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Abstract

Bruton's tyrosine kinase inhibitors (BTKi) have revolutionized the treatment of B‐cell
lymphoma (BCL). These drugs interferewith themechanisms underlyingmalignant B‐
cell pathophysiology, allowing better drug response as well as low toxicity. However,

these multiple mechanisms also lead to drug resistance, which compromised the

treatment outcome and needs to be solved urgently. This review focuses on genomic

variations (such as BTK and its downstream PCLG2mutations as well as Del 8p, 2p+,

Del 6q/8p, BIRC3, TRAF2, TRAF3, CARD11, MYD88, and CCND1 mutations) and

related pathways (such as PI3K/Akt/mTOR, NF‐κB, MAPK signaling pathways,

overexpression of B‐cell lymphoma 6, platelet‐derived growth factor, toll‐like re-

ceptors, and microenvironment, cancer stem cells, and exosomes) involved in cancer

pathophysiology to discuss the mechanisms underlying resistance to BTKi. We have

also reviewed the newly reported drug resistance mechanisms and the proposed

potential treatment strategies (the next‐generation BTKi, proteolysis‐targeting
chimera‐BTK, XMU‐MP‐3, PI3K‐Akt‐mTOR pathway, MYC or LYN kinase inhibitor,

and other small‐molecule targeted drugs) to overcome drug resistance. The findings
presented in this review lay a strong foundation for further research in this field.
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1 | INTRODUCTION

Bruton's tyrosine kinase (BTK) is a non‐receptor tyrosine kinase of

TEC family and plays a crucial role in amplifying the B‐cell antigen
receptor (BCR) signaling pathway, which is indispensable for B‐cell
development and maturation.1,2 Among the approaches available

for targeting the BCR pathway, BTK inhibitors (BTKi) are regarded as

promising and advanced therapeutic agents for B‐cell lymphomas
(BCL), including chronic lymphocytic leukemia/small lymphocytic

lymphoma (CLL/SLL), mantle cell lymphoma (MCL), diffuse large B‐
cell lymphoma (DLBCL), and Waldenström's macroglobulinemia

(WM).3 Ibrutinib, a first‐generation BTKi, can block the downstream

signaling of BCR by covalently binding to the BTK C481 residue

(Figure 1).4,5 As a first‐line treatment for CLL/SLL, ibrutinib has

demonstrated good safety profile and efficacy, especially in high‐risk
patients.6 However, with the widespread use of targeted drugs, drug

resistance has become a major problem. Although next‐generation
BTKi such as acalabrutinib, zanubrutinib, tirabrutinib, and orelabru-

tinib show greater BTK selectivity and less off‐target toxicity, they
cannot mitigate development of resistance to ibrutinib.7 Therefore,

research on the mechanisms underlying BTKi resistance and the se-

lection of appropriate rescue treatments to achieve remission,

especially minimal residual disease (MRD) negative, are of paramount

importance.
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2 | TREATMENT STATUS OF BTKi IN B‐CELL
LYMPHOMA

In a study of ibrutinib monotherapy for treatment‐naïve (TN) or re-
fractory (R/R) CLL/SLL patients, the overall response rate (ORR) was

87% for TN patients and 89% for R/R patients, and the five‐year
progression‐free survival (PFS) rates were 92% and 44%, respec-

tively.8 These results suggested sustained efficacy and good tolera-

bility of ibrutinib. In another study, poor prognostic factors such as

del(11q), TP53 mutation, and del(17p) were found not to influence

the efficacy of ibrutinib.9 Zanubrutinib also showed an ORR of 92.2%

and 96% in TN and R/R CLL/SLL, respectively.10,11 The clinical out-

comes of BTKi in BCL are presented in Table 1.

However, despite exposure to targeted drugs, disease progres-

sion is inevitable in several cases. Among 202 CLL patients who

received ibrutinib, 32% developed progressive disease, of which 15%

developed Richter transformation (RT).23 Among 97 R/R MCL pa-

tients treated with ibrutinib, 35% developed primary resistance,

while 17.5% developed acquired resistance.24 Clinical studies have

shown that within four weeks of ibrutinib withdrawal, the condition

of 25% patients deteriorated rapidly, and the median overall survival

(OS) was only 2.9 months.23,25,26 Thus, it is urgent to understand the

mechanisms underlying BTKi resistance and seek better treatments.

3 | GENETIC MECHANISMS UNDERLYING BTKi
RESISTANCE

Whole‐exome sequencing showed that 80% of CLL patients with

acquired resistance to ibrutinib harbor BTK and phospholipase C

gamma 2 (PLCG2) mutations27; among them, the BTK C481S point

mutation is the most common and imparts resistance by interfering

with the reversible combination of ibrutinib and BTK protein. In

addition, BTK mutations such as C481F/Y/R, T474I/S, L528W,

T316A, and V537I were also observed in patients who developed

ibrutinib resistance.28 Estupinan et al.29 confirmed that double mu-

tations of BTK gatekeeper residues such as T474I/C481S, T474M/

C481S, and T474M/C481T cause super resistance to ibrutinib, aca-

labrutinib, and zanubrutinib. BTK Leu528Trp mutation was also

involved in zanubrutinib resistance.30 S707Y, R665W, and L845F

mutations in PLCG2 had the effect of activating BCR‐mediated
downstream signaling independent of BTK.31 Furthermore, Liu

et al. reported that the activation of mutant PLCG2 protein was

functionally dependent on LYN and SYK kinases. LYN, SYK, and

PLCG2 formed a BTK bypass. Therefore, targeting LYN and SYK ki-

nases could overcome ibrutinib resistance.32 In addition, small

duplicate deletions in the C2 terminal domain of PLCG2 may also be

related to BTKi resistance, and a reference for clinical resistance of

unknown causes.27,33

In addition, there are other genomic variations related to BTKi

resistance. Burger et al. found clonality of del(8p) in ibrutinib‐
resistant patients.34 Although del(8p) clone declined slowly after

initial ibrutinib treatment, it synergized with additional driver mu-

tations, such as EP300, EIF2A, SF3B1, and MLL2 to promote the tu-

mor cell proliferation by providing a bypass signaling independent of

BTK, and ultimately leading to ibrutinib resistance.33,34 Tumor ne-

crosis factor‐related apoptosis‐mediated ligand receptor (TRAIL‐R)
gene is in the 8p region and tumor apoptosis induced by TRAIL

particularly depends on the dose of TRAIL‐R.35 The level of TRAIL‐R
protein decreased significantly in patients with del(8p)27,34 Addi-

tionally, absence of TRAIL‐R resulted in insensitivity to TRAIL‐
induced cell death.34 When del(8p) CLL cells were released from

F I GUR E 1 Bruton tyrosine kinase drives
the cascade of B‐cell antigen receptor signaling
pathways, leading to the activation of
downstream NF‐κB, MAPK, and PI3K pro‐
survival pathways
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lymph node (LN) to peripheral blood (PB), they were highly insen-

sitive to TRAIL, and subsequently caused unbridled tumor cell

growth.27 2p+ was also related to a dismal outcome in CLL pa-

tients.36 Moreover, the overexpression of exportin‐1 (XPO1) could

be induced by 2p+. Upregulation of XPO1 expression promoted

tumor cell proliferation by regulating cytoplasmic localization and

degrading tumor suppressor factors (such as FOXO and p53).36,37 In

MCL, the mutated BIRC3, TRAF2, and TRAF3 proteins activated the

MP3K14 enzyme, which in turn activated the alternative NF‐κB
pathway, leading to uncontrolled cell growth and suppression of

apoptosis38,39 Mutations in the NF‐κB pathway regulator, CARD11,

were found in CLL, MCL, and WM patients who developed ibrutinib

resistance.40–42 Zhang et al.43 found that the tumor cells derived

from activated B cell‐like DLBCL (ABC‐DLBCL) patients who devel-

oped ibrutinib resistance carried the MYD88 mutation and wild‐type
CD79A/B. Jimenez et al.44 found a 6q or 8p homozygote deletion in

WM patients with the MYD88 L265P mutation. These patients

received ibrutinib and experienced disease progression. However,

the key negative regulators and apoptosis signals of BTK, MYD88,

and NF‐κB were located at 6q and 8p. In addition, they confirmed

that ubiquitin ligase, toll‐like receptor (TLR), and myeloid differen-

tiation factor 88 (MYD88) pathway regulators are involved in ibru-

tinib resistance.44,45 CXCR4 is a transmembrane chemokine

receptor. After binding to CXCL12, it activates Akt and ERK path-

ways through the G protein to mediate lymphocyte migration and

homing. Cao et al.43,46 reported that CXCR4 WHIM‐like mutations

were observed in 30% of WM patients, the most common of which

was the CXCR4 S338X mutation. Compared with the CXCR4 wild‐
type protein, the mutant CXCR4 S338X protein could significantly

activate Akt and ERK pathways, reduce cell apoptosis, and enhance

cell viability. Mutation details of genes associated with BTKi resis-

tance are presented in Table 2.

4 | DE‐REGULATED PATHWAYS ASSOCIATED
WITH BTKi RESISTANCE

4.1 | Signaling and kinase‐related resistance
mechanisms

More than 20% of ibrutinib‐resistant patients do not carry any ge-

netic variations, indicating that there are other mechanisms that

allow tumor cells to partially adapt to BTKi. Following signaling and

kinase‐related resistance mechanisms have been proposed: (1) Acti-

vation of the PI3K pathway plays a crucial role in protecting mature B

cells from apoptosis in the context of BCR deficiency.47,48 Activated

Akt protein together with deregulated phosphatase and tensin ho-

molog deleted on chromosome 10 (PTEN) and forkhead box class O

3a (FOXO3a) proteins were observed in ibrutinib‐resistant CLL,

DLBCL, and MCL.5 High expression of Akt directly phosphorylates

TAB L E 1 Clinical outcomes of BTKi in B‐cell lymphoma

Drug B‐cell lymphoma Enrol patients Status of disease Clinical outcome Reference

Ibrutinib CLL/SLL 85 R/R ORR:71%, PR:20% 12

136 TN ORR:92%, CR:30% 6

MCL 111 R/R ORR:68%, CR:21% 13

WM 63 R/R ORR:91%, MRR:73% 14

ABC‐DLBCL 38 R/R ORR:37% 15

Acalabrutinib CLL/SLL 61 R/R ORR:95% 16

MCL 124 R/R ORR:81, PR:43% 17

Zanubrutinib CLL/SLL 56 R/R ORR:96% 11

22 TN ORR: 92.2% 11

MCL 37 R/R ORR:87%, CR:30% 18

11 TN ORR:88%, CR:38% 18

WM 31 R/R ORR:92% 19

Tirabrutinib CLL/SLL 28 R/R Objective response:96% 20

MCL 16 R/R ORR:92%, PR:54% 20

WM 18 R/R ORR:94%, MRR:89% 21

9 TN ORR:100%, MRR:89% 21

Orelabrutinib CLL/SLL 80 R/R ORR:93%, PR:65% 22

Abbreviations: ABC‐DLBCL, activated B‐cell‐like diffuse large B‐cell lymphoma; CLL, chronic lymphocytic leukemia; CR, complete response; MCL,

mantle cell lymphoma; MRR, major response rate; ORR, objective response rate; PR, partial response; R/R, relapsed and refractory; TN, treatment naïve;

WM, Waldenström’s macroglobulinemia.
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downstream FOXO3a, leading to its sequestration and deregulation

in the cytoplasm. Hence, less accumulation of FOXO3a in the nuclei

activates the apoptosis‐related genes PTEN and BIM.49 However, the

poor outcome of MCL patients was closely associated with phos-

phorylated cytoplasmic FOXO3a.50 PTEN has the opposite function

of PI3K; it can inhibit Akt activation and prevent signal transmission.

The function of FOXO3a is mediated by nuclear translocation, which

can be regulated by ibrutinib.5 Therefore, exploring the FOXO3a/

PTEN/Akt signaling pathway and its relationship with apoptosis in

ibrutinib‐resistant BCL is significant. (2) The activated mitogen‐
activated protein kinase (MAPK) pathway may also be a compensa-

tory mechanism underlying BTKi resistance. A study reported that

non‐canonical NF‐κB and MAPK pathway may be activated by

CD40L‐CD40 signaling independent of BTK signaling, and subse-

quently lead to ibrutinib resistance.25,51,52 MYC is a transcription

factor downstream of MAPK pathway, and its modulation is impor-

tant in BCL development.53 Compared with ibrutinib‐resistant cell
lines, MYC expression was suppressed in sensitive cell lines.54

Additionally, MYC knockdown significant inhibited the growth of

ibrutinib‐resistant and sensitive cell lines. Therefore, upregulation of
MYC expression may be involved in developing ibrutinib resistance.

(3) Cell cycle defects: CCND1 mutations cause an increase in CCND1

protein levels through a proteolytic defect mechanism that leads to

ibrutinib resistance.55 (4) Upregulation of gene expression: BCL6,

IRF4, CD80, and PRDM1 are the common target genes of miR‐30.56

BCL6 is overexpressed in patients who are unresponsive to ibrutinib.

FX1 (a BCL6 inhibitor) can enhance the sensitivity of BTK C481S

HBL‐1 cells. Therefore, members of BCL6 and miR‐30 families may

be related to ibrutinib resistance in ABC‐DLBCL. The expression of

PDGF in patients with ibrutinib‐resistant DLBCL was significantly

upregulated than that in the sensitive group, whereas downregulated

expression of PDGF could reverse ibrutinib resistance.57 It is specu-

lated that the abnormal expression of PDGF is related to BTKi

resistance. In addition, PDGF can mediate ibrutinib resistance by

upregulating the expression of EGFR in DLBCL.

4.2 | Tumor microenvironment‐related resistance
mechanisms

Tumor cell survival depends on the support of the surrounding tumor

microenvironment (TME) that comprises stromal cells, cytokines, and

growth factors, among other components.58 Integrin β1 is the key

molecule facilitating cell adhesion to the matrix. Zhao et al.59 found

that the integrin β1 receptor is overexpressed in MCL, and its stable

knockdown in ibrutinib‐resistant cells can significantly reduce cell

adhesion, cell survival, and clonal growth. In addition, integrin β1 can
regulate the activation of mTORC2‐Akt signaling. Therefore, the

mutual activation of phosphoinositide 3‐kinase/protein kinase B/

mammalian target of rapamycin (PI3K‐Akt‐mTOR) and integrin β1
signal leads to the interaction between TME and lymphoma, which

facilitates the growth of MCL cells and ibrutinib resistance.59

Jayappa et al. found60 that in CLL and MCL, treatment of cells with

ibrutinib and venetoclax, after coculturing the tumor cells with TME

agonists such as interleukin‐10 (IL‐10), CD40L, and CpG‐ODNs (TLR‐
9 specific agonists), led to the activation of the NF‐κB signaling

pathway (especially alternative NF‐κB). Subsequently, it induced the

expression of the anti‐apoptotic proteins MCL‐1 and BCL‐XL, and led
to the development of resistance to the combination therapy.60 As

part of their payload, exosomes derived from CLL cells carry two

proteins, S100‐A9 and BAG‐6. Compared with patients with indolent
CLL, exosomes derived from advanced CLL patients showed elevated

levels of S100‐A9 and BAG‐6 proteins, which promoted tumor

escape and B‐cell survival.61,62 The non‐malignant cells and matrix

components in the TME play an important role in tumor cell survival,

metastasis, and resistance. Guan et al.63 reported that co‐culture of

TAB L E 2 Mutation details of genes associated with BTKi resistance

Gene Mutation details

BTK Kinase domain: C481S/F/Y/R, L528W, L512M, E513G, F517L, L547P, T474A/S/I in

gatekeeper residue; double variants: T474I/C481S, T474M/C481S, T474M/C481T

SH2 domain: T316A

PLCG2 Auto‐inhibitory domain: Tyr495His

SH2 domain: S707Y, R665W, L845F

BIRC3/TRAF2/TRAF3 BIRC3 E3 ligase domain: S441*, C560S

TRAF2 exon 4: W114*

Del TRAF3

CARD11 Coil‐coiled (cc) domain: G123S, K215M, D230N, D357E

Outside the cc domain: L878F

CCND1 Predominantly in exon 1 Repressor domain and Lxxll motify: E36K, Y44D and C47S

Note: * means nonsense mutation, Del means deletion of chromosome region.

Abbreviations: BTK, Bruton tyrosine kinase; BIRC3, baculoviral IAP repeat containing 3; CARD11, caspase recruitment domain 11; CCND1, cyclin D1;

SH2 domain, Src Homology 2 domain; TRAF2, tumor necrosis factor receptor‐associated factor.

608 - WANG ET AL.



MS‐5 stromal cells and Rec‐1 or Mino MCL cell lines can significantly

reduce the sensitivity of MCL cells to ibrutinib; moreover, after

withdrawing ibrutinib, stromal cells can promote the regrowth of

MCL cells. These results indicate that the interaction between stro-

mal cells and MCL cells promotes drug resistance (Tables 3 and 4 ).

5 | POTENTIAL TREATMENT STRATEGIES FOR
BTKi RESISTANCE

5.1 | Next‐generation BTKi

To overcome BTKi resistance, several new non‐covalent BTKi,

such as LOXO‐305, ARQ531, and XMU‐MP‐3 have been investi-

gated. In a phase 1/2 study, the non‐covalent third‐generation
BTKi, pirtobrutinib (LOXO‐305), inhibited BTK kinase activity. It

was used in CLL/SLL and MCL patients with BTKi resistance.

LOXO‐305 was well tolerated and the ORR was 62% in CLL and

52% in MCL patients.64 ARQ531 is a potent, ATP‐competitive,
non‐covalent inhibitor of BTK. It also could inhibits other kinases,

such as LYN, ERK, and Akt, and does not interact with the BTK,

C481.65 A preclinical study showed that ARQ531 was an effica-

cious inhibitor of the downstream pro‐survival PLCG2 signal

transduction in ibrutinib‐resistant mouse model.65 XMU‐MP‐3 is a

low‐molecular‐weight, non‐covalent BTKi. It inhibited the BTK‐

mediated downstream pathway in ibrutinib‐resistant mouse

model with BTK C481S mutation and blocked phosphorylation of

PLCγ2 in a dose‐dependent manner.28 In addition, fenebrutinib

(GD‐0853) and vecabrutinib are in the early stages of clinical

testing, specifically for treating patients with BTK C481S

mutation.

5.2 | BTK‐PROATC

Proteolysis‐targeting chimera (PROTAC)‐induced degradation of

BTK is highly selective and effective in a mouse model of the

ibrutinib‐resistant BTK C481S mutation.66 PROTAC can use E3

ligase, such as pomalidomide and lenalidomide, as its binding part-

ner to degrade its target proteins and exerts no obvious effects on

other proteins such as ITK, EGFR, and TEC (off‐targets of

ibrutinib).66 The BTK degrader, P13I (pomalidomide E3 ligase), in-

duces significant degradation of wild‐type C481S BTK proteins.66 It

is worth noting that the next‐generation BTK degrader, L18I

(lenalidomide E3 ligase), effectively degrades mutated BTK proteins

and induces rapid tumor regression in BTK C481S xenograft model

with lower toxicity. When combined with LYN, SYK, and the PI3K

inhibitors, L18I exhibits even higher inhibitory activity.67 However,

BTK‐PROTAC may not be able to mitigate BTK‐independent ibru-
tinib resistance.45

TAB L E 3 Genetic mechanisms underlying BTKi resistance and possible treatment strategies

Mutated gene Disease Mechanism Possible treatment strategy References

BTK CLL, MCL, WM Reversible binding BTKi The third‐ generation BTKi, PROTAC‐BTK,
Bcl‐2 inhibitor

28,30,64–67

PLCG2 CLL, MCL, WM Independent of BTK downstream signal activation LYN, SYK inhibitor 27,31,33,41

Del 8p CLL Loss of TRAIL‐R and insensitivity to mediate

apoptosis

Unknown 34,35

2p+ CLL XPO1 overexpression XPO1 inhibitor 36

BIRC3, TRAF2,

DelTRAF3

MCL Activation of NF‐κB pathway MP3K14 inhibitor 38,45

CARD11 DLBCL, CLL,

MCL, WM

Compensatory activation of NF‐κB pathway MALT1 inhibitor 25,38,41,42,68

MYD88mt and

CD79A/Bwt
DLBCL, WM TLR signaling pathway IRAK1/4 inhibitor 43,69–71

Del 6q WM MYD88/NFκB/BTK is up‐regulated, and the

apoptotic signal is missing

Unknown 44,45

Del 8p WM TLR/MYD88 overexpression Unknown 44,45

CXCR4 (S338X) WM AKT and ERK activation Unknown 43,46

CCND1 MCL Cell cycle progression Unknown 55,72

Abbreviations: BIRC3, baculoviral IAP repeat containing 3; BTK, Bruton tyrosine kinase; BTKi, Bruton tyrosine kinase inhibitor; CARD11, caspase

recruitment domain 11; CCND1, cyclin D1; CLL, chronic lymphocytic leukemia; CXCR4, C‐X‐C motif chemokine receptor 4; Del, means deletion of

chromosome region; DLBCL, diffuse large B cell lymphoma; IRAK1/4, Interleukin‐1 receptor‐associated kinase 1/4; MALT1, Mucosa‐associated
lymphoid tissue lymphoma translocation gene 1; MCL, mantle cell lymphoma; MP3K14, mitogen‐activated protein 3 kinase 14; PLCG2, phospholipase C
gamma 2; PROTAC, Proteolysis Targeting Chimera; TLR, Toll‐like receptor; TRAF2, tumor necrosis factor receptor‐associated factor; TRAIL‐R, tumor
necrosis factor‐related apoptosis‐mediated ligand receptor; WM, Waldenström’s macroglobulinemia; XPO1, recombinant exportin 1.
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6 | THE THERAPEUTIC APPROACHES FOR
ACQUIRED BTKi RESISTANCE

6.1 | PI3K‐Akt‐mTOR pathway

The PI3K‐Akt‐mTOR pathway plays an important role in ibrutinib‐
resistant CLL and ABC‐DLBCL. The selective XPO1 inhibitor, seli-

nexor, upregulates FOXO3a expression and acts against Akt to in-

crease the apoptosis of ibrutinib‐resistant cells. Additionally,

selinexor mediated programmed cell death in CLL cells with del(17p)

and unmutated IGHV, but had no effect on non‐leukemic cells.5,36

Jain et al. investigated the upregulated PI3K‐Akt‐mTOR pathway in

ibrutinib‐resistant DLBCL cell lines.84 The PI3Kβ/δ dual inhibitor,

KA2337, reduced the viability of ibrutinib‐resistant cells and down-

regulated the PI3K‐Akt‐mTOR pathway. Additionally, the combina-

tion of KA2337 and chemotherapy drugs also enhanced the

inhibitory effects on ibrutinib‐resistant cells.84 Paul et al.73 found

that PI3Kα and PI3Kδ are overexpressed in ABC‐DLBCL, and both

inhibitors can effectively inhibit the activity of the ibrutinib‐resistant
tumor cells in a mouse model. In a multicenter phase I/Ib study of

ibrutinib combined with umbralisib (second‐generation PI3K inhibi-

tor) for treating R/R CLL and MCL, the ORR of R/R CLL and R/R MCL

patients was 90% and 67%, respectively, and demonstrated good

tolerability, greater response, and lower occurrence of Richter

syndrome.74

6.2 | B‐cell lymphoma 2 (BCL2) inhibitors

BCL2 is an important protein that regulates the apoptotic pathway.

In recent years, the BCL2 inhibitor, venetoclax, has shown significant

antitumor effects in BCL.85 Kanagal‐Shamanna et al. found that

venetoclax can inhibit the tumor clones in CLL patients who devel-

oped resistance.40 Furthermore, in a phase II study, treatment with a

combination of ibrutinib and venetoclax showed encouraging results

in R/R CLL and the ORR and CR rates were 89% and 51%, respec-

tively. The undetectable minimal residual disease (uMRD) rates of PB

and bone marrow (BM) were 53% and 36%, respectively. It is ex-

pected to reach the BM uMRD and even try to stop the drug.86

6.3 | Programmed cell death protein 1/programmed
death‐ligand 1 inhibitors

The programmed cell death protein 1 (PD‐1)/programmed death‐
ligand 1 (PD‐L1)pathway, an important immune checkpoint, plays a

crucial role in the immune regulatory system. The upregulation of

PD‐L1 expression promotes immune escape in BCL.87 Targeting PD‐
L1 reactivated immune function and prevented CLL development in

Eµ‐TCL1 mice.88 In a phase 2 study with nine ibrutinib‐resistant CLL
patients, the ORR for pembrolizumab was 66%.89 Additionally, in a

clinical trial that evaluated the combined administration of nivolumab

and ibrutinib to 23 patients with R/R CLL or RT (12 patients previ-

ously received BTKi), the ORR was 43%.90 These results suggest that

PD‐1/PD‐L1 inhibitors show good efficacy in BTKi resistant CLL or

RT, and may be preferred therapeutic agents for these patients in the

future.

6.4 | Kinase inhibitors

The HSP90 inhibitor, SNX‐5422, mediates tumor cell apoptosis and
downregulates MYC expression. SNX‐5422 monotherapy reduced

tumor burden and improved the OS of Eμ‐TCL1 mice.77 In preclinical

TAB L E 4 De‐regulated pathways associated with BTKi resistance and possible treatment strategies

Resistance mechanism Disease Possible treatment strategy References

PI3K‐Akt pathway activation CLL, MCL, DLBCL PI3K, mTOR or XPO1 inhibitor 5,46,73–75

MAPK pathway activation CLL, MCL, DLBCL MEK inhibitor, BET inhibitor 54,76

Up‐regulation of MYC MCL HSP90 inhibitor 54,76,77

BCL6 overexpression DLBCL BCL6 inhibitor 56

PDGF overexpression DLBCL PDGF/EGFR inhibitor 57

TLR overexpression CLL, DLBCL IRAK1/4 inhibitor 69–71

Integrin β1 mediated adhesive protection CLL, MCL AVL4 inhibitor 59,78

Continuous proliferation of cancer stem cells MCL Wnt pathway inhibitor 79,80

Increased S100‐A9 and BAG‐6 proteins in exosomes CLL Unknown 61

Compensation pathway for energy metabolism CLL Fatty acid oxidation inhibitor (CTP1 inhibitor) 81,82

UPR (unfolded protein) low expression DLBCL 2‐DG 83

Abbreviations: 2‐DG, 2‐deoxy‐D‐glucose; AVL4, integrin very late antigen‐4; BCL6, B‐cell lymphoma 6; BET, bromodomain and extra‐terminal; CLL,
chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; HSP90, heat shock proteins 90; IRAK1/4, Interleukin‐1 receptor‐associated kinase
1/4; MAPK, mitogen‐activated protein kinase; MCL, mantle cell lymphoma; MEK, mitogen‐activated ERK‐regulating kinase; WM, Waldenström’s

macroglobulinemia; XPO1, recombinant exportin 1.
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studies of BCL, voruciclib, a CDK inhibitor, reduced the phosphoryla-

tion of RNApol II by inhibitingCDK9, thereby inhibiting the expression

of MCL‐1 and XIAP. Thus, the combination of voruciclib and ven-

etoclax promotes apoptosis and inhibits tumor cell growth.91–93 TG02

(zotiraciclib) is a multi‐kinase (CDK1, 2, 5, 9) inhibitor and can inhibit
the Lck and Fyn kinases (members of BCR signaling). Moreover, it

blocks the BCR signaling, and inhibits the growth and proliferation of

CLL cells.93 Studies have confirmed that LYN and SYK kinases play

crucial roles in BTK‐bypass pathway. Thus, targeting LYN and SYK can

block the activation of downstream signaling independent of BTK in

ibrutinib‐resistant cell lines.32

6.5 | MALT1 inhibitors

MALT1, a component of the CARD11‐BCL10‐MALT1 (CBM) com-

plex, plays a crucial rule in BCR activation.94 MALT‐1 activity is

upregulated in ABC‐DLBCL and targeting MALT1 significantly in-

hibits the growth of ABC‐DLBCL in vivo.94 Another report from Saba

et al. showed that MI‐2 (MALT1 inhibitor) could inhibit the growth of

CLL cells, indicating that it could be used to overcome BTKi

resistance.68

6.6 | IRAK1/4 inhibitors

IRAK is a kinase that acts upstream of TLR signaling. Dadashian et al.

reported that TLR signaling was upregulated in the LN of CLL pa-

tients compared with that in PB.69 At the same time, the combination

of ibrutinib and IRAK inhibitors could enhance the inhibitory effect of

TLR signaling and mediate CLL cell apoptosis.69,70 MYD88 is a key

molecule involved in IRAK4 kinase‐mediated activation of TLR

signaling, and MYD88 L265P was found in 29% of ABC‐DLBCL
cases.95 Another report indicated that the combination of ibrutinib

and an IRAK inhibitor could inhibit the growth of MYD88 mutated

DLBCL cell lines by blocking the NF‐κB pathway.71

6.7 | Other small molecule targeted drugs

In recent years, inhibition of the bromodomain extra‐terminal (BET)
protein has emerged as a promising option for BCL treatment by

attenuating disease‐relevant gene expression such as MYC and NF‐
κB.96 The BET inhibitor, GS‐5829, can inhibit the key signaling

pathways of BLK, Akt, ERK1/2, and MYC, thereby inhibiting CLL cell

proliferation and inducing tumor cell apoptosis.76 Additionally, BET

proteins targeting PROTAC have shown notable inhibitory effects in

xenograft mouse models of ABC‐DLBCL and ibrutinib‐resistant
MCL.97,98 The survival and homing of tumor cells greatly depend

on the BCR pathway and integrin‐mediated adhesion. Integrin very

late antigen‐4 (VLA‐4) inhibitors can suppress BCR signaling and cell

adhesion, which is a potential therapeutic method.78 Previous studies

have shown that ibrutinib interferes with BCR signaling by inhibiting

fatty acid synthesis.81 The redox balance shifted to nicotinamide

adenine dinucleotide phosphate in ibrutinib‐resistant CLL cells, but

glutamine uptake did not increase, confirming the existence of an

alternative energy metabolism process, that is, fatty acid oxidation.

Carnitine palmitoyltransferase 1 (CPT1) inhibitors can reverse BTKi

resistance by inhibiting the oxidation of fatty acids.82 2‐deoxy‐D‐
glucose (2‐DG) activates the unfolded protein response (UPR) in

cells. Studies have confirmed that UPR expression is significantly

lower in DLBCL ibrutinib‐resistant cell lines. Moreover, the combi-

nation of 2‐DG with ibrutinib significantly reduced tumor cell growth

in a xenograft model.83

6.8 | Target cancer stem cells

Cancer stem cells (CSCs) rely on Wnt, Notch, and other signaling

pathways for self‐renewal.99 However, little is known about CSC

biology and effective therapy regimen for BCL. Mathur et al. found

that in MCL‐derived CSCs, the Wnt pathway is upregulated and

these CSCs are resistant to ibrutinib79; therefore, targeting the Wnt

pathway may be an option to overcome resistance. Wnt inhibitors

such as iCRT14 can eliminate MCL‐initiating cells by blocking the β‐
catenin‐TCF4 transcription complex and further blocking the Wnt

pathway.79

6.9 | BTKi in combination with CD20
immunotherapy

Although targeted drugs have become mainstay of BCL treatment, a

combination therapeutic regimen including immunotherapy is a

promising option to solve targeted drug resistance. Anti‐CD20
monoclonal antibody kills tumor cells through complement‐
dependent cytotoxicity (CDC), antibody‐dependent cytotoxicity

(ADCC), antibody‐mediated phagocytosis, and inducing apoptosis.100

A multi‐center phase II study showed that the remission rate of

ublituximab combined with ibrutinib in R/R CLL patients reached

88%; in patients with high‐risk cytogenetic factors, the remission rate
reached 95%, and 15% of patients were MRD negative.101

6.10 | Chimeric antigen receptor T cell with BTKi
for combination therapy

As a research hotspot in recent years, chimeric antigen receptor T cell

(CAR‐T) has attracted much attention for hematological tumors. Re-

sults from the ZUMA‐1 study showed that the complete response rate
of R/RDLBCL patients reached 59%, and theORR reached 83%, which

was nearly 12‐fold higher than that of standard‐of‐care therapy

(7%).102,103 In a phase II study of KTE‐X19, the ORR of R/R MCL pa-

tients was 93%, CR rate reached 67%, and MRD negative rate at 4

weeks reached 83%,104 thus showing promising results. In a study

combining CAR‐T with ibrutinib to treat 19 R/R CLL patients in which
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ibrutinib treatment failed, theORR andBMuMRD rateswere 83% and

61%, respectively.105 In addition, acalabrutinib in combination with

CD19 CAR‐T enhanced CAR‐T therapy response in BCL.87

7 | SUMMARY AND OUTLOOK

With the development of genomic sequencing and immunotherapy,

the treatment of BCL has entered the era of precision therapy.106

More analysis from the real world is needed to solve the problem of

drug resistance. Apart from the above‐discussed potential treatment
strategies, some potential combination therapies such as BTKi in

combination with compensation pathway inhibitors (PI3K, IRAK4,

XPO1, MP3K14 inhibitors), and BCL2 inhibitors are other potential

therapeutic modalities. In addition, the use of CAR‐T and PD1/PD‐L1
inhibitors in combination with BTKi is a promising approach. Scien-

tific researchers and clinicians should use the latest detection tech-

nologies to track the effects of preclinical and therapeutic drugs in a

timely manner and select appropriate new drugs and targeted com-

bination treatments.
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