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Abstract

As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect
of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two
scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 262 games
via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our
results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner’s dilemma game,
cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-
reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find
that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This
reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates
that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of
cooperation.
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Introduction

One major question in evolutionary biology and social science is

to understand the emergence of cooperative traits and their

sustenance under the pressure of free-rider. To explain the

ubiquitous cooperation, a theoretical framework that has shed

some light on this long-standing problem is the evolutionary game

theory [1–3]. In particular, a simple, paradigmatic model,

prisoner’s dilemma game (PD), where two individuals simulta-

neously decide to adopt one of two strategies: cooperation (C) and

defection (D), has attracted tremendous attention from both

theoretical and experimental studies [4,5]. When populations play

the prisoner’s dilemma game in the well-mixed case, this setup

does not support the organization of cooperative dynamics. Over

the past decides, a great number of scenarios have been identified

that can offset an unfavorable outcome of social dilemmas and

lead to the evolution of cooperation [6–10]. Whereas, Nowak

attributed all these to five scenarios: kin selection, direct

reciprocity, indirect reciprocity, network reciprocity, and group

selection [11], which, comparing with the so-called well-mixed

situation, can be somewhat related to the reduction of an opposing

player’s anonymity.

Among the five scenarios, network reciprocity, where players

are arranged on the spatially structured topology and interact only

with their direct neighbors, has attracted the greatest interest [12],

because cooperators can survive by means of forming compact

clusters which minimize the exploitation from defectors and

protect those cooperators that are located in the interior of such

clusters. Along this seminal idea, the role of spatial structure, and

its various underlying variance in evolutionary games, have been

intensively explored (see [13,14] for a recent review). In addition,

scientists also find that the strategy updating rule and dynamics on

spatial topology also take a significant impact on the evolution of

cooperation [15–28]. Let us mention a couple of typical examples.

In recent research works [29–33], where players were allowed to

adjust their strategy based on diverse learning ability or aspiration

to fittest opponent, the prevalence of cooperative behavior even

under large temptation to defect was observed. In [34] it was

reported that the replicator dynamics could lead to an outbreak of

cooperation on complex network, even if the conditions did not

necessarily favor the spreading of cooperators. It was promising,

furthermore, strategy update rules as well as update dynamics

were more influence on the evolution of cooperation than the

network topology alone [35,36]. In [37,38], allowing weight into

evaluation of individual fitness, cooperation was also largely

enhanced.

Interestingly, except for the above studies mostly focusing on the

prisoner’s dilemma game (PD), other paradigmatic settings have

also been explored on top of spatial topology [39–44]. Of

particular renown are the investigations of chicken game (CH)

(or snowdrift game (SD)) [45], where the best action for individual

relies on the choice of your opponent: to defect (cooperate) if the

other cooperates (defects). Such a case finally leads to the

coexistence of cooperators and defectors, namely, the state of

ST-reciprocity [46], which is preferable to maximize population
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payoff than R-reciprocity [47,48,49]. To explain the social

cooperative behaviors in this game, many different proposals

aimed at sustaining cooperation were suggested and investigated.

Examples include continuous strategy [50] multi-person interac-

tion [51], stochastic noise in the payoff [52], teaching activity

[53,54], mobility [55–57], memory [41] and fitness evaluation

[58], to name but a few.

In spite of the relative body of work that has been accumulated

in the past years, the study for supporting cooperation traits is

usually separated with the framework of prisoner’s dilemma game

(PD) or chicken game (CH). The situation of resolving the social

dilemma in both games remains less explored [59], because an

effective approach in one game may not provide a way for

cooperation to survive in other game. Moreover, in realistic

society, the type of dilemma is variable and more complex, how to

constitute a universal protocol facilitating cooperation becomes

highly necessary and meaningful. Inspired by all these, in the

present work, we introduce the mixed strategy with 1-memory

length into the different spatial game classes to study the evolution

of cooperation, where both network reciprocity and direct

reciprocity induced by the memory are suggested. We explore

whether cooperation is sustained, especially for prisoner’s dilemma

game (PD) and chicken game (CH). Our results show that

cooperation is actually promoted under such a protocol. In the

remainder of this paper we will first describe the considered

evolutionary games, subsequently, we will present the main results,

and finally we will summarize our conclusions.

Model

We consider 262 game as the archetype. In order to depart

from the traditional setup of spatial social dilemma games, we

introduce strategy profile Si~(pi, qi)to each player, where

pi[½0, 1�is the probability that player i will cooperate with player

j if agent j was a cooperator in the last step, while qi[½0, 1�is the

probability that player i will cooperate with player j when player j

defected in the anterior step. Interestingly, 1-length memory is

assumed for each player to store the opponent’s previous strategy,

and it can be, to some extent, considered as a type of mixed

strategy game with 1-memory length. In a typical game, two

players simultaneously decide whether they wish to cooperate or

defect. If both cooperate (defect) they receive the reward R (the

punishment P). If, however, one player chooses cooperation while

the other defects, the latter gets the temptation T and the former is

left with the sucker’s payoff S. For simplicity, the standard scaled

parameterization entails designating R = 1 and P = 0 as fixed,

while the remaining two payoffs can be occupied 21#S#1 and

0#T#2. Thus, if T.R.P.S we have prisoner’s dilemma game

(PD), T.R.S.P yields chicken game (CH) (or snowdrift game

(SD)), and R.T.P.S belongs to stag-hunt game (SH), as

schematically presented in Fig. 1(a). Without loss of generality,

the payoff parameterization can also been denoted by the stag-

hunt-type dilemma Dr = P2S and the chicken-type dilemma

Dg = T2R as follows [48,60],

R S

T P

� �
~

1 {Dr

1zDg 0

� �
: ð1Þ

Correspondingly, we have the prisoner’s dilemma game (PD) if

0ƒDgƒ1and0ƒDrƒ1, the chicken game (CH) if 0ƒDgƒ1and

0ƒDrƒ{1, the stag-hunt game (SH) if 0ƒDgƒ{1and

0ƒDrƒ1(see fig. 1(b)).

Throughout this work each player i is initially designated either

as a cooperator (C) or defector (D) with equal probability, and is

also assigned the parameter value S = (p, q) to the interval [0, 1].

This setting is performed uniformly irrespective of its initial

strategy and remains unchanged during the simulations. As the

interaction network, we use either the L|Lregular square lattice

or random regular graph (RRG) constructed as described in [61].

At each Monte Carlo step (MCS), defined as the amount of time,

on average, each player has a chance to update its strategy once.

The updating procedure comprises the following elementary steps.

First, a randomly chosen player i earns its payoff piby playing the

game with all its four neighbors. Then, we evaluate in the same

way the payoffs of all the neighbors of player i. At last, player i

adopts the strategy from the selected player j with the probability

Pi/j~
1

1z exp
pi{pj

K

h i ð2Þ

where K denotes the amplitude of noise [62]. The effect of noise on

the cooperation in the spatial game has been studied in detail in

previous work [63]. Since this issue goes beyond the purpose of the

present work, in all our following studies, we simply fix the value of

K to be K = 0.5.

The results of Monte Carlo simulations presented below are

obtained for lattices with 1002 individuals, and the average

fraction of cooperators r
C
, that is, the number of cooperators

divided by L2, is determined by the average within the last 2000

steps out of the total 26105 MCS. Moreover, since the random

distributions of p and q may introduce additional disturbances, the

final results are averaged over up to 100 independent runs for each

set of parameter values in order to assure suitable accuracy.

Results and Discussion

We start by presenting the color map encoding the final fraction

of cooperation r
C
, strategy profile p and q on the Dg-Dr parameter

plane in Figure 2. It is obvious, compared with the solution of well-

mixed population shown in Figure 1, cooperative behavior

drastically enhances in our setting. Even under the case of strong

dilemma Dg = Dr = 1 (PD region), where mutual defection domi-

nates in the traditional scenario, almost complete cooperation can

be observed. In this sense, the prosperity of cooperative behavior

suggests the formation of R-reciprocity, where the best choice to

maximize social profit is that all players become cooperators to

obtain R in prisoner’s dilemma game [46,48,49]. Moreover, it is

interesting to focus on the strategy profile parameters. p reaches

nearly 1 besides the top left corner of CH, while q differs according

to the exposed dilemma strength and gradually gets close to 0

when the chicken-type dilemma Dg exceeds 0. Based on these facts,

the elucidation for the high level of cooperation is explicit that the

defined strategies in our model can be regarded as the mixed

strategies, which effectively help cooperators to weaken defector

attacks. Naturally, such a feedback mechanism causes the

preference of cooperation with a defector (i.e., the value of q) fast

decreasing. Thus, we argue when stochasticity is introduced in the

decision making process, the evolution of cooperation thrives.

In order to explain the promotive impact of mixed strategy

(caused by memory) on the evolution of cooperation, we examine

the evolution process of cooperation fraction r
C
, strategy profile p

and q. Figure 3 features results obtained for Dg = Dr = 1, whereat

the corresponding behavioral snapshots are shown as well (see

Fig. 3(b)-C). Interestingly, as observed in the traditional version

[29,30,62,64], in the early stages of the evolutionary process, it

Direct Reciprocity in Spatial Evolutionary Games
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appears as if defectors would actually fare better than cooperators.

This is actually in agreement with what one would expect, given

that defectors are, as individuals, more successful than cooperators

and will thus be chosen more likely as potential strategy donors. At

the same time, we can observe that the values of p and q decrease.

However, the tide changes fast, as one can observe from the

presented time series, the individuals with high p value start to

form compact clusters (see the Fig. 3(b)-A), which, to large extent,

helps more agents choose cooperation to resist the disadvanta-

geous environment. Under the guidance of such a direct

reciprocity proposal, the few remaining clusters of cooperators

start recovering lost ground against expended defectors. More

crucial is the fact that the clusters formed by these cooperators are

impervious to defector attacks again, which can obtain sufficient

attestation through the extremely low q value. In a sea of

cooperators another cooperator rather than a defector always tries

to penetrate into the clusters. Thus, we validate our argument that

the feedback mechanism driven by direct reciprocity scenario halts

and transfers the march of defectors to the undisputed decay. This

newly identified mechanism eventually leads to the widespread

cooperation that goes beyond what can be warranted by the

spatial reciprocity alone [48,49].

Next, it is interesting to focus on the evolution of cooperation in

chicken game (CH). One notable character is that the complete

cooperation phase (namely, r
C
~1) is still not observed in the

upper half part of CH (surrounded by dotted line in Fig.2(a)) even

if both memory and spatial topology are implemented. What

happens in the game? Here, to obtain more payoff, ST-reciprocity

becomes more meaningful than R-reciprocity when the condition

Dg.Dr+1 (or 2R,S+T) is satisfied. In what follows, we will

systematically examine the validity of this claim.

To quantify the vantage of maintaining ST-reciprocity in

chicken game (CH), we first calculate the expected payoff via the

mean-field approximation. Assuming the cooperation fraction at

equilibrium as rc, then the expected payoff for each individual

SpT should be

Figure 1. Schematic presentation for fraction of cooperators r
C

in well-mixed populations derived by replicator dynamics. (a) is
illustrated by T-S parameter plane, and (b) is illustrated by Dg-Dr parameter plane, where PD, CH, SH and H denote prisoner’s dilemma game, chicken
game, stag-hunt game and harmony game, respectively.
doi:10.1371/journal.pone.0071961.g001

Figure 2. Color map depicting (a) fraction of cooperation r
C

, (b) p, and (c) q on the Dg-Dr parameter plane. Obviously, in the top left
corner of CH where Dg.Dr+1 (or 2R,S+T) is satisfied (surrounded by black dotted line), incomplete cooperation is emerged (namely, the so-called ST-
reciprocity [46]), which can lead to high payoff than the case of complete cooperation (the so-called R-reciprocity [47]).
doi:10.1371/journal.pone.0071961.g002
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SpT~rc
2Rzrc(1{rc)Sz(1{rc)rcTz(1{rc)2P

~(R{S{TzP)rc
2z(SzT{2P)rczP

~{(Dg{Dr) rc{
1zDg{Dr

2(Dg{Dr)

� �2

z
(1zDg{Dr)

2

4(Dg{Dr)

ð3Þ

According to the above expression, we can further obtain the

maximal payoff SpTmax and the corresponding cooperation

fraction rcmax
resulting in this maximal payoff

SpTmax~
(1zDg{Dr)

2

4(Dg{Dr)
, ð4Þ

and

rcmax
~

1zDg{Dr

2(Dg{Dr)
: ð5Þ

Figure 4 illustrates how the expected payoff SpTobtained by

playing games with four neighbors varies as a function of

cooperation fraction r
C

when assuming Dg = 2Dr = 1. Obviously,

r
Cmax

can maximize the average social payoff in the population,

because the expected payoff is a quadratic function curve for the

fraction of cooperation. We also confirm that when the spatial

structure is introduced, the final distribution of agents’ strategies is

homogeneous at equilibrium (due to the fact that the continuous

value is permitted as strategy profile). Thus, the discussion about

mean-field approximation is still valid in spatial structure.

Substituting Dg = 2Dr = x into both Eqs. (4) and (5), we obtain

the maximum payoff and the corresponding cooperation fraction

as follows,

Figure 3. (a) Time courses for the evolution of cooperation and strategy profile p, q at Dg = Dr = 1. (b) The corresponding snapshots for
the corresponding evolution course. (b)-A shows parameter p; (b)-B shows parameter q and the behaviors of cooperators (C, white) or defectors (D,
black) are presented in the panel of (b)-C. For these snapshots, the time steps from left to right are 0, 20, 60, 100, 300 and 700, respectively.
doi:10.1371/journal.pone.0071961.g003
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SpTmax~
2xz1ð Þ2

8x
, ð6Þ

pcmax
~

2xz1

4x
: ð7Þ

We need to particularly note that these formulas are only valid

for Dg.Dr+1 (or 2R,S+T), because this limitation guarantees ST-

reciprocity becoming more meaningful (to obtain higher payoff)

than R-reciprocity. Figure 5 features the comparison between the

theoretical analysis and the simulation result. It is evident that the

average payoff under simulation is close to the theoretical

maximum payoff. Moreover, because of the well-known claim

that spatial topology may inhibit the evolution of cooperation in

the chicken game (CH) (or snowdrift game (SD)) [45], it becomes

of interest to explore the ST-reciprocity. We can observe, under

the joint impact of spatial interaction topology and direct

reciprocity driven by memory, that efficient ST-reciprocity (that

exceeding R-reciprocity) can be maintained.

An important remaining question is to examine the universality

of mixed strategy implemented by two parameters within different

topology and neighborhoods. Results presented in Fig. 6 depict

how cooperators and the average payoff fare on the random

regular graph (RRG). Similarly as Fig. 2(a), it can be observed,

when the condition Dg.Dr+1 is satisfied, that cooperators perform

significantly better than the well-mixed case yet can not reach the

complete dominance. While for the average payoff, strikingly, we

can observe that it becomes more profitable than the state of full

cooperation, which proves the existence of ST-reciprocity once

again. This is in the qualitative agreement with the observations

made on the square lattice, indicating that direct reciprocity in

spatial populations is universally effective in promoting the

evolution of cooperation and enhancing ST-reciprocity, irrespec-

tive of the underlying interaction networks. In addition, we can

observe that, with the increment of neighborhood, cooperation

fraction will decay and corresponding average payoff becomes

lower, which is consistent with previous prediction of mean field

approximation [65]. Lastly, it is instructive to explore how the

cooperation evolves under extremely strong dilemma. Figure 7

shows the cooperation behaviors and strategy profile p, q as a

function of Dg value. Strikingly, full cooperation dominance state

can be maintained even for Dg.1, which further supports the fact

that the newly introduced scenario about the reciprocity in spatial

topology boosts the R-reciprocity and is generally valid for strong

dilemma. When Dg is sufficiently large (namely, Dg.1.8), the

cooperation level within the system starts to decline slowly, and p

Figure 4. Expected payoff SSpTT as a function for fraction of
cooperation r

C
at Dg = 2Dr = 1, which is obtained by applying

mean-field approximation approach. It is a quadratic function
curve. Therefore, there is a cooperation fraction r

Cmax
to guarantee the

highest expected payoff SpTmax. For example, in the Fig. 4, best social
payoff SpTmax~4:5 (exceeding 4R) is supported by r

Cmax
~0:75

(indicated by dotted line.).
doi:10.1371/journal.pone.0071961.g004

Figure 5. Comparison between simulation results and analytical solutions derived by mean-field approximation approach in
chicken game (CH). Solid line (Pay_max) and dotted line (rc_max) show maximum payoff and the corresponding cooperation fraction for analysis,
respectively. Triangles (Pay) and squares (rc) show simulation results for maximal payoff and the corresponding cooperation fraction. Diamonds
(rc_tr) show simulation results on square lattice when traditional discrete strategy setting is used.
doi:10.1371/journal.pone.0071961.g005
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possess the similar tendency with the changing of rc (note that the

downfall of q is particularly obvious in the weak dilemma region

and its value approximates to 0 for extremely strong dilemma).

Thus, direct reciprocity in spatial populations, i.e., the propensity

of individual cooperation with the opponent according to previous

performance, can be seen as a universally applicable promoter of

cooperation for different dilemma games.

Conclusion

We have presented a new framework of direct reciprocity on

spatial populations in 262 games, where two strategy profile

parameters p and q are taken into account. By means of extensive

simulations, we have found, to maximize social efficiency, that

agents alternatively change their strategies according to the

difference of exposed dilemma structure, which is even effective

under the strong dilemma structure. Compared with the case of

spatial reciprocity alone [36], it is interesting that complete

cooperative phase can be maintained till extremely strong

dilemma structure in prisoner’s dilemma game (PD). The

elucidation for the promotion of cooperation can be attributed

to a feedback mechanism: the survival cooperators not only induce

a collective resistance against the invasion of defectors, but

importantly accelerate the formation of extremely robust clusters

of cooperators, where they are more likely to be regarded as the

potential strategy donors and surrounded by more followers. In

this sense, the area of R-reciprocity extensively increases (i.e.,

players still choose mutual cooperation for obtaining R in strong

Figure 6. (a) fraction of cooperation rC and (b) average payoff when random regular graph (RRG) is employed as the interaction
network topology. For comparison, the theoretically predicted maximum payoff and its cooperation fraction (dashed line, denoted by ‘‘Max’’) are
depicted.
doi:10.1371/journal.pone.0071961.g006

Figure 7. Fraction of cooperation rC and strategy parameters,
p and q in dependence on dilemma strength. Obviously,
cooperative behavior can be remained even under extremely strong
dilemma structure when both memory length and the network are
assumed.

Direct Reciprocity in Spatial Evolutionary Games
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dilemma). Moreover, another interesting finding is that although

cooperation trait cannot reach the perfect state in the region

Dg.Dr+1 (or 2R,S+T) of chicken game (CH), ST-reciprocity can

be guaranteed (i.e., alternatively obtaining S and T is more

profitable than mutual cooperation), which is robust to the

network topology. Through mean-field analysis, we have also

proved that social average payoff has maximum value in this

particular area. Therefore, the direct reciprocity in spatial

populations can be regarded as a universally applicable promoter

of cooperation irrespective of the evolutionary games. We hope

that it will inspire future studies, especially in terms of the solution

of some realistic social puzzles via a co-evolutionary process [14].
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34. Gómez-Gardeñes J, Campillo M, Florı́a LM, Moreno Y (2007) Dynamical

organization of cooperation in complex networks. Phys Rev Lett 98: 108103.

35. Yamauchi A, Tanimoto J, Hagishima A (2010) What controls network

reciprocity in the prisoner’s dilemma game? BioSystems 102(2–3): 82–87.

36. Yamauchi A, Tanimoto J, Hagishima A (2011) An analysis of network
reciprocity in Prisoner’s Dilemma games using Full Factorial Designs of

Experiment. BioSystems 103: 85–92.

37. Xia CY, Zhang J, Wang J, WangYL, Zhang H (2011) Enhancement of
cooperation in prisoner’s dilemma game on weighted lattices. Physica A 390(23–

24): 4602.

38. Xia CY, Ma ZQ, Wang Z, Wang J (2012) Evaluating fitness by integrating the

highest payoff within the neighborhood promotes the cooperation in social

dilemmas. Physica A 391: 6400–6447.

39. Wang WX, Ren J, Chen GR, Wang BH (2006) A mutual attraction model for

both assortative and disassortative weighted networks. Phys Rev E 74: 056113.

40. Sysi-Aho M, Saramaki J, Kertesz J, Kaski K (2005) Spatial snowdrift game with
myopic agents. Eur Phys J B 44: 129–135.

41. Xia CY, Ma Z, Wang Y, Wang J, Chen ZQ (2011) Influence of vertex weight on

cooperative behavior in a spatial snowdrift game. Phys Scripta 84: 025802.
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63. Szolnoki A, Szabó G, Perc M (2011) Phase diagrams for the spatial public goods

game with pool punishment. Phys Rev E 83: 036101.

64. Brede M (2013) Short versus long term benefits and the evolution of cooperation

in the prisoner’s dilemma game. PLoS One 8: e56016.

65. Tang CL, Wang WX, Wu X, Wang BH (2006) Effects of average degree on

cooperation in networked evolutionary game. Eur Phys J B 53: 411–415.

Direct Reciprocity in Spatial Evolutionary Games

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e71961


