this dipole limit, nanoparticle absorption and emission should primarily be 
coherent with their surface excited energy bands or active surface sites.41,42 Metal nanoparticle luminescence is explained 
by a variety of mechanisms; all of these mechanisms involve the photoelectron in the surface energy states strongly 
absorbing light at its plasmon resonance frequency and converting a portion of that energy into heat. A wavelength 
similar to that of the absorbed light is emitted.34

Dynamic light scattering (DLS) was used to analyse the particle size distribution of green AgNPs by determining their 
average hydrodynamic diameters and Polydispersity index (PdI). The DLS results showed a bimodal size distribution for 
the suspended particles, with the most prominent intensity peak at 104.3, 32.99 nm and the Z-average particle size at 
93.38 nm. Figure 3 shows the particles’ PdI to be 0.100. Extremely monodisperse, PdI values fall in the 0.1–0.2 range, 
whereas moderately polydisperse PdI values range from 0.1–0.4, and extremely polydisperse PdI values are over 0.4. 
Particle dispersity index (PdI) measures the variability in particle size distribution within a given sample. It is also known 
as the dispersity index or the heterogeneity index.43,44

The synthesized AgNPs are analyzed for their shape and particle size distribution using TEM. The synthesized 
nanoparticles’ structural morphology exhibited clear signs of anisotropy– non-spherical structures (eg, prisms, rods, 
cubes) in nature45 (Figure 4-left), and it also had crystalline features, which were represented by discrete lattice fringes 
(inset) (Figure 4-right). The decline in the efficiency of the reducing agents present in the plant extract was the primary 
factor in determining the shape of the nanoparticles. On nanoparticle surfaces, dark caps indicate secondary materials. It 
may be due to biomolecules found in the leaf extract.26

Several parameters, as reported by Rauwel, Molina, Parvataneni, and coworkers, may influence green-synthesized 
nanoparticles’ size and form distribution. The variables reported are plant extract type, solution pH, and reaction 
temperature. The leaf extract decreased silver ions and shielded them from aggregation because the biomolecules act 
as protective agents. The biomolecules, however, reduce agents at higher levels of extract.46–48

Green synthetic AgNPs were analyzed for their elemental makeup using EDX. Elementary silver was found to have 
an EDX spectral peak at 3 keV (Figure 5). The optical absorption peak of silver nanocrystals is generally located around 

Figure 3 DLS obtained quantitative and qualitative profiles of green synthesized AgNPs.
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3 keV due to SPR. This confirms that AgNPs were synthesized and Ag+ was reduced to elemental silver.49 Optical 
absorption peaks at 5.4 keV for Cr (Ka), 5.9 keV for Cr (Kb), and 0.5 keV for O (Ka) were evident due to other existing 
elements. Most plant and animal tissues contain this element but in low amounts. At the same time, the other signals are 
for copper since the FE-TEM uses a copper grid .50 These components, which serve as protective coatings for AgNPs, are 
hypothesized to have originated in the plant extract. These findings are consistent with those from the EDX spectrum, 
which showed the existence of elemental silver and other metals during synthesis.51,52

FTIR spectroscopy was used to separate the functional groups of AgNPs within the scan ranges of 4000–400 cm−1. 
According to the FTIR absorption bands (peaks) shown in Figure 6. The FTIR spectrum shows the existence of the (Ag) 
stretching vibration mode as metal-oxygen (M-O) due to the emergence of the transmission peak at 804.53 and 
615.95 cm−1. The area between 300 and 900 cm−1 has the highest stretching vibration concentration, as suggested.53,54

In order to determine the potential functional groups on the surfaces of the biosynthesized Ag nanoparticles, FTIR 
analysis was conducted. The results were compared to the FTIR spectrum of leaf extract, as shown in Figure 6. Looking 

Figure 4 TEM micrographs of AgNPs (left) and distinct lattice fringes (inset) (right).

Figure 5 EDX pattern profile of synthesised AgNPs.
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back at Figure 6 a, it can be seen that the C-H bend pattern for alkenes peaks can be detected at 566 cm−1, peaks observed 
around 1034 and 1381 cm−1 assigned to C–O stretching and C–H, which possibly the existence of CHO functional 
groups of carbohydrate. The band appeared at 1623 cm−1 assigned to the amide I and amide II region. The peaks at wave 
numbers around 2926, 34,234 and 3753 cm−1 were corresponding to stretching vibrations of C–H and N–H groups and 
OH groups of alcohol/phenol respectively. These findings are consistent with a prior investigation conducted.55,56

Tables 1, 2, and Figure 7 provide the findings of the disc diffusion approach used for the antibacterial evaluation of 
the green-synthesized AgNPs. E. coli, S. aureus, E. faecalis, B. cereus, F. oxysporum, A. alternata, and Trichoderma were 
some of the clinical pathogens that were tested in this work to determine the activity of AgNPs that were synthesized 
using “green” technique.57 The plant extract and AgNPs were tested for their antibacterial efficacy against a variety of 
bacterial (including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and Bacillus cereus 
strains) and fungal (including F. oxysporum, A. alternata, and Trichoderma) strains using analysis of variance. The 
findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive 
strains(S. aureus and B. cereus) than E. coli, as shown in Figure 7 and Table 1. The diameter (mm) of the zone of 
inhibition caused by the biosynthesized Ag-NPs was substantially (p≤0.05) more significant than that caused by the 

Figure 6 FTIR spectra of green synthesised AgNPs and N. procumbens extract.

Table 1 The Measurement of Diameter (mm) of Inhibition Zones at Different 
Concentrations of Synthesized AgNPs Against Different Strains of Bacteria

Concentration of AgNPs (µL) S.auros Bacillus cereus E.coli

1000 19.67±0.577d* 19.00±0.00d* 10.00±0.00d*

500 13.00±0.000c* 9.33±0.577c 8.67±0.577c

250 8.67±0.577b* 4.00±0.00b 3.33±0.577b

N. procumbens extract 5.00±0.000a* 0.33±0.577a 0a

Notes: Different letters were used if there was a significant (p≤0.05) difference between the treat-
ments and bacterial strains, then we consider the results to be meaningful. When there was a (*) 
significant (p≤0.05) difference between the strains and concentrations, we indicated it with a different 
letter (a, b, c or d).
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N. procumbens extract for all three concentrations tested (1000, 500, and 250 L). In addition, the biosynthesized Ag-NPs 
exhibited dose-dependent antibacterial action, consistent with a prior work by Awad et al.48 The highest diameter of the 
inhibition zone was observed at 1000 µL of AgNPs against S. aureus((19.67±0.577mm) followed by B. cereus(19.00 
±0.00mm), which were both significantly (p≤0.05) higher than E.coli (10.00±0.00mm)(Table 1).

Furthermore, the biocidal activity of AgNPs against the fungal strains used in the study is shown in Table 1. For all 
three fungal strains, A. alternata and Trichoderma, and F. oxysporum, both the concentrations (1000 and 500 µL) of the 
biosynthesized Ag-NPs caused an inhibitory zone with a significantly (p≤0.05) higher diameter (in mm) than 
N. procumbens extract. In addition, biosynthesised Ag-NPs showed antifungal activity that increased with dosage. 
Among all three fungal strains used in the study, the N. procumbens extract and the AgNPs at both concentrations 
showed a significantly (p≤0.05) lower diameter of the zone of inhibition against A.alternata in comparison to 
Trichoderma and F. oxysporum. At the lower concentration (500 µL) of the AgNPs, the diameter was significantly 
(p≤0.05) higher for F. oxysporum (18.33±0.577mm) compared with Trichoderma (15.00±0.00mm) and A.alternata (7.33 
±0.577mm). However, at the higher concentration (1000 µL) of AgNPs, the highest diameter was recorded for 
Trichoderma (30.33±0.577mm), which was significantly higher than those recorded for A. alternata and F. oxysporum 
(Table 2).

The ability of AgNPs to produce silver ions, which are toxic to microbial cells, has been credited with a wide range of 
reported inhibitory mechanisms. The released Ag ions might damage the cell envelope by increasing membrane 
permeability after adhering to the cell wall and membrane. Additionally, silver ion adhesion can improve microbial 
cells and inactivate respiratory enzymes, increase the production of reactive oxygen species (ROS), halt the production of 
ATP, react with phosphorus and sulphur in DNA to block replication, halt cell division, and denature ribosome, inhibiting 

Figure 7 Observable clear zones produced by green synthesised AgNPs and N. procumbens extract against cultured pathogens: (A) gram-positive and gram-negative 
bacteria and (B) fungi evaluated by agar well diffusion assay.

Table 2 The Measurement of Diameter (mm) of the Zone of Inhibition at 
Different Concentrations of Synthesized AgNPs Against Different Fungal Strains

Concentration of AgNPs (µL) A.alternata Trichoderma F. oxysporum

1000 18.33±0.577c* 30.33±0.577c* 25.00±1.00c*

500 7.33±0.577b* 15.00±0.00b* 18.33±0.577b*

N. procumbens extract 2.67±0.577a* 8.67±0.577a* 13.33±1.007a*

Notes: There is a significant (p≤0.05) difference between the treatments for each fungal strain, as shown 
by using different letters (a, b, or c). (*) indicates a significant (p≤0.05) difference within different fungi 
strains for each concentration.
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protein synthesis. The second mode of inhibition involves the accumulation of AgNPs in the pits on the cell wall after 
they have penetrated the cell membrane, therefore modifying or destroying the structure of the cell wall and the cell 
membrane and causing the demise of the cell components. Gram-negative bacteria are more susceptible to AgNPs than 
Gram-positive bacteria due to variations in their cell wall composition. Gram-positive bacteria, which have more 
peptidoglycan in their cell membrane, have a more substantial cell wall than Gram-negative bacteria. Because of their 
thicker cell walls, gram-positive bacteria may be less susceptible to the inhibiting effects of AgNPs.58–61

MTT Assay Results
The inhibitory effect of the N. procumbens extract without and with NPs has been observed in vitro on cervix 
adenocarcinoma (Hela) and breast adenocarcinoma (MCF-7) cancer cells using the MTT test. Lower concentrations 
of the NPs (5–10µL) slightly reduced cell viability in both cells as compared to extract as a control (Figure 8). At higher 
concentrations (15–100µL) of plant extract with NPs, we decreased cell viability by more than 50% in both cells. The 
inhibition of cell viability is concentration dependent in both cells. Both plant extracts and synthesized nanoparticles 
showed more toxicity on MCF-7 cells than on Hela cells (Figure 8).

In most cases, the viability of the Hela and MCF-7 cells was reduced by nanoparticles in a dose-dependent manner, as 
depicted in Figure 9. In particular, at a concentration of 20 L, the treatment of both cell line cultures with extract did not 
induce cell death; however, it remarkably decreased cell viability for as-prepared AgNPs at 5 μL and higher doses, as 
illustrated in Figure 8. Interestingly, under the conditions tested, the cytotoxic impact of AgNPs was found to be the 
greatest among the two cell lines studied. Despite the lack of significant differences between Hela and MCF-7 cells, the 
extract was not toxic to the cells. The tested NPs showed more toxicity in MCF-7 cells than Hela (Figure 8). AgNPs 
synthesised from Beta vulgaris extract were previously reported to reduce cell viability when applied to the MCF-7, 
A549, and Hep2 cell lines in a dose-dependent manner. When leaf extract of Andrographis echioides was used to create 
AgNPs, they were tested against MCF-7 breast cancer cells, with the same outcomes.62,63

Several studies have shown that AgNPs can inhibit the growth of the human cancer cell lines MCF-7 and Hela 
including an extract from the Eriobotrya japonica plant.64 Similar potent cytotoxicity and anti-proliferative activity were 
observed in AgNPs induced by Acer oblongifolium extract in MCF-7 and Hela cell lines.65

Figure 8 Cytotoxicity effect of N. procumbens extract without and within AgNPs in Hela and MCF-7 cell lines.
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Multiple studies have demonstrated the cytotoxic actions of metal NPs, but the intricate process by which they 
interact with live cells remains unclear, as shown in Figure 9. The ability of NPs to discharge metal ions into the cytosol 
and nucleus is well established. These ions quickly bind to the nitrogen bases and phosphate groups of DNA and the 
functional groups of proteins inside the cell, limiting their activity. This includes proteins that are inappropriately 
produced during cancer. However, it has been suggested that oxidative stress brought on by metal NPs is a critical 
component of their anticancer action. Noble metal NPs may cause a Fenton-like reaction, leading to reactive oxygen 
species, lipid and protein oxidation, DNA damage, and the activation of apoptosis, necrosis, and autophagy pathways, all 
of which lead to cell death.66–68

Conclusions
The following conclusions have been drawn from results and discussion. The produced AgNPs’ UV-Vis spectra revealed 
a single absorption at 422 nm, suggesting that these nanoparticles are isotropic. The emergence of the transmission peak 
in the FTIR spectrum indicates the presence of the metal-oxygen (M-O) stretching vibration mode associated with Ag. 
The suspended particles’ size distribution is bimodal, according to the DLS analysis, with the Z-average particle size 
measuring 93.38 nm and the most noticeable intensity peak occurring at 104.3, 32.99 nm.

According to TEM investigation, the green synthesised AgNPs containing N. promethens have a structural morphol-
ogy that clearly shows anisotropy—non-spherical forms seen in nature, such as prisms, rods, and cubes.

The EDX spectral peak of elementary silver is determined to be at 3 keV. These results are consistent with the EDX 
spectrum, which shows the presence of additional metals including elemental silver throughout synthesis. The anti-
microbial and cytotoxic properties of green-synthesized AgNPs are investigated. Many documented inhibitory mechan-
isms have been credited to AgNPs’ capacity to produce silver ions, which are toxic to microbial cells. Furthermore, 
biosynthesized Ag-NPs exhibit increasing antifungal efficacy with dose.
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Figure 9 Mechanism of antimicrobial activity and cytotoxic action of AgNPs shown schematically.
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