
����������
�������

Citation: Cao, W.; Pomeroy, M.J.;

Zhang, S.; Tan, J.; Liang, Z.; Gao, Y.;

Abbasi, A.F.; Pickhardt, P.J. An

Adaptive Learning Model for

Multiscale Texture Features in Polyp

Classification via Computed

Tomographic Colonography. Sensors

2022, 22, 907. https://doi.org/

10.3390/s22030907

Academic Editor: Aly Farag

Received: 1 December 2021

Accepted: 20 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Adaptive Learning Model for Multiscale Texture Features in
Polyp Classification via Computed Tomographic Colonography
Weiguo Cao 1,†, Marc J. Pomeroy 1,2,† , Shu Zhang 1, Jiaxing Tan 3, Zhengrong Liang 1,2,*, Yongfeng Gao 1,
Almas F. Abbasi 1 and Perry J. Pickhardt 4

1 Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA;
Weiguo.Cao@stonybrookmedicine.edu (W.C.); marc.pomeroy@stonybrook.edu (M.J.P.);
shuzhang8967@163.com (S.Z.); Yongfeng.Gao@stonybrookmedicine.edu (Y.G.);
almas.abbasi@stonybrookmedicine.edu (A.F.A.)

2 Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
3 Department of Computer Science, City University of New York, New York, NY 10314, USA;

jtan@gradcenter.cuny.edu
4 Department of Radiology, School of Medicine, University of Wisconsin, Madison, WI 53792, USA;

PPickhardt2@uwhealth.org
* Correspondence: Jerome.Liang@stonybrook.edu; Tel.: +1-631-377-6896
† These authors contributed equally to this work.

Abstract: Objective: As an effective lesion heterogeneity depiction, texture information extracted
from computed tomography has become increasingly important in polyp classification. However,
variation and redundancy among multiple texture descriptors render a challenging task of integrating
them into a general characterization. Considering these two problems, this work proposes an adaptive
learning model to integrate multi-scale texture features. Methods: To mitigate feature variation,
the whole feature set is geometrically split into several independent subsets that are ranked by
a learning evaluation measure after preliminary classifications. To reduce feature redundancy, a
bottom-up hierarchical learning framework is proposed to ensure monotonic increase of classification
performance while integrating these ranked sets selectively. Two types of classifiers, traditional
(random forest + support vector machine)- and convolutional neural network (CNN)-based, are
employed to perform the polyp classification under the proposed framework with extended Haralick
measures and gray-level co-occurrence matrix (GLCM) as inputs, respectively. Experimental results
are based on a retrospective dataset of 63 polyp masses (defined as greater than 3 cm in largest
diameter), including 32 adenocarcinomas and 31 benign adenomas, from adult patients undergoing
first-time computed tomography colonography and who had corresponding histopathology of the
detected masses. Results: We evaluate the performance of the proposed models by the area under the
curve (AUC) of the receiver operating characteristic curve. The proposed models show encouraging
performances of an AUC score of 0.925 with the traditional classification method and an AUC score
of 0.902 with CNN. The proposed adaptive learning framework significantly outperforms nine well-
established classification methods, including six traditional methods and three deep learning ones
with a large margin. Conclusions: The proposed adaptive learning model can combat the challenges
of feature variation through a multiscale grouping of feature inputs, and the feature redundancy
through a hierarchal sorting of these feature groups. The improved classification performance against
comparative models demonstrated the feasibility and utility of this adaptive learning procedure for
feature integration.

Keywords: colorectal cancer; computed tomographic colonography; polyp classification; texture
features; random forest; convolutional neural network

1. Introduction

Colorectal cancer (CRC) is one of the top fatal diseases in the United States. American
Cancer Society ranks CRC as the third most common cancer and the third leading cause
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of cancer-related deaths in both men and women [1]. Because most colon cancers are
developed from precursor polyps, polyp screening has become the primary means for CRC
prevention [2,3]. Computed tomographic colonography (CTC), as a minimally invasive
polyp detection tool, has become an important alternative method in polyp screening and
management [4]. This CTC technology has shown its potential in physicians’ hands with
computer-aided detection tools to localize polyps in practice [5]. For personalized precision
medicine, it is very important to know the pathological subtype of (or to diagnose) the
detected polyps for optimal treatment. Yet, diagnosis from the CTC images with subtle
image contrast within the polyp volume is very challenging in the radiologist experts’
hands with current existing computer aided diagnosis (CADx) tools [6]. Therefore, more
advanced CADx tools are needed.

Heterogeneity is a key factor in determining the malignancy of a lesion and its re-
sponse to intervention [7,8]; CADx models have, therefore, focused on using image contrast
patterns to quantify and describe that heterogeneity [9–11]. Toward that purpose, many
texture patterns and descriptors have been proposed to extract and quantify texture infor-
mation for CADx of polyps, such as gray level co-occurrence matrix (GLCM) [10], local
binary pattern (LBP) [12–14], Gabor filter [15,16], wavelets [17,18], and Weber local descrip-
tor (WLD) [14,19]. With the growth of the number of texture descriptors, how to merge
them has become an important issue because of the variation in computing these texture
descriptors, as well as possible redundant information among them [20–22].

The variation problem can occur from the method used to compute the texture patterns
or to extract the texture features. For example, the traditional Haralick texture features [10]
were computed by the average and range across the 13 neighbor directions through the vol-
umetric voxel array that did not consider geometrical scale variations (or multi-scale nature)
among those neighbor directions [11]. The redundancy problem has been under investiga-
tion for many years as a feature selection or dimension reduction task. This is a typical NP
(non-deterministic polynomial time) hard problem [22] that has generally been approached
by three classes of methods: filter methods [23,24], wrapper methods [25,26], and embed-
ded methods [27–33]. Despite these advancements, how to obtain the best feature subset
from all the extracted patterns and features still remains a great challenge [34–37].

To address the above, the problems of (1) variation in polyp texture descriptor compu-
tation and (2) redundancy in multiple computed patterns and features, this work proposes
an adaptive fusion model for the polyp classification task. This work uses the GLCM and
its measures to demonstrate this adaptive fusion model, where the second-order nature
of the GLCM allows for inherent grouping by spatial distance of image voxel pairs. Two
different models, using traditional classifiers and a deep learning architecture, are proposed
to evaluate this adaptive fusion methodology, where input features are grouped by spatial
displacement and weighted by initial classification performance. By adaptively combining
these groups in order of their initial weights, the proposed models can select the most impor-
tant features from the inputs, thereby reducing variation and redundancy in the final model.
Both models are evaluated on a dataset of colorectal polyp masses and show significant
improvement in classification performance compared to state-of-the-art methods.

2. Materials and Methods

This section begins with a review of the GLCM texture descriptor calculation. Then the
multiscale analysis for fusing the calculated texture descriptor sets is discussed. Thereafter,
the adaptive learning model is presented and analyzed.

2.1. Multiscale Sampling of GLCMs for Multiscale Features

Gray level co-occurrence matrix or GLCM as a typical texture pattern descriptor is
widely used in medical imaging [9–11]. Its computation could be referred to according to
the following expression in two-dimensional (2D) representation:
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Ci,j (d, θ) =
M

∑
m=1

N

∑
n=1

{
1 I(m, n) = i & I((m, n) + d(θ)) = j
0 otherwise

(1)

where I is the gray level image, (M,N) is the image size, indices i and j represent a pair of
image pixel values, and d(θ) is a shifting vector between two concerned points along the
direction θ, such that d(θ) = d ∗ (cosθ, sinθ). For 3D volumetric image data, the definition
of GLCM is very similar, except that there are two angular variables in contrast to one in
the 2D model. Their calculations are shown in Figure 1.
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Figure 1. Illustration of co-occurrence matrix (CM) calculation in 2D/3D images: (a) CM parameters 
in 2D images; (b) CM parameters in 3D images; and (c) A GLCM example of a 2D case when direc-
tion is 0° and displacement = 1. The left is a gray image, and the right one is its GLCM. 

In a digital image array, the first- and second-order neighbors, which comprise the 
first ring around the center image voxel, are most frequently used for vector calculation. 
A voxel in 3D volumetric data generally has 26 neighbors, which could produce 26 vec-
tors, including 13 vectors and 13 negative vectors. From Equation (1), it is easy to prove 
that the GLCM of one vector is equal to the transposed GLCM of its negative vector. 

Figure 1. Illustration of co-occurrence matrix (CM) calculation in 2D/3D images: (a) CM parameters
in 2D images; (b) CM parameters in 3D images; and (c) A GLCM example of a 2D case when direction
is 0◦ and displacement = 1. The left is a gray image, and the right one is its GLCM.

In a digital image array, the first- and second-order neighbors, which comprise the
first ring around the center image voxel, are most frequently used for vector calculation.
A voxel in 3D volumetric data generally has 26 neighbors, which could produce 26 vectors,
including 13 vectors and 13 negative vectors. From Equation (1), it is easy to prove that
the GLCM of one vector is equal to the transposed GLCM of its negative vector. Therefore,
only 13 directions are preserved, while their negative vectors are all neglected in GLCM
calculation due to redundant information, as shown in Figure 1b. Moreover, only the
1st ring neighbor around one concerned voxel is used; the gray level is set to be 32 in
the calculation.
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Many statistical measures have been proposed to quantify each GLCM for texture
features. Haralick et al. proposed 14 measures, which are called Haralick measures
(HMs) [10]. Hu et al. then added 16 new measures based on HM, which are donated by
extended Haralick measures (eHMs) [11]. In this article, only 28 of the 30 measures from
eHM are used to construct the texture descriptors (two of the 30 were proved to have
limited new information and are ignored [38]) and are generated using in-house software.
Therefore, the GLCM-descriptor contains 364 variables from 28 HMs over 13 directions,
expressed by:

D = (d1, . . . , d364) (2)

Geometrically, the distance between the cubic center (of the first- and second-order voxel
array) and the center of one neighbor voxel is not a constant and varies between 1 and√

3 in terms of the voxel side unit. For example, d(. ) = 1 for the directions along x, y
and z axes, d(.) =

√
2 for the diagonal directions in the 2D planes of the 3D x-y-z array

coordinates, and d(.) =
√

3 for the diagonal directions in the 3D x-y-z array coordinates.
In other words, in the discrete volumetric data, twenty-six neighbors around one voxel
could produce three distances of 1,

√
2, and

√
3, i.e., a multi-scale data sampling nature.

The 13 directions used to compute the GLCMs could be divided into 3 subgroups, i.e., D1,
D2, and D3, according to their geometric distances. Each direction within the subgroup,
therefore, shares the same geometric sampling distance. Figure 1b gives the geometric
interpretation. G1 (green) contains three directions, G2 (red) contains six directions, and,
lastly, G3 (blue) contains four directions from this subdivision. The three GLCM groups
would produce three descriptors, where their corresponding variable numbers are 84 (28*3
eHMs from G1), 168 (28*6 eHMs from G2), and 112 (28*4 eHMs from G3). In this manuscript,
the groups of GLCMs will be given the notation Gi, and the groups of texture descriptors
given the notation Di. These descriptors could further be written by:

D1 =
(

d1
1, · · · , d1

84
)

D2 =
(

d2
1, · · · , d2

168
)

D3 =
(

d3
1, · · · , d3

112
) (3)

The traditional Haralick texture feature calculation considered these three direction groups
as one scale by computing the average and range across all 13 directions for each of the
14 traditional HMs, resulting in a total of 28 traditional Haralick texture features (HFs). For
the 28 eHMs, the average and range across all 13 directions result in a total of 56 extended
HFs, called eHFs. These Haralick texture features will be used as the baseline reference in
this work to show the gain by the consideration of the multi-scale data sampling nature in
the following. The GLCMs are then calculated by three different scales, i.e., 1,

√
2 ≈ 1.414

and
√

3 ≈ 1.732, as shown in Figure 1b. Essentially, this multi-scaling feature extraction
operation is not only a direction subgrouping but also a feature subdivision. Therefore, this
method generates three GLCM subgroups and three texture descriptor subdivisions, each
with a different scale, as shown in Table 1. In the following, the variables in each direction
group are labeled as a set of data sampled from the polyp object and treat all three direction
group datasets as three differently sampled data from the same subject. Then, an adaptive
machine learning strategy is developed to integrate these different datasets together for
improved CADx performance by circumventing the two problems of (1) variation in polyp
texture descriptor computation and (2) redundancy in multi-scale computed features.

Table 1. Digital direction subdivision by their voxel distances from one voxel to the concerned
center voxel.

Radius = 1 Radius=
√

2 Radius=
√

3

Direction group ID G1 G2 G3
Number of GLCM Directions 3 6 4

Descriptor group ID D1 D2 D3
Number of variables 84 168 112
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2.2. Analyze Group-Specific Information

To analyze and compare the differences among the three data subsets or multi-scale
groups, the information provided by each group is then investigated. To understand these
differences, the information that can be learnt by CNN on each individual group is first
visually analyzed. Next, CNN models based on three GLCM subgroups are trained. Then,
features learnt by CNN are understood via interpreting how the final decision is made
given an input.

To accomplish this, a game theory based model called SHAP was adapted to explain
the output of the machine learning models [39]. Each model was trained by the polyps’
corresponding GLCM subgroup and is similar to GLCM-CNN, with network design
optimized to the subgroups [40]. After the CNN model was trained, the decision criteria
was visualized on the testing dataset using SHAP. Figure 2 demonstrates the learnt feature
from the three subgroups by explaining the decision result of one representative polyp.
The first column is the original GLCM. The corresponding label (0 for benign and 1 for
malignant) and model score of the malignancy risk are listed on the top. The remaining
two columns show the interpretation of model prediction on the two classes. Given a
class, the red cells showed that the entries pushed the model’s decision close to that class,
while blue pixels pulled the prediction results away. Based on this visualization, it can be
observed that the information provided by the three subgroups had both shared patterns
and unique patterns. The visualization results of these patterns from deep learning showed
the potential for the proposed adaptive learning model to learn these group specific and
groupwise shared features.
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Figure 2. Visualization of information CNN learnt from each subgroups: (a) G1, (b) G2 and (c) G3.
The first column is the original GLCM. The corresponding label (0 for benign and 1 for malignant)
and model score of the malignancy risk are listed on the top. The remaining two columns are the
interpretations of model prediction on the two classes. The red cells show the entries push the model’s
decision close to that class, while blue pixels pull the prediction results away.

2.3. Adaptive Learning Model for Fusing Multi-Scale Features

As the variable number grows, simply combining all the input variables for classifica-
tion can increase a high risk of clustering degradation, which is caused by counteractions
of their variations [20,22]. In practice, not all variables of the descriptor will be useful for
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classification; lots of redundant information remains in the three scales. Inspired by [38], an
adaptive learning model is designed to hierarchically circumvent the variation and reduce
the redundant information from the multi-scale feature sets.

Problem Formulation: The problem is formulated as follows: Given a set
S = {Di | i ε [1, n]} containing n feature groups Di, the task is to find an optimal set
Ŝ ⊂ S that maximizes the polyp classification performance in terms of AUC. Actually, this
is a famous problem of the curse of dimensionality, which is always NP-hard [41]. To avoid
this problem, the greedy algorithm as the suboptimal scheme is introduced.

As shown in Figure 3, the proposed adaptive learning method works in two stages:
baseline selection and hierarchical feature integration. The goal of the baseline is to select
the best individual group that achieves the highest performance. After ranking the rest
feature groups in a descending order based on its individual performance, the multi-
level integration method integrates new group one by one following the forward step
feature selection (FSFS) method. Given a new feature group Dj, FSFS is designed to add
new variables from the most significant to the least and to only keep the ones that have
performance improvement.
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Two models for the adaptive learning method are proposed. The first one is a tradi-
tional hybrid method; the second is a deep learning-based method. They are detailed below.

Multigroup hybrid Method: The multigroup hybrid model (MGHM) was designed
with random forest for priority calculations and a support vector machine (SVM) for
final classification.

For the baseline selection, as each group contained several descriptors, each group
was compared by its best performance after feature selection. Separate random forest
models were trained on each group; the importance of each feature was based on the
GINI index [42], meaning that the information gain it could provide for each involved
splitting. Then, in each group, an optimal subset that had the highest performance by AUC
was found via SVM, while, naturally, the left-over variables built the complimentary set.
D0

i was used to denote the baseline set and D1
i to denote the left-over set for group Di. The

optimal set that had the highest AUC was selected as the initial baseline; then, the proposed
multi-level feature integration was performed on the rest of the groups. The integration
sequence was in a descending order of the pre-evaluated AUC on the whole group level.
This ranked set of descriptor groups was hereafter referred to as the descriptor pool (DP).
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Since there were three descriptor groups, the proposed hierarchical feature integration
contained 4 levels. FSFS was performed on each level to find the optimal feature subset
as output with support vector machine (SVM) as the classifier and the AUC as the metric,
for which cross-validation evaluation was performed. Level i in the hierarchy model is
denoted as Li, the current baseline is denoted as Baselinei, and the next candidate descriptor
group in Li is denoted as Candidatei. The output of Li, denoted as Baselinei+1, served as
the baseline of Li+1. Its flow chart is plotted in Figure 4. After all candidate sets were
integrated, FSFS was run to integrate the complementary set of the initial baseline.
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As this method was designed to iteratively evaluate every variable, it served as the
upper-bound of the performance that can be achieved on the dataset.

Multi-group CNN: In the second model, CNN was adapted and performed adaptive
learning by each group, as shown in Figure 5. For the baseline selection, the CNN was
designed to take the whole GLCM group as input and select the one with the highest
AUC. Then, the integration was performed by iteratively adding a group with the next
highest AUC following FSFS. The entire evaluation was based on a CNN network, where its
detailed structure is listed in Table 2 and the structure of the backbone is plotted in Figure 5.
For each level, the input size of the network had 32 × 32 × c, where 32 is the grayscale and
c is the number of channels/GLCMs of the input. The convolution network contained two
convolution layers, each followed by a batch normalization layer, a max-pooling layer with
stride 2 and ReLU as activation function. After the convolution part, three fully connected
layers were designed to make a final prediction. For different group combinations, the
number of input channels were modified to fit the current input data. This multi-group
CNN method is denoted as MG-CNN in the rest of the paper.
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Table 2. Detailed network design for MG-CNN.

Structure Type Kernel Size # of Kernels/
Channels/Neurons/Strides Activation

Layer 1 2D
Convolution 3 × 3 64 (stride 1) ReLU

Layer 2 Batch
Normalization 64

Layer 3 Maxpool 2 × 2 (stride 2)

Layer 4 2D
Convolution 3 × 3 64 (stride 1) ReLU

Layer 5 Batch
Normalization 64

Layer 6 Maxpool 2 × 2 (stride 2)

Layer 7 Dense 1000 ReLU

Layer 8 Dense 1000 ReLU

Layer 10 Dense 2 softmax

3. Results

In this section, the polyp mass dataset used for all experimental results is discussed in
detail. The classification results of the multi-scale descriptor sets are presented with the
proposed multi-level adaptive learning model. Finally, the proposed models are compared
to similar classification methods which input all the multi-scale descriptor sets at once and
ignore the differences among the data sets.

3.1. Polyp Dataset

The polyp dataset used for these experiments consisted of 59 patients with a total
number of 63 polyp masses found through virtual colonoscopy and confirmed by clinical
colonoscopy. A flowchart of the dataset acquisition and preparation is shown in Figure 6
and described below. The polyp dataset used for these experiments was obtained from
a retrospective study carried out at the University of Wisconsin Hospital and Clinics,
Madison, WI, USA. Over 8000 patients were screened via CTC with the inclusion criteria
that the patients were at least 50 years of age (normal screening age without family history
of colorectal cancer), a polyp with a size of at least 30 mm in largest diameter was detected
during CTC, and corresponding histopathology was available for those polyps. The CTC
imaging was carried out according to the procedures described within [43]. Of those
screened patients, only 59 patients, with a total of 63 polyp masses, fit the inclusion
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criteria. For classification discussed below, the dataset was divided into binary categories
of 32 malignant adenocarcinomas, and 31 benign polyps including 3 serrated adenomas,
2 tubular adenomas, 21 tubulovillous adenomas, and 5 villous adenomas. All polyps had
bulky mass morphology, except for six (four tubulovillous and two villous adenomas),
which were designated as flat or carpet polyps. The patient demographics for this polyp
dataset are presented in Table 3.
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Table 3. Patient demographics of polyp mass dataset.

Pathology Count Class Male:
Female

Average Age
(yrs)

Average Size
(mm)

Tubular Adenoma 2 0 2:0 69.8 35.0

Serrated Adenoma 3 0 2:1 55.2 34.3

Tubulovillous
Adenoma 21 0 11:10 64.4 36.9

Villous Adenoma 5 0 4:1 67.4 55

Adenocarcinoma 32 1 12:20 69.9 43.9

The clinical value of CADx models on CTC polyp mass images is due to their re-
quirement for surgical removal from their size. Unlike endoscopic colonoscopy, CTC is
noninvasive and cannot resect polyps during the procedure. Polyp masses that are 30 mm
or larger in size, however, require surgical removal and are not treated via colonoscopy.
Therefore, the clinical value of examining this dataset is to provide physicians with diag-
nostic information on the polyp masses before their surgical removal without requiring
expensive biopsy procedures. For example, surgeons may decide to be more aggressive
in how much tissue they remove if the mass is malignant to ensure that any microscopic
disease which may have invaded surrounding tissues can also be removed.

3.1.1. Regions of Interest

The area around the polyp region was manually selected and segmented on each CTC
image slice containing the polyp. For each polyp, a volume was constructed by combining
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the segmentations on each slice to form the region of interest (ROI), which was confirmed
by radiologists to ensure accuracy of the manual procedure. It is noted that a cleansing step
was used to discard all voxels below −450 HU within these ROIs as being predominately
air from the lumen of the colon [44]. The information encoded in these voxels from partial
volume effects (above the range of pure air HU values) is minimal, if any, and contributes
more noise to the features for classification. The ROIs were used to compute the multi-scale
texture features described above. Sample polyp CT slices and their contours are shown in
Figure 7.
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Figure 7. Three sample CT slices from select polyp masses. Green contour around the polyp show
the segmentation. Air voxels from the lumen below −450 HU are removed post-segmentation and
are highlighted red in the images. Images show sample polyps with pathologies (a) adenocarcinoma,
(b) villous adenoma, and (c) villous adenoma.

3.1.2. Dataset Evaluation

A cross-validation strategy was used to evaluate the model performance. The leave-
one-out and two-fold methods were adopted in this study to provide the two bounds of the
classification performance, where the two evaluation methods were two extremes of the
k-fold cross validation. The leave-one-out method tests only on one subject but trains on all
the other subjects. The two-fold method trains on half the subjects and tests on the other half,
which trains the model with the least data samples. This strategy is particularly attractive
for small sized datasets. Results from both methods together will provide a fairer evaluation
to consider the overfitting that might happen in the leave-one-out method and the lower
amount of training that might happen in the two-fold method. Due to the paper length
limit, only the two-fold testing results are used to show the advantage of the proposed
model under the toughest conditions. The polyps were randomly divided into training and
testing sets for classification with 31 polyps in the training set (15 benign and 16 malignant)
and 32 polyps in the testing set (16 benign and 16 malignant). Repeating this random
sampling method, 100 training and testing groups were generated to increase statistical
confidence and to minimize bias. The 100 classification outcomes were averaged for the
results and standard deviation (STD) served as the performance variation measurement.

3.1.3. Settings

For the traditional method, three multi-scale descriptors were calculated using the
three groups in Table 1 relevant to the three scales. Then, these descriptors were used to
generate 100 training and testing datasets due to the observation splitting schemes.

The Random Forest classifier contains 5000 trees with GINI index as the importance
metric. The SVM classifier adapts a kernel function of cubic polynomial, with Gamma as
1/(variable number), coef0 as 0, tolerance as 0.001, and Epsilon as 0.1.
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For each learning method, the i-th candidate group is denoted as Dx
i , where iε[1, 3]

and xε[·, b, c] as the whole group, base group and complementary group. Ci, with iε[1, 3],
denotes the learned best set from stage i.

The CNN model is trained with Cross-entropy loss between the predicted score and
label. Adam [45] was used for optimization. The learning rate was initialized as 0.001 and
decayed by 0.01 every 10 epochs. Since the dataset was relatively small, the training ended
after 40 epochs to prevent overfitting of the model.

3.2. The Outcomes of the Proposed Method

First, an investigation of how the descriptors from each group contribute to the model
trained from all descriptors is analyzed. The statistics summary of the descriptors is listed
in Table 1.

After acquiring the optimal subset of descriptors, the contribution of each group is
analyzed by comparing how many variables contribute to the best AUC score and the
importance of each descriptor. Figure 8 shows the different trends of AUC scores as a
function of variable number, where the non-monotonic trend is usually seen due to the
redundancy, resulting in parameter overtraining and clustering degradation. In addition,
the differences among the multi-scale texture descriptors are also clearly seen.
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Based on the observation above, it is necessary to evaluate each descriptor group
first before combining them all together in order to avoid deterioration on the overall
performance. Besides, this can prove the feasibility of the proposed learning framework.

The performance of the three groups of descriptors using the hybrid model were
analyzed first. Among all, as shown in Table 4, the highest AUC is achieved by D3 where
6 variables were chosen for this preliminary classification result. Following the proposed
method, every ranked descriptor was divided into two parts, baseline and complementary
set. The six generated subgroups, or the baseline and the compliment for each of the three
descriptor groups, are shown in Table 5.

Table 4. The preliminary classification results of the two proposed models.

Group ID GLCM Directions MGHM AUC
(Mean ± STD)

MG-CNN AUC
(Mean ± STD)

G1 3 0.846 ± 0.098 0.895 ± 0.064

G2 6 0.875 ± 0.101 0.889 ± 0.061

G3 4 0.892 ± 0.098 0.871 ± 0.074
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Table 5. Two parts of each descriptor divided by forward step feature selection method via SVM classifier.

Descriptor-ID D1 D2 D3

AUC Score 0.854 0.875 0.892

Sub-ID Db
1 Dc

1 Db
2 Dc

2 Db
3 Dc

3

Number of
Variables 65 19 3 165 6 106

After the first step, based on AUC scores, DP was initialized as {Db
3, Dc

3, Db
2, Dc

2, Db
1,

Dc
1}. After selecting Db

3 as the initial baseline, DP became {Db
3, D2, D1, Dc

3}. Then, DP was fed
into MGHL to remove the redundant variables and to improve classification performance
via the proposed bottom-up hierarchical integration. Finally, 17 out of 364 variables were
extracted to form the final descriptor. In terms of classification results, the AUC score
increased from 0.892 to 0.925, while its standard deviation dropped from 0.098 to 0.035.
The changes in AUC score and the chosen variables are listed in Table 6, which illustrates
that the hybrid model has a monotonic learning process.

Table 6. All results of the MGHM over the polyp dataset. Descriptor pool represents the current
candidates and its sequence in each layer. Baseline2 and Baseline3 are two new descriptors generated
by the baselines and the complements of their previous layers.

Layer
Baseline Candidate

Descriptor
Pool (DP)Source Variables AUC (Mean ± STD) Source Selected

Variables

L1 Baseline1

(
Db

3

)
6 0.892 ± 0.098 D2 4 D2, D1, Dc

3

L2 Baseline2 10 0.916 ± 0.038 D1 3 D1, Dc
3

L3 Baseline3 13 0.919 ± 0.036 Dc
3 4 Dc

3

L4
Final

Descriptor 17 0.925 ± 0.035 -

The preliminary classification performances of the MG-CNN are also listed in Table 4.
When compared to the results of using the whole 13 directions, the results indicated that
multiple directions of GLCM could contribute to the classification performance, which
means that GLCM with different directions could provide additional information.

Then, G1 with 3 GLCMs was chosen as the baseline, with the remaining two groups to
be iteratively tested for whether they should be included. Finally, three subgroups were
selected and contributed to a final 0.909 AUC score. In addition, classification performance
from two-scales already achieved better classification performance than using all the
directions without the multiscale concept. The hierarchical learning process is shown in
Table 7 and illustrates that the feature integration scheme was indeed useful to further
optimize the classification performance.

Table 7. The results of MG-CNN over the polyp dataset. Descriptor pool represents the current
candidates and its sequence in each layer. Baseline2 is a new descriptor generated by the baselines
and the complements of their previous layers.

Layer
Baseline Candidate Descriptor

Pool (DP)Source GLCMs AUC (Mean ± STD) Source GLCMs

L1 Baseline1 (G1) 3 0.895 ± 0.064 G2 4 G2, G3

L2 Baseline2 9 0.904 ± 0.047 G3 3 G3

L3
Final

Results 13 0.909 ± 0.051
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3.3. Comparisons with State-of-the-Art Models

In addition to the above presentation of the performance details of the adaptive
learning model for integration of multiscale texture features, the comparisons to several
typical state-of-the-art models are also detailed, including:

• Extended Haralick Measures (eHM)—this descriptor includes all the 364 variables de-
rived from the 28 HMs over the 13 directions and disregards the multi-scale nature [11];

• Post-KL Transformation (KLT) eHMs (eHM+KLT)—this method combines eHMs and
KLT to address the variation problem due to the multi-scale nature by the KLT [11];

• The Least Absolute Shrinkage and Selection Operator (LASSO)—a typical method of
feature selection containing two steps, i.e., feature regularization and feature selection,
for consideration of variation among feature datasets [28,34];

• The SVM Method with Recursive Feature Elimination (SVM-RFE)—another typi-
cal method in feature selection, including feature ranking and feature selection for
consideration of variation among feature datasets [37];

• The Dependence Guided Unsupervised Feature Selection (DGUFS)—a new feature
selection method applies the interdependence among original data, features, and
labels in a joint learning framework to pick features [28];

• VGG16—a typical deep learning method, which is fed by 20 salient slices extracted
from every polyp, where the feature extraction and selection operations are considered
as learning processes [40];

• GLCM-CNN—the state-of-the-art of texture based deep learning model on the task
of polyp diagnosis. It takes the whole 13-directional GLCM as input, ignoring the
correlations among different groups to make decisions [40]. The network structure is
optimized to fit the polyp dataset used.

Table 8 lists the classification performance of all the methods on the polyp mass
dataset, where the AUC, accuracy, sensitivity, and specificity of each model is reported.
The AUC score and accuracy of the proposed method exceeds that of the post-KLT eHMs
(the best result of the six typical methods) by 2% and 3%, respectively. Against VGG-16,
the proposed model improves the AUC score by 10%. Moreover, all ROC curves are also
plotted in Figure 9, where the proposed model’s ROC curve is the top one among the seven.
These ROC curves further demonstrate the advantage of the proposed method over the
others. Based on the graphical judgement in Figure 9 and the quantitative measurements in
Table 8, both results demonstrate the advantages of the two adaptive learning models over
the rest of the methods by a large margin. Moreover, a significance test was performed, as
shown in Table 9, by comparing their prediction probabilities with eight state-of-the-art
methods. All the p-values are less than 0.05, which indicates that the proposed methods
have significant differences from the comparative methods.

Table 8. Four evaluation measurements of proposed and comparative methods.

Method AUC Accuracy Sensitivity Specificity

eHM 0.886 0.797 0.868 0.726

eHM+KLT 0.907 0.814 0.781 0.848

AlexNet (image) 0.779 0.778 0.831 0.726

VGG16 (image) 0.823 0.741 0.714 0.769

LASSO 0.836 0.748 0.791 0.706

SVM-RFE 0.856 0.783 0.775 0.791

DGUFS 0.866 0.806 0.836 0.776

GLCM CNN 0.900 0.856 0.843 0.868

MG-CNN 0.909 0.864 0.866 0.862

MGHM 0.925 0.884 0.891 0.878
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Table 9. p-values from statistical significance analysis over the ten methods using Wilcoxon Signed-
rank Test between the predicted probabilities of these methods.

Method eHM eHM+KLT AlexNet VGG16 LASSO SVM-RFE DGUFS GLCM CNN

MGHM <<0.05 0.0179 <<0.05 <<0.05 <<0.05 <<0.05 <<0.05 0.0204

MG-CNN <<0.05 0.0411 <<0.05 <<0.05 <<0.05 <<0.05 <<0.05 0.0398

4. Discussion

In this paper, a multi-layer adaptive learning model architecture is proposed. Instead
of simply concatenating all the multi-scale texture features together for classification, the
proposed architecture not only integrates multi-scale texture descriptors in an adaptive
manner to consider the associated variation among multiple datasets, but also provides an
effective solution for information redundancy. The primary novelty of this proposed work
was in the weighted grouping of the texture patterns and assigning greater contributions
to those higher weighted groups, instead of using all features entered into the classifier
at the same time. Two schemes, i.e., traditional machine learning-based and CNN-based,
were designed to demonstrate this idea. The proposed design contained two stages. In the
first stage, GLCM was divided into three groups by their individual scales. A baseline was
selected, with the remaining groups ordered by their individual performance. In the second
stage, the three group were integrated into one enhanced descriptor in a hierarchical archi-
tecture by a multi-layer learning scheme. On each layer, a forward stepwise feature selection
method was introduced to selectively add some patterns or variables from complemental
subgroups into the baseline to produce better performances. The greedy procedure guarantees
a monotonically increasing AUC score from the initial descriptor groups at the first layer and
reduces redundant information. Due to the variation among multiple datasets or multiscale
descriptors, the proposed adaptive learning model increased the AUC score from 0.886 to
0.925 via MGHM and from 0.895 to 0.909 via MG-CNN.

When comparing against the deep learning state-of-the-art methods, the following
observations were noted. The VGG16 and AlexNet models performed quite poorly, with
AUC values of 0.823 and 0.779, respectively. These results were expected because deep
learning methods tend to have much higher data requirements to fully train the high-level
features from that methodology, and the dataset used for these experiments is relatively
small. However, the proposed MG-CNN model still attained a significantly higher AUC
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value of 0.909. This showed that the GLCM input for the model already provided some
higher-level texture information, so that the deep learning architecture did not have the
same steep data requirements as the other methods. On a much larger dataset, it is expected
that the VGG16 and AlexNet models will provide closer comparisons to the proposed
models. Against the GLCM-CNN method, which was originally used on the same dataset
as these experiments [40], the value of the proposed weighted grouping was demonstrated
by the higher AUC value. Since the GLCM-CNN model similarly outperformed the VGG16
and AlexNet models, this further reinforced the value of the GLCM as inputs.

When comparing against the other state-of-the-art methods using traditional features
and classifiers, the proposed MGHM still outperforms them significantly. In this category,
the post-KLT eHMs obtained the best classification performance of the comparative meth-
ods likely because the KL transform provides a measure of reducing redundancy of the
texture features through the change of basis representation. Against the other traditional
feature selection methods, the value of the proposed model in further reducing variation
and redundancy to achieve greater classification is even more significantly demonstrated
by AUC values.

Although the presented adaptive learning model is implemented for integration of
multiscale texture features, the integration strategy can be applied to fuse multimodal
datasets, such as the polyp intensity images, the first derivative gradient image and the
second order curvature images that were investigated in Song et al. [6] and Hu et al. [11].
While this work investigated spatial variations through the GLCM, this method may help
expand upon those other models that integrated multiple feature sets. Future studies will
look to expand on the multi-scale texture descriptors to include other types of descriptors
and patterns into a study with a larger dataset.
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