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����������
�������

Citation: Nowak, A.;

Przywara-Chowaniec, B.;

Damasiewicz-Bodzek, A.; Blachut, D.;

Nowalany-Kozielska, E.;
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Abstract: Systemic lupus erythematosus (SLE) is characterized by abnormal action of the immune
system and a state of chronic inflammation. The disease can cause life-threatening complications.
Neoepitopes arising from interdependent glycation and oxidation processes might be an element of
SLE pathology. The groups included in the study were 31 female SLE patients and 26 healthy female
volunteers (the control group). Blood serum samples were obtained to evaluate concentrations of
advanced glycation end-products (AGEs), carboxymethyllysine (CML), carboxyethyllysine (CEL),
pentosidine, and a soluble form of the receptor for advanced glycation end-products (sRAGE).
Compared to a healthy control group, the SLE patients exhibited a higher concentration of AGEs
and a lower concentration of sRAGE in serum. There were no statistically significant differences
in serum CML, CEL, and pentosidine concentrations between the groups. Therefore, SLE patients
could be at risk of intensified glycation process and activation of the proinflammatory receptor
for advanced glycation end-products (RAGE), which could potentially worsen the disease course;
however, it is not clear which compounds contribute to the increased concentration of AGEs in the
blood. Additionally, information about the cigarette smoking and alcohol consumption of the study
participants was obtained.

Keywords: systemic lupus erythematosus (SLE); advanced glycation end products (AGEs); car-
boxymethyllysine (CML); carboxyethyllysine (CEL); pentosidine; soluble receptor for advanced
glycation end-products (sRAGE)

1. Introduction

Systemic lupus erythematosus (SLE) is a widely studied disease; however, its direct
causes are unknown. The occurrence and prevalence of SLE vary among different popula-
tions and are much higher for women than for men [1,2]. The role of female reproductive
hormones in the development of the disease is being studied [3]. Polymorphisms and
mutations in numerous gene loci are linked to the etiopathogenesis of SLE, e.g., the genes
of the major histocompatibility complex, complement system, nucleic acid metabolism,
and the receptor for advanced glycation end-products (RAGE) [4,5]. Airborne pollutants
and cigarette smoke are examples of environmental factors suspected to cause SLE devel-
opment [6,7]. The simultaneous presence of genetic, epigenetic, and environmental factors
most likely leads to the development of SLE [8].

The characteristic feature of SLE is the presence of autoantibodies, especially antin-
uclear antibodies such as anti-dsDNA [9,10]. Therefore, the disease is characterized by
the abnormal action of the immune system and a state of chronic inflammation. Immune
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complexes are deposited in various tissues [9,11]. SLE contributes to life-threatening
complications, such as renal failure, seizures, and accelerated arteriosclerosis [12,13].

Chronic inflammation in SLE appears to be linked to an intensified glyco-oxidation
process (also known as the glycation process) [11,14]. Advanced glycation end-products
(AGEs) are formed during this complex reaction and can be recognized by the immune
system as neoepitopes [15–17]. The initial phase of glyco-oxidation begins with the reaction
of a carbonyl compound (e.g., glucose or other monosaccharides, glyoxal, methylglyoxal)
and an amino group (of either free amino acids or a protein). Subsequently, numerous
reactions may occur, such as rearrangement, cross-linking, cyclization, isomerization, and
cleavage [18,19]. Oxidative conditions and carbonyl stress promote AGEs formation [20].
Various AGEs are found in body fluids, cells, and tissues of human subjects, including
carboxymethyllysine (CML), carboxyethyllysine (CEL), pentosidine, and many more [18].
Studies show a prominent relationship between enhanced AGEs formation and various
diseases, including systemic lupus erythematosus (SLE) [20–26]. Current findings on the
concentrations of AGEs in SLE patients are sparse. To date, the total concentration of AGEs
in blood samples has been evaluated in two studies (using ELISA assay) [14,22]. Two
more studies used the skin autofluorescence method [11,27]. Only one study included a
group consisting solely of women (n = 9) [11]. Regardless of the method used, increased
concentrations of AGEs among SLE patients compared to the healthy control group were
noted in all these studies [11,14,22,27].

Unfortunately, it is not known which specific compounds contribute to the overall in-
crease of AGEs concentration in SLE patients. Despite the wide range of compounds partic-
ipating in the glycation process, there are few available studies focused on the evaluation of
concentrations of individual compounds in SLE patients. These include studies concerning
CML (n = 9), CEL (n = 9 and n = 40), pentosidine (n = 37 and n = 82), fructosamine (n = 37),
and an unidentified product of ribose and protein reaction (n = 40) [11,14,21,22,27,28].
A marginal increase in fructosamine concentration and contradictory results related to
pentosidine concentration in the blood serum of SLE patients have been noted so far [14,28].

Advanced glycation end-products can affect the structure of proteins (through covalent
peptide cross-linking) [29] and activate RAGE [30–32]. These phenomena cause impairment
of cells, extracellular matrix, and tissue functions [29–32]. It is suggested that RAGE plays
a role in nucleic acid recognition by the immune system [16]. Activated RAGE induces a
proinflammatory response [15]. A soluble form of RAGE (sRAGE) binds to the ligands of
RAGE, preventing activation of RAGE and therefore counteracting inflammation and cell
death [33].

Therefore, this study aimed to evaluate concentrations of total AGEs, CML, CEL, pen-
tosidine, and sRAGE simultaneously in serum samples of women suffering from SLE and
compare them to a healthy control group. This approach increased the homogeneousness
of the examined groups and enabled analysis of correlations between these parameters and
clinical parameters.

2. Materials and Methods
2.1. Human Subjects

The subjects of the study were recruited between October 2017 and October 2018
during routine cardiological checks at the 2nd Department of Cardiology, Faculty of
Medical Sciences in Zabrze, Medical University of Silesia. The SLE patients group consisted
of 31 adult female patients who fulfilled the 1997 American College of Rheumatology
(ACR) SLE classification criteria. Patients with diabetes and/or abnormal concentrations of
glucose in their blood were excluded from the study. A total of 26 age-matched, healthy
female volunteers (the control group) were included in the study.

Blood samples were collected from patients on fasting and were allowed to clot at
room temperature. Blood serum was obtained by centrifugation. Samples were stored at
−80 ◦C until used. In addition, an original questionnaire was used to obtain information
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about exposure to cigarette smoke, smoking habits, alcohol use habits, and medication
used against SLE.

The Local Bioethics Committee of the Medical University of Silesia agreement was
obtained before the study.

2.2. ELISA Assay

The enzyme-linked immunosorbent assay (ELISA) method was used to evaluate
concentrations of AGEs, CML, CEL, pentosidine, and sRAGE in the samples. The following
ELISA kits were used during the study:

• OxiSelect™ Advanced Glycation End Product (AGE) Competitive ELISA Kit, cata-
logue number STA-817 (Cell Biolabs, Inc., San Diego, CA, USA) sensitivity 0.39 µg/mL;
precision measured as coefficient of variation < 5% (intra-assay), <10% (inter-assay);

• OxiSelect™ N-epsilon-(Carboxymethyl) Lysine (CML) Competitive ELISA Kit, cata-
logue number STA-816 (Cell Biolabs, Inc., San Diego, CA, USA) sensitivity 0.05 µg/mL;
precision measured as coefficient of variation < 6% (intra-assay), <10% (inter-assay);

• OxiSelect™ N-epsilon-(Carboxyethyl) Lysine (CEL) Competitive ELISA, catalogue
number STA-813 (Cell Biolabs, Inc., San Diego, CA, USA) sensitivity 0.1 µg/mL;
precision measured as coefficient of variation < 6% (intra-assay), <10% (inter-assay);

• PTD (Pentosidine) ELISA Kit, catalogue number E-EL-0091 (Elabscience, Houston,
TX, USA) sensitivity 0.47 ng/mL; precision measured as coefficient of variation < 6%
(intra-assay and inter-assay);

• RayBio® Human RAGE ELISA Kit, catalogue number ELH-RAGE (RayBiotech, Nor-
cross, GA, USA) sensitivity 3 pg/mL; precision measured as coefficient of varia-
tion < 10% (intra-assay), <12% (inter-assay).

The protocols delivered by the manufacturers were carefully followed to obtain the
results. The measurements of absorbances were taken with Power Wave XS (BioTek,
Winooski, VT, USA) microplate spectrophotometer, wavelength set to 450 nm. The data
were processed using KCJunior, version 1.41.3 (BioTek, Winooski, VT, USA) software.

Statistical analysis was performed with STATISTICA for Windows, version 13 (Stat-
Soft) software. The distribution of data was measured using the Shapiro–Wilk test. Inde-
pendent data between the group of SLE patients and the control group were compared
using non-parametric Kolmogorov–Smirnov and Mann–Whitney U tests. To explore the
statistical dependence between two variables, Spearman’s rank correlation coefficients
were calculated. p < 0.05 was considered statistically significant.

3. Results
3.1. Characteristics of the Human Subjects

The basic characteristics of the groups included in the study are shown in Table 1. All
the SLE patients and control group members were women of Caucasian descent.

Table 1. Characteristics of the groups included in the study.

Parameter SLE Patients
(n = 31)

Control Group
(n = 26)

Statistical
Significance

mean age (±SD) (years) 56.39 (±11.36) 51.88 (±11.05) p = 0.14
current or past regular smokers % (n) 54.84 (17) 26.92 (7) p < 0.05
mean time of smoking (±SD) (years) 23.00 (±11.16) 16.71 (±10.61) p = 0.31

passive smokers % (n) 41.94 (13) 26.92 (7) p = 0.24
drinking alcohol % (n) 61.29 (19) 84.62 (22) p = 0.05

mean disease duration (±SD) (years) 12.61 (±8.49) NA NA
creatinine (µmol/L) 69.44 (±19.76) NA NA

mean GFR (±SD) (mL/min/1.73m2) 91.17 (±19.86) NA NA
mean SLEDAI-2K score (±SD) 11.45 (±7.28) NA NA
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Table 1. Cont.

Parameter SLE Patients
(n = 31)

Control Group
(n = 26)

Statistical
Significance

medication for SLE
receiving any medication or SLE % (n) 90.32 (28) NA NA

antimalarial % (n)
(chloroquine, hydroxychloroquine) 22.58 (7) NA NA

corticosteroids % (n)
(methylprednisolone, prednisone) 35.48 (11) NA NA

antimetabolites % (n)
(azathioprine, methotrexate) 45.16 (14) NA NA

manifestations incidence since the time of diagnosis
rash % (n) 93.55 (29) NA NA

photosensitivity % (n) 80.65 (25) NA NA
oral ulcers % (n) 25.81 (8) NA NA

nonerosive arthritis % (n) 90.32 (28) NA NA
pleuritis or pericarditis % (n) 0 (0) NA NA

renal disorder % (n) 6.45 (2) NA NA
neurologic disorder % (n) 3.23 (1) NA NA

hematologic disorder % (n) 45.16 (14) NA NA
cardiovascular disorder % (n) 80.65 (25) NA NA

immunological disorder
/ANA % (n) 93.55 (29) NA NA

ANA—antinuclear antibodies; GFR—glomerular filtration rate; NA—not applicable or not available; SD—standard
deviation; SLEDAI-2K—Systemic Lupus Erythematosus Disease Activity Index 2000.

3.2. ELISA Assay Results

There were statistically significant differences between AGEs and sRAGE concentra-
tions in the SLE patients and the control group. AGEs concentration was higher in the SLE
patients group (p < 0.01), as shown in Table 2 and Figure 1. The sRAGE concentration was
lower in the SLE patients group (p < 0.05), as shown in Table 2 and Figure 1. Serum CML,
CEL, and pentosidine did not exhibit a statistically significant difference when comparing
the SLE patients to the control group (Table 2, Figure 1). However, the difference in pento-
sidine concentration in serum showed a trend toward significance and a tendency to be
higher in the control group.

Table 2. Results of the ELISA assay and their statistical significance.

Mean Concentration
(±SD)

SLE Patients
(n = 31)

Control Group
(n = 26)

Statistical
Significance

AGEs (µg/mL) 30.51 (±6.80) 24.02 (±8.50) p < 0.01
CML (µg/mL) 0.31 (±0.09) 0.30 (±0.16) p = 0.65
CEL (µg/mL) 17.73 (±10.66) 19.11 (±7.94) p = 0.35

pentosidine (ng/mL) 4.54 (±1.84) 6.71 (±3.360) p = 0.06
sRAGE (pg/mL) 36.36 (±15.71) 47.18 (±19.41) p < 0.05

SD—standard deviation.

3.3. Correlation of the Data

There were no statistically significant correlations between the examined parameters
in the control group. However, in the SLE patients group, there was a moderate positive
correlation between the CEL and the pentosidine serum concentrations (R = 0.53, p < 0.01).
The AGEs concentration correlated weakly and positively with smoking duration measured
in years (R = 0.35; p < 0.05) but did not correlate with the age of all study participants
analysed collectively (R = 0.25; p = 0.11). None of the examined parameters correlated with
creatinine concentration, GFR, or SLEDAI-2K score (p > 0.05).
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4. Discussion

As shown in Table 2, the concentration of serum AGEs is higher in the SLE patients when
compared to the control group. These results agree with the available references [11,14,22,27].

As shown in Figure 2, CML and CEL are formed in the reaction of lysine with glyoxal
and methylglyoxal, respectively. There are multiple sources of glyoxal and methylglyoxal
in vivo: lipid peroxidation, oxidation of carbohydrates and ascorbic acid, degradation of
glycated proteins, and metabolism of amino acids and ketone bodies [18,19,34]. There
are two known pathways of pentosidine formation in vivo. The compound is formed
during fragmentation of Amadori products arising from the reaction of glucose and ly-
sine or during rearrangement of Lederer’s pentosone arising from pentose and lysine in
oxidative conditions [18]. Lipid peroxidation and oxidative stress are intensified in SLE
patients [35–37].
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(bold text). GALA—glycolic acid lysine amide, GOLA—glyoxal lysine amide, GOLD—glyoxal lysine
dimer, MOLD—methylglyoxal lysine dimer.

Therefore, it could be hypothesized that concentrations of particular AGEs are in-
creased in the blood samples of the SLE patients. In fact, there were no statistically
significant differences in concentrations of serum CML, CEL, and pentosidine between
the groups. What is more, pentosidine concentration exhibited a near-significant tendency
to be lower in the serum samples of the SLE patients. In two previous studies, no differ-
ence in pentosidine concentrations between the SLE patients and the healthy control was
noted [21], and a higher concentration of pentosidine in the SLE patients was noted [14].

Considering the increase in total AGEs concentration in the serum samples, it is unclear
which compounds contribute to this phenomenon. CML and CEL concentrations did not
reflect the total concentration of AGEs in blood, as suggested by some authors [11]. These
compounds cannot be used as markers of the glycation process in SLE patients, despite
belonging to AGEs. Pathways leading to other AGEs, such as glycolic acid lysine amide
(GALA), glyoxal lysine amide (GOLA), glyoxal lysine dimer (GOLD), and methylglyoxal
lysine dimer (MOLD), should be investigated [18].

The concentration of CEL in the serum of the SLE patients correlates moderately
and positively with the concentration of pentosidine. However, no common biosynthesis
pathway for these two compounds is known (Figure 2). The theoretical possibility of the
formation of pentosidine with methylglyoxal as substrate was described. Methylglyoxal is
also a substrate of CEL [38]. It was noted that incubation of myoglobin with methylglyoxal
resulted in the increased formation of pentosidine [39].

In this study, a decrease in sRAGE concentration in the serum samples of women
suffering from SLE compared to the control group was observed. These results agree
with most of the available data on the subject [11,14,22,40–46]. There are two possible
explanations for the simultaneous decrease in the sRAGE concentration and increase in
AGEs concentration. The deficit of sRAGE could be a primary phenomenon, allowing
more AGEs to stay unbound in body fluids. It is also possible that the deficit is a secondary
phenomenon, as the amount of sRAGE could be depleted by excessively generated AGEs



Cells 2021, 10, 3523 7 of 11

or other ligands of this receptor. Regardless of the cause, the deficit of sRAGE might
contribute to more frequent interactions between AGEs and transmembrane RAGE. It was
observed that sRAGE administered in the murine model may prevent the activation of
proinflammatory pathways [47]. Importantly, RAGE is linked to the process of nucleic
acid internalization and immune response to nucleic acids. RAGE-deficient mice showed
reduced inflammatory response to DNA in lungs [16]. SLE is characterized by the presence
of autoantibodies, including antibodies against dsDNA [9,10].

In this study, 80.65% of the SLE patients suffered from cardiovascular disorders. Hy-
pertension was the most prevalent (56.25%; n = 18), followed by coronary artery disease
(15.63%; n = 5), valvular heart disease (12.50%; n = 4), and arteriosclerosis (9.38%; n = 3).
There were single cases of aneurysm, vertebrobasilar insufficiency, hypotension, heart
failure, venous insufficiency, and arrhythmia present in the group. Interestingly, the preva-
lence of hypertension varies in different studies, ranging from 9.4% to 77% in SLE patients.
The lowest prevalence reported in a group consisting of 100% female SLE patients is 29.7%.
These data refer to patients younger than the patients included in our study [48]. Cardio-
vascular disorders are a common implication of SLE, and the disease greatly increases
the risk of cardiovascular events. Arteriosclerosis is accelerated in SLE and present in
28–40% of SLE patients, while abnormal perfusion in myocardium is present in 38% of the
patients [48,49]. It should be noted that the major limitation of the study was the size of
the examined groups, especially in the case of the evaluation of smoking habits. The high
prevalence of cardiovascular disease could have affected the results too.

Among the women suffering from SLE, more patients declared smoking cigarettes
regularly (at least one cigarette per day) in the past or present (Table 1), when compared
to the healthy control. Interestingly, only in the SLE patient group were there persons
(n = 2) who reported smoking more than 10 cigarettes per day (Figure S1). Considering the
known role of smoking in the etiopathogenesis of SLE, this is a disadvantageous situation.
What is more, tobacco smoke increases skin autofluorescence, which is a marker of AGEs
accumulation in skin [50]. There was no difference between the groups in the number of
persons declaring passive smoking, nor in smoking duration. However, it should be noted
that there were few smokers in the healthy control group, which limits the significance
of the statistical analysis. In the study, cumulative analysis of all participants in both
groups showed a weak, positive correlation between the concentration of AGEs in serum
and duration of smoking (but no correlation between AGEs concentration and age of the
participants). Therefore, smoking might contribute to the increased accumulation of AGEs.
Tobacco smoke has an undoubtedly negative impact on the organism and is linked to the
formation of reactive oxygen species that can modify the structure of nucleic acids [51].
Additionally, concentrations of DNA oxidative damage markers are increased in patients
with SLE [52]. Tobacco smoke enhances the expression of RAGE in pulmonary epithelia
and causes an increase in amount of its ligands in mice. Simultaneous exposition to smoke
and AGEs disrupts intracellular signalling pathways [53].

Fewer members of the SLE patients group reported drinking alcohol than of the
healthy control. However, this difference is situated at the threshold of statistical sig-
nificance (Table 1). Some studies suggest that moderate alcohol consumption might be
protective against SLE, while others do not agree with this statement [54–57]. Considering
the intake of medication against SLE by the majority of the patients and inconclusive data
about the link between alcoholic beverages and the risk of SLE, alcohol consumption is
not recommended.

There is a clear relationship between glycation and oxidation processes [18,20]. The
chronic inflammation present in SLE enhances both processes, resulting in the formation
of various AGEs. Environmental factors might influence the oxidative conditions in vivo
and affect the glycation process as well. Unfortunately, further evaluation of glycation
pathways in patients suffering from SLE is needed. It is not known which exact compounds
contribute to the increase in concentration of total AGEs in the blood or which ones could
be considered potential markers of the glycation process in SLE. Due to the heterogeneous
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nature of AGEs and the limitations of available analysis techniques, currently, there are no
standardized procedures. Thus, the use of AGEs in diagnostics is limited [58]. A study on
precursors of AGEs in SLE patients conducted by our team is in progress.

5. Conclusions

In conclusion, women suffering from SLE are at risk of intensified glycation and
exhibit a deficiency in sRAGE. There were no statistically significant differences between
the groups in blood concentrations of CML, CEL, and pentosidine. Smoking might affect
the glycation process, and smoking cessation is advised in SLE patients.
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