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Background: CDCA7 is a copy number amplified gene identified not only in esophageal
squamous cell carcinoma (ESCC) but also in various cancer types. Its clinical relevance
and underlying mechanisms in ESCC have remained unknown.

Methods: Tissue microarray data was used to analyze its expression in 179 ESCC
samples. The effects of CDCA7 on proliferation, colony formation, and cell cycle were
tested in ESCC cells. Real-time PCR and Western blot were used to detect the
expression of its target genes. Correlation of CDCA7 with its target genes in ESCC
and various SCC types was analyzed using GSE53625 and TCGA data. The mechanism
of CDCA7 was studied by chromatin immunoprecipitation (ChIP), luciferase reporter
assays, and rescue assay.

Results: The overexpression ofCDCA7 promoted proliferation, colony formation, and cell
cycle in ESCC cells. CDCA7 affected the expression of cyclins in different cell phases.
GSE53625 and TCGA data showed CCNA2 expression was positively correlated with
CDCA7. The knockdown of CCNA2 reversed the malignant phenotype induced by
CDCA7 overexpression. Furthermore, CDCA7 was found to directly bind to CCNA2,
thus promoting its expression.

Conclusions: Our results reveal a novel mechanism of CDCA7 that it may act as an
oncogene by directly upregulating CCNA2 to facilitate tumor progression in ESCC.
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BACKGROUND

Esophageal cancer which accounts for 11% of diagnosed cancers
was the fourth most common cancer type. In China, the
dominant histologic type of esophageal cancer is esophageal
squamous cell carcinoma (ESCC) which causes more than
175,000 deaths every year (1). The 5-year survival rate of
ESCC which ranges from 22% to 30% still tends to be low
because of the limitation of technical developments for early
diagnosis and treatment (2). However, the advent and
progression of next-generation sequencing (NGS) in recent
years has given us some achievements on ESCC (3–7).

In our previous WGS analysis of 31 ESCC tumor tissues and
matched adjacent non-tumor tissues, we identified some genes
with copy number variation, including cell division cycle-
associated 7 gene (CDCA7), that was amplified in 5 out of 31
ESCC patients (8). CDCA7 is located on 2q31.1. It is
characterized as a c-Myc and E2F responsive gene that
participates in neoplastic transformation (9, 10). It has been
reported that the expression of CDCA7 is elevated in a high
fraction of human lung, colon, ovary, rectum, stomach, and
uterus cancer types, suggesting that CDCA7 may play a crucial
role in cancer development (11–13). A recent study showed that
the high expression of CDCA7 predicted poorer disease-free
survival in patients with triple-negative breast cancer (TNBC)
and was associated with metastatic relapse status (14). One
research in lung adenocarcinoma reported that CDCA7
promoted lung adenocarcinoma proliferation through
regulating the cell cycle, while its mechanism has not been
completely elucidated yet (15). Meanwhile, CDCA7 as a DNA-
binding protein can function as a transcription regulator to
mediate the tumor-promoting effect (9).

CCNA2, which is synthesized at the beginning of S-phase (16,
17), binds and activates cyclin-dependent kinases (CDK) CDK2
and CDK1, the catalytic partners of CCNA2. The CDK2/CCNA2
complex is the machinery that drives the progression of S-phase.
In the S-phase of the cell cycle, the CCNA2–CDK complex can
phosphorylate key substances in the process of DNA replication,
such as CDC6. This phosphorylation is crucially important for
the initiation of DNA replication. It is possible that CCNA2–
CDK contributes to tumorigenesis by the phosphorylation of
oncoproteins and the increased expression level of CCNA2
accelerates cell proliferation once the tumor has formed (18–
20). Increased expression of CCNA2 has been observed in
various types of cancer such as lung, breast, liver, cervical, and
others (18, 21–24). The expression level of CCNA2 is closely
related with cell proliferation; thus, it is used as a proliferation
marker for the molecular diagnosis of cancer (18). Meanwhile,
the expression of CCNA2 appears to be of prognostic value for
the prediction of survival and early relapse in many types of
cancer (18, 25).

In our study, we analyzed the copy number amplification data
from The Cancer Genome Atlas (TCGA) database in various
types of tumors and the correlation between CDCA7 expression
level and clinical variables in ESCC using the mRNA expression
data from the GEO database. Furthermore, we verified that
CDCA7 has as a tumor-promoting role in ESCC, and
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elaborated on its potential mechanisms of carcinogenesis. Our
results show that CDCA7 may bind to CCNA2 to upregulate its
expression. Therefore, increased CCNA2 promotes the
proliferation of ESCC cells, thus promoting tumor growth. Our
study provides useful clues for more effective therapeutic
strategies against ESCC.
METHODS

Clinical Samples
The copy number data were obtained from our study. The tumor
and the matched adjacent non-tumor samples were recruited
from Shanxi Cancer Hospital of Shanxi Medical University. The
patients were without preoperative chemotherapy, radiotherapy,
and other treatments before operation, and written consent was
obtained from all of them. Hematoxylin and eosin (H&E)
staining was used to diagnose these tissues, and the diagnosis
was performed by at least two pathologists independently. The
ESCC individuals were staged according to the American Joint
Commission for Cancer (AJCC)/International Union Against
Cancer (UICC) TNM staging system (eighth edition). The study
was approved by the Institutional Reviewing Board (IRB) and the
Research Committee of Shanxi Medical University.

Cell Lines and Cell Culture
ESCC cell lines KYSE150, KYSE180, KYSE450, and TE-1 and
immortal embryonic esophageal epithelium cell lines NE3 and
HET-1A used in the research were purchased from the Cell Bank
of Type Culture Collection of the Chinese Academy of Sciences.
The cell line 293T was from our lab. The cell lines KYSE150,
KYSE180, KYSE450, and TE-1 were cultured in HyClone™

RPMI-1640 medium, and the cell lines HET-1A and 293T
were cultured in HyClone™ DMEM/High Glucose medium
(GE Healthcare Life Sciences, HyClone Laboratories, Logan,
UT, USA). The culture was with 10% fetal bovine serum (FBS;
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA). The
cell line NE3 was cultured in a 1:1 mixture of EpiLife medium
(Cascade Biologics, Inc., Portland, OR, USA) and defined
keratinocyte serum-free medium (dKSFM; Gibco; Thermo
Fisher Scientific, Inc., Waltham, MA, USA). All of the cell lines
were cultured at 37°C, 5% CO2. The culture medium was
replaced according to the cell state. Subculture was carried out
when the cell fusion was about 80%–90%.

Overexpression and Knockdown of
CDCA7 in ESCC Lines
SiRNAs or plasmids were transfected into the cells at the
logarithmic growth phase using Lipofectamine 2000 reagent
(Invitrogen, Carlsbad, CA) according to the instructions of the
manufacturer. For knockdown of endogenous CDCA7, we used
vectors containing the sequence 5′-GCCCTCAGAGAATT
CTGTGACTGAT-3′ (CDCA7-si1) and 5′-CATCCGTGAC
CCTTCCGCATATAAT-3′ (CDCA7-si2). These shRNAs were
cloned into the vector pHBLV-U6-Scramble-ZsGreen-Puro
vector. For stable overexpression, the coding sequence (CDS)
region of the CDCA7 gene was cloned into pHBLV-CMV-MCS-
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3FLAG-EF1-ZsGreen-T2A-PURO. The recombinant plasmids and
the packaging plasmids (Hanbio Biotechnology Co., Ltd., Shanghai,
China) were co-transfected into 293T cells. The lentivirus
supernatant was used to infect the KYSE150, KYSE450, and
KYSE180 cell lines. The negative control was the corresponding
empty vectors. The KYSE150 and KYSE450 knockdown stable cell
lines and the KYSE180 overexpression stable cell line were screened
out for 7–14 dayswith 1.0, 1.0, and 0.8 µg/ml puromycin (Invitrogen;
Thermo Fisher Scientific, Inc.), respectively. The efficiency of
knockdown and overexpression was determined by real-time PCR
andWesternblot assay.Weused small interferenceRNA(siRNA) for
CCNA2 knockdown, and the siRNA sequence information is as
follows:CCNA2-si1, 5′-CTATGGACATGTCAATTGT-3′;CCNA2-
si2, 5′-GAGTGTTAATGAAGTACCA-3′. The CDS of CDCA7 and
CCNA2geneswascloned into thepcDNA3.1vectorwithaV5tagand
6*His tag.

MTT Assay
The MTT assay was performed using a 96-well plate with 5 × 103

transfected cells each well and cultured for 24–120 h. A 20-µl
MTT solution (5 mg/ml) was added to a 200-µl culture medium
each well for 4 h at 37°C. The MTT formazan crystals that
remained after removing the medium were then solubilized in
dimethyl sulfoxide (DMSO) for 15–20 min. The absorbance was
measured by a spectrophotometer at 490 nm to show the relative
number of surviving cells in each well indirectly.

Colony Formation Assay
A total of 1,000 cells/well were seeded into six-well plates and
incuba ted a t 37°C and 5% CO2 for 10–15 days .
Polyformaldehyde (4%) was used to fix these cells and 1%
crystal violet was used to stain these cells subsequently. The
numbers of colonies containing more than 10 cells were counted.

Flow Cytometry Analysis
Cells collected were fixed with 70% alcohol and stored overnight
at−20°C. Propidium iodide (PI) was used to stain the collected cells
according to the instructions of themanufacturer. The stained cells
were analyzed using a flow cytometer (BD Company, USA).

Immunofluorescence
KYSE150, KYSE180, and KYSE450 cells were transfected with
CDCA7-V5 plasmid and empty vector, respectively.
Formaldehyde (4%) was used to fix the cells for 10 min. BSA
(1%) was used to incubated the cells for 1 h to block non-specific
protein–protein interactions after permeabilized by 0.1% Triton
X-100. The cells were incubated with the primary antibody rabbit
anti-V5 (Abcam, Cambridge, UK, 2 µg/ml) overnight at 4°C.
Alexa Fluor® 594 goat anti-rabbit IgG antibody (Thermo Fisher,
Carlsbad, USA, 1:1,000) was used for 30 min at room
temperature after washing four times in PBS. DAPI at a
concentration of 0.5 µg/ml was used to stain the cell nuclei.

Chromatin Immunoprecipitation
Sequencing Assay
KYSE150 cells were transfected with the V5-tagged CDCA7
plasmid for the chromatin immunoprecipitation (ChIP) assay.
Frontiers in Oncology | www.frontiersin.org 3
The assay was performed according to the instructions of the
manufacturer (Millipore, Burlington, MA, USA). The DNA
fragments were enriched by anti-V5 antibody (Abcam,
Cambridge, UK), and the isotype IgG (Abcam, Cambridge,
UK) was used as a negative control. CHIP-seq was performed
by Novogene (Beijing, China). Screening and quality control of
the CHIP-seq were based on standard protocol. The sequences of
primers used for the amplification of CCNA2 genome regions
containing a putative CDCA7 binding site are listed in Table S1.

Western Blot
The cells were lysed for 1 h with RIPA buffer containing protease
and phosphatase inhibitors (Thermo Fisher Scientific) on ice.
The components of RIPA buffer are as follows: 1% Triton X-100,
50 mM Tris–HCl, pH 7.6, 150 mM NaCl, 1% sodium
deoxycholate, and 0.1% SDS. The lysates were centrifuged at
12,000g at 4°C for 30 min, and the total protein concentrations of
supernatant were determined by the Bradford method. Fifty
micrograms of protein was separated by 10% SDS-PAGE and
then transferred onto polyvinylidene fluoride (PVDF)
membranes (Millipore, USA). The membrane was incubated
with special antibodies, including CDCA7, CCND1, CCNA2,
CCNE1, and GAPDH, at 4°C overnight. The IRDye 800CW
secondary antibody (Abcam, Cambridge, UK) was used to detect
the blot. A relative amount of protein was normalized to
GAPDH level. The antibodies used in this experiment are
shown as fo l lows : CDCA7 (Sigma, USA) , CCND1
(Proteintech, Rosemont, IL, USA), CCNA2 (Proteintech,
Rosemont, IL, USA), CCNE1 (Proteintech, Rosemont, IL,
USA), and GAPDH (Proteintech, Rosemont, IL, USA).

RNA Extraction and Real-Time PCR
Total RNA of ESCC cells was purified using RNAiso plus
(Takara, Dalian, China). Two micrograms of total RNA was
used for complementary DNA (cDNA) synthesis using a
PrimeScript® RT reagent kit with gDNA Eraser (Takara). TB
Green® Premix Ex Taq® II kit (Takara) was used in real-time
PCR according to the instruction of the manufacturer. All real-
time PCR reactions were performed in triplicate with an Applied
Biosystems Step One Plus (ABI, Foster City, CA, USA). The
relative expression levels of the target genes were normalized to
endogenous GAPDH. Quantification of the expression levels of
target genes was calculated using the 2−DDCt formula. The
primers synthesized by Thermo Fisher are listed in Table S2.

Dual-Luciferase Reporter Assay
According to the results of ChIP-seq, we cloned the CDCA7
DNA-binding fragment with CCNA2 from the KYSE150 cell line
genomic DNA. The cloned DNA fragment was constructed into
the reporter plasmid of pGL3-promoter (Promega, Madison, WI,
USA). Then, we divided this DNA fragment into four segments
and constructed them into the pGL3-promoter vector. The
different DNA fragments were cloned using the primers listed
in Table S3. Six motif sequences obtained from ChIP-seq were
also constructed into pGL3-promoter vector. Cells (3 × 104) were
cultured in triplicate in 24-well plates for 12–24 h. Then, the
pGL3 reconstruction reporter plasmids were transiently co-
October 2021 | Volume 11 | Article 734655
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transfected with the pRL-TK plasmid into KYSE150 and
KYSE150 knockdown cells using Lipofectamine 2000 reagent
(Invitrogen, Carlsbad, CA). After transfection for 48 h, luciferase
and Renilla signals were measured according to the instruction of
Dual-Luciferase Reporter Assay Kit (Promega, Madison, USA).

Mouse Xenograft Assay
The effects of CDCA7 on tumorigenesis and growth in vivo were
detected viamouse xenograft assay. We used 20 5- to 6-week-old
female NU-Foxn1nu nude mice (Vital River Laboratory Animal
Technology Co., Ltd., Beijing, China) for the mouse xenograft
assay. A total of 3 × 106 KYSE150-NC cells or CDCA7-
knockdown stable KYSE150 cells were used to inject into the
right or left oxter of female NU-Foxn1nu nude mice, respectively.
Tumor size and weight were determined with calipers and
balance twice a week. The mice were executed and the tumors
were removed after 28 days. The formula V = (W2 × L)/2 was
used to calculate the tumor volume. V is the tumor volume,W is
the tumor width, and L is the tumor length. Tumor size was
presented as mean ± standard deviation (SD).

Immunohistochemistry
The isolated xenograft tumor tissues were fixed using formalin
and embedded by paraffin for immunohistochemical staining.
Briefly, xylene and a series of grades of alcohol were used to
deparaffinize and rehydrate these sections, and the sections were
then soaked with 3% H2O2 15 min. Sodium citrate buffer (pH
6.0) or Tris-EDTA buffer (pH 9.0) were used for antigen retrieval
for 4 or 3 min in a pressure cooker, followed by incubation with
primary antibody at 4°C overnight. The slides were incubated
with second antibody at 37°C for 20 min after washing with PBS
and then stained with DAB and counterstained with
hematoxylin. The expression of CDCA7, Ki-67, and CCNA2
was quantitatively analyzed with Aperio Cytoplasma 2.0 software
by immunohistochemistry. The antibodies used in this
experiment are shown as follows: CDCA7 (Sigma, USA, 1:200
dilution), Ki-67 (Abcam, Cambridge, UK), and CCNA2
(Proteintech, Rosemont, IL, USA, 1:2,000 dilution).

Bioinformatics and Data Analysis
The mRNA expression data and the clinical information of 179
ESCC tissues and paired non-tumor tissues by microarray
analysis were from a previous study by Li et al. (26) and
downloaded from the GEO database (GSE53625). The copy
number data were obtained from our other study.

The copy number data of CDCA7 in varied cancer types,
including ESCC, ECA, lung squamous cell carcinoma (LUSC),
head and neck squamous cell carcinoma (HNSC) collected from
the TCGA database, were downloaded via cBioPortal for Cancer
Genomics (https://www.cbioportal.org/) (27, 28). The expression
data of CDCA7 and CCNA2 in different cancer types such as
ESCC, LUSC, HNSC were downloaded from TCGA via Xena
Browser (https://xenabrowser.net/heatmap/).

Statistical Analyses
Each of the experiment in the study was performed in triplicate,
and data were presented as the mean ± SEM. Statistical Package for
Frontiers in Oncology | www.frontiersin.org 4
Social Science for Windows (SPSS, version 20.0; IBM Inc., USA)
was used to analyze the experimental data. The means of two
groups and more than two groups were compared using Student’s
t-test and one-way ANOVA, respectively. P-value of <0.05 was
considered to be statistically significant. GraphPad Prism software
was used to analyze the correlations between CDCA7 and CCNA2
using non-parametric correlation (Spearman).
RESULTS

CDCA7 Was Frequently Amplified in ESCC
In our previous study, CDCA7 was identified as one of the copy
number amplification genes in ESCC (8). Here, we analyzed the
copy number amplification data from TCGA through cBioPortal
and found that the copy number amplification of CDCA7 existed
in various kinds of tumor. Its alteration frequency was much
higher in ESCC than in other tumors (Figure 1A). Furthermore,
we analyzed the mRNA expression data of 179 pairs of ESCC
tumors and adjacent normal tissues via microarray analysis. The
mRNA expression data and the clinical information of 179 ESCC
tissues and paired non-tumor tissues by microarray analysis were
from a previous study by Li et al. and downloaded the from the
GEO database (GSE53625) (26). We observed that CDCA7
showed statistically higher expression levels in most of the
individuals compared with that of normal tissues (Figure 1B).
After analyzing the copy number amplification and expression of
CDCA7 in 95 ESCC patients in the TCGA database, we found
that there was a correlation between the expression of CDCA7
and the copy number amplification, indicating that the CDCA7
copy number amplification may cause to increase its
expression (Figure 1C).

The cohort of 179 patients was divided into two groups
according to the expression level of CDCA7. The top 25% of
patients were defined as the patients with a higher level (named
as CDCA7high) and the remaining 75% were defined as the
patients with a lower level (named as CDCA7low) according to
the expression level of CDCA7 from high to low. Then, we
analyzed the correlation between the expression of CDCA7 and
the clinical variables in ESCC. The results in Table 1 show that
the expression of CDCA7 was related to the grade of ESCC
patients (P = 0.0083). The patients with CDCA7high had a poor
grade compared with the CDCA7low patients. Furthermore, the
patients with CDCA7high had a worse survival than those with
CDCA7low (log rank P = 0.01, Figure 1D) using Kaplan–Meier
survival analysis. The multivariate analysis showed that TNM
stage [hazard ratio (HR) = 2.662, 95% CI: 1.593–4.449,
P < 0.001], location (lower vs. upper) (HR = 2.718, 95% CI:
1.336–5.530, P = 0.006), age (HR = 1.657, 95% CI: 1.074–2.558,
P = 0.022), and CDCA7 expression (HR = 1.999, 95% CI: 1.241–
3.218, P = 0.004) were independent predictive factors for overall
survival (Figure 1E). Furthermore, CDCA7 was related with the
survival status in patients in the male group (P = 0.001), age <60
group (P = 0.02), drinking group (P < 0.001), smoking group
(P = 0.014), T1+T2 group (P = 0.019), N0+N1 group (P = 0.026),
and TNM stage = III group (P = 0.025) (Figures S1, S2). Hence,
we speculate the copy number amplification and high expression
October 2021 | Volume 11 | Article 734655
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level of CDCA7 may promote the occurrence and development
of ESCC.

CDCA7 Promotes Cell Proliferation,
Colony Formation, and Cell Cycle
of ESCC Cells
To verify the biological roles of CDCA7 in ESCC, we first analyzed
the mRNA and protein expression levels in immortal embryonic
esophageal epithelium cell lines NE3 and HET-1A and ESCC cell
lines including KYSE150, KYSE180, KYSE450, and TE-1 via
Frontiers in Oncology | www.frontiersin.org 5
quantitative real-time PCR (q-RTPCR) and Western blot (Figure
S3). In all these cell lines, we selected KYSE150 and KESE450 as
relatively high endogenous CDCA7 level cell lines for knockdown
experiments. KYSE180 was selected as low endogenous CDCA7
level cell line for overexpression. The efficiency of overexpression
and knockdown were verified by Western blot, respectively
(Figures 2A, B). Then, we detected the changes in cell
phenotypes, including proliferation, colony formation, and cell
cycle. The results showed that CDCA7 silencing significantly
inhibited the ability of cell proliferation and colony formation in
A

B

D E

C

FIGURE 1 | CDCA7 expression predicts the prognosis of esophageal squamous cell carcinoma (ESCC) patients. (A) The CDCA7 copy number amplification of
various kinds of tumor in the TCGA database. (B) ESCC tumor tissues had a high CDCA7 expression compared with its non-tumor tissues using non-paired t-test
and paired t-test; P < 0.001. (C) The correlation analysis between CDCA7 copy number amplification and expression (r = 0.4081, P < 0.0001). (D) The patients with
CDCA7low had better survival than those with CDCA7high (log rank P = 0.01) using Kaplan–Meier survival analysis. (E) Multivariate analysis showed that TNM stage
[hazard ratio (HR) = 2.662, 95% CI: 1.593–4.449, P < 0.001), location (lower vs. upper) (HR = 2.718, 95% CI: 1.336–5.530, P = 0.006), age (HR = 1.657, 95% CI:
1.074–2.558, P = 0.022), and CDCA7 expression were independent predictive factors for overall survival (HR = 1.999, 95% CI: 1.241–3.218, P = 0.004).
October 2021 | Volume 11 | Article 734655
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KYSE150 and KESE450 (Figures 2C, E), while overexpression of
CDCA7 increased the ability of cell proliferation and colony
formation markedly (Figures 2D, F). Meanwhile, the results of
flowcytometry indicated thatCDCA7overexpressiondecreased the
proportion of G1-phase cells and increased the proportion of G2 +
M-phase cells (Figure 2H). On the contrary, CDCA7 silencing
significantly increased the proportion of G1-phase cells and
decreased the proportion of G2 + M-phase cells (Figure 2G).

To confirm the oncogenic role ofCDCA7 in vivo, we established
a subcutaneous transplantation tumor model in female NU-
Foxn1nu nude mice using stable CDCA7-knockdown KYSE150
andKYSE150 cells. Fourweeks later, tumors were stripped after the
mice were sacrificed. The tumor growth rate of the KYSE150 group
was significantly faster than that of the CDCA7-knockdown group
(Figure 2I). The results found that the mean tumor volume of the
CDCA7-knockdown group and the control group was
158.74 ± 24.83 and 488.41 ± 35.84 mm3, respectively (t-test,
P < 0.001, Figure 2I). The mean tumor weight of the control
group and the CDCA7-knockdown group was 209.61 ± 108.84 and
54.23 ± 19.39 mg, respectively (t-test, P < 0.001, Figure 2I).

Cyclins Were Identified as CDCA7 Targets
by ChIP-Sequencing
Immunofluorescence assay was performed in KYSE150,
KYSE450, and KYSE180 cells to affirm whether CDCA7
Frontiers in Oncology | www.frontiersin.org 6
expresses in the nucleus as CDCA7 was found to be a DNA-
binding protein and can serve as a transcription regulator (9, 11,
14). The results showed that CDCA7 was located in both the
cytoplasm and the nucleus (Figure S4).

Since CDCA7 may act as a transcription regulator, chromatin
immunoprecipitation sequencing (ChIP-seq) technology was
applied to screen a wide range of DNA fragments interacting
with CDCA7. Genome-wide mapping of CDCA7-binding profile
by ChIP-seq identified 14,930 binding events (P < 10−3),
associated with 11,897 unique genes following a nearest gene
annotation. As shown in Figure 3A, most (12,462/14,930) of the
binding events occur at a distance about 2,000 bp from the
transcriptional start site (TSS) of genes, which is generally
considered to be the gene promoter region and activation
region. These results suggested that CDCA7 may play a role as
a transcription factor or transcription regulatory factor. Next, we
performed a KEGG pathway enrichment analysis on the 11,897
unique genes which were associated with the DNA fragments
obtained from ChIP-seq. The KEGG pathway enrichment
analysis showed that target genes were enriched in the
pathways including pathways in cancer, cell cycle pathway,
PI3K–Akt signaling pathway, MAPK signaling pathway, Ras
signaling pathways, and Hippo signaling pathways, which may
contribute to ESCC cell proliferation and tumorigenesis
(Figure 3B). Among the DNA fragments obtained from ChIP-
seq, some of them were located in the promoter region of the cell
cycle related genes, i.e., 3,000 bp before the transcription
initiation site. These genes include CCND1, CCNE1, CCNA2,
etcetera (Figure 3C). Bdg files, such as the CDCA7_V5.bdg and
Control.bdg shown in Figure 3C, are the corresponding
bedgraph format track files provided by the company, which
are convenient to view the position distribution of reads on the
genome under different resolution conditions. CDCA7_V5.bdg
represents the DNA fragments that can bind to CDCA7 detected
by the anti-V5 antibody, and Control.bdg is the DNA fragments
of the input group. When we opened the bdg files in the UCSC
database and compared CDCA7_V5.bdg with Control.bdg, the
location of the peak is the binding site of CDCA7 with the three
cyclins. As shown in Figure 3C, CDCA7 binds with CCND1 at
the position of −3,732 to −2,502 bp, binds with CCNA2 at the
position of −74 to 734 bp, and binds with CCNE1 at the positon
of −53 to 925 bp from each transcription start site, respectively.
At the same time, when the binding of H3K4Me1 and H3K21Ac
was displayed on the genome in the UCSC database, we found
that apart from CCNE1, CDCA7, and H3K4Me1, H3K27Ac
shared the same binding position in CCND1 and CCNA2
genomes. These findings once again suggested that CDCA7
may play a role as a transcription factor or transcription
regulator to regulate the expression of cyclins.

CCNA2 May Be the Downstream Target
Gene of CDCA7
Since the results of ChIP-seq showed that CDCA7 may act as a
transcription regulator to regulate the expression of cyclins, we
detected the mRNA and protein levels of the three cyclins in
CDCA7 overexpression and knockdown stable cell lines. We
TABLE 1 | Correlation analysis between CDCA7 copy number in ESCC and
clinicopathological variables.

Clinical
features

Total
(n = 179)

CDCA7High
(n = 44)

CDCA7Low
(n = 135)

P-value

Age
<60 91 24 67 0.571
≥60 88 20 68

Gender
Female 33 10 23 0.398
Male 146 34 112

Location
Upper 20 5 15 0.794
Middle 97 22 75
Lower 62 17 45

Smoking
Never 65 15 50 0.724
Yes 114 29 85

Drinking
Never 73 17 56 0.739
Yes 106 27 79

Grade
Well 32 6 26 0.008
Moderately 98 18 80
Poorly 49 20 29

T stage
1 + 2 39 12 27 0.310
3 + 4 140 32 108

LN stage
N0–N1 145 34 111 0.467
N2–N3 34 10 24

TNM stage
1 + 2 87 23 64 0.576
3 + 4 92 21 71
In bold: P<0.05 was considered to be statistically significant.
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found that the expression level of the CCNA2 was significantly
decreased when CDCA7 was knocked down and vice versa
(Figures 4A, B). Meanwhile, we verified the correlation
between CDCA7 and the three cyclins using the mRNA data of
96 ESCC tissues in the TCGA database. The results (Figure 4C)
showed that there was a weak positive correlation between
Frontiers in Oncology | www.frontiersin.org 7
CDCA7 and CCND1 (r = 0.2121, P = 0.038) and a strong
positive correlation between CDCA7 and CCNA2 (r = 0.6527,
P < 0.0001), while there was no correlation between CDCA7 and
CCNE1 (r = −0.0528, P = 0.6116). Next, we analyzed the mRNA
expression data of ESCC (n = 358) in GSE53625. Based on the
mRNA expression data of ESCC (n = 358), CDCA7 was positively
A B
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C

FIGURE 2 | The effect of CDCA7 gene in ESCC cell lines. (A) The CDCA7 knockdown efficiency in KYSE150 and KYSE450 cells. (B) The CDCA7 overexpression
efficiency in KYSE180 cells. (C) CDCA7 knockdown inhibited the proliferation of ESCC Cells. (D) CDCA7 overexpression promoted the proliferation of ESCC cells.
(E) CDCA7 knockdown inhibited the ability of colony formation in ESCC cells. (F) CDCA7 overexpression promoted the ability of colony formation in ESCC cells.
(G) CDCA7 knockdown inhibited the cell cycle of ESCC cells. (H) CDCA7 overexpression promoted the cell cycle of ESCC cells. (I) Tumor growth was inhibited
significantly in the CDCA7-knockdown group compared with the control group in vivo. Left: tumor tissues in the CDCA7-knockdown group and the control group;
right: tumor weight and tumor growth curve. (0.01 < P ≤ 0.05, *; 0.001 < P ≤ 0.01, **; P ≤ 0.001,***).
October 2021 | Volume 11 | Article 734655

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. CDCA7 Regulates CCNA2 in ESCC
correlated with CCNA2 (r = 0.7047, P < 0.0001). Interestingly,
when the mRNA expression data of other types of SCC in the
TCGA database were analyzed, we found that CDCA7 was
positively correlated with CCNA2 in LUSC (n = 501,
r = 0.4995, P < 0.0001) and HNSC (n = 502, r = 0.5771,
P < 0.0001) (Figure 4D). Immunohistochemistry was further
used to detect the tumor tissue stripped from nude mice with
anti-CDCA7, anti-CCNA2, and anti-Ki-67 antibodies. The
results showed that the staining intensity of CCNA2 and Ki-67
Frontiers in Oncology | www.frontiersin.org 8
in the CDCA7 knockdown group was obviously weaker than that
of the KYSE150 group (Figure 4E). The H-score of CCNA2 and
Ki-67 in CDCA7-knockdown group (181.344 ± 17.549 and
7.84 ± 0.200) was significantly lower than that in the control
group (91 .19 ± 9 .07 and 58 .59 ± 0 .626) ( t - t e s t ,
P < 0.001, Figure 4E).

These results revealed that the CDCA7 probably affected the
cell cycle progression, occurrence, and development of cancers
through regulating the expression of CCNA2.
A

B

C

FIGURE 3 | Cyclins may be the downstream genes regulated by CDCA7 as a transcription regulator. (A) Most of the binding sites of CDCA7 with DNA located at
the position of 2,000 bp before the transcription initiation site of the genes. (B) The pathway enrichment analysis of the DNA fragments obtained from ChIP-
sequencing. (C) CDCA7 binds with CCND1 at the position of −3,732 to −2,502 bp, binds with CCNA2 at the position of −74 to 734 bp, and binds with CCNE1 at
the positon of −53 to 925 bp from each transcription start site, respectively.
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FIGURE 4 | CCNA2 may be the downstream target gene of CDCA7. (A) The protein expression levels of CCND1, CCNA2, and CCNE1 in CDCA7 knockdown cell
lines and CDCA7 overexpression cell lines. (B) The mRNA expression levels of CCND1, CCNA2, and CCNE1 in CDCA7 knockdown cell lines and CDCA7
overexpression cell lines. (C) CDCA7 was positively correlated with CCND1 expression (r = 0.2121, P = 0.038) and CCNA2 expression (r = 0.6527, P < 0.0001),
while it was not correlated with CCNE1 expression (r = −0.0528, P = 0.6116). (D) The correlation of CDCA7 and CCNA2 expression in ESCC, LUSC, and HNSC;
correlation coefficient (r) and P-values were shown in the figures. P < 0.05 was considered statistically significant. (E) IHC assay showed CDCA7, CCNA2, and Ki-67
expression in CDCA7 knockdown xenograft tumor tissue and the control group tissue. Scale bar = 100 mm (P > 0.05, NS; 0.01 < P ≤ 0.05, *; 0.001 < P ≤ 0.01,**;
P ≤ 0.001,***).
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CDCA7 Regulates CCNA2
Expression Through Binding to
the Target Regions of CCNA2
The binding region of CDCA7 on CCNA2 started from position
−74 to 734 bp relative to the TSS, and we constructed the −90 to
809 bp into the pGL3 promoter vector for the dual-luciferase
assay subsequently. The reason why we expanded the region of
the DNA fragment is the high GC content of the DNA sequence
near 734 bp and there is no way to design a suitable pair of PCR
primers. To explore the binding domain of CDCA7, the interval
from −83 to 809 bp was divided into four segments randomly.
The four segments were −90 to 130, 113–292, 275–476, and 456–
809 bp. Dual-luciferase assay indicated that the 456–809-bp
region of the CCNA2 was the core element regulated by
CDCA7 (Figure 5A). To understand the molecular mechanism
Frontiers in Oncology | www.frontiersin.org 10
for the activity of CDCA7 in regulating gene transcription, a de
novo search for DNA-enriched motifs was performed within the
binding fragments and five predicted motifs were obtained. Each
of the motifs corresponded to some transcription factor at
different degrees (Figure 5B). To demonstrate whether
CDCA7 acts its role as a transcription factor or a transcription
regulator factor by binding with DNA through these motifs, we
constructed the sequences of the motifs into pGL3-promoter
vectors for dual-luciferase reporting experiments, the results
revealed that motif-1 (5′-TAGACAAGAGTT-3′), motif-2 (5′-
GTGATCAGTGCAGA-3′), motif-3 (5′-CTGGAACAGCAC-
3′), motif-4 (5′-GTGTGTGTGTGT-3′), and motif-5 (5′-
AGTAGTAGTA-3′) might be the functional binding sites of
CDCA7 with DNA (Figure 5D). Next, we compared these motifs
with the sequences from −74 to 734 bp and found five DNA
A B

D

E F

C

FIGURE 5 | CDCA7 directly binds to CCNA2 and increases its transcription activity in ESCC cells. (A) CDCA7 binds with CCNA2 from −74 to 734 bp in the
ChIP-seq and luciferase reporter assays showed that 456 to 809 bp of CCNA2 were the core regions regulated by CDCA7. (B) Five predicted motifs were
analyzed from the DNA-binding fragments obtained from the ChIP-seq. (C) Five DNA fragments in the 456–809-bp region were highly similar to motif-1, motif-2,
motif-3, motif-4, and motif-5. (D) Luciferase reporter assays showed that CDCA7 may regulate the transcription of the target genes through the five motifs.
(E) ChIP-PCR showed that CDCA7 binds to the CCNA2 at the position of 484–495, 641–654, 670–679, and 711–722 bp in ESCC cells. (F) Luciferase reporter
assays showed that CDCA7 could not activate the expression of downstream reporter gene when the four binding sites of 484–495, 641–654, 670–679, and
711–722 bp were knocked out. (P > 0.05, NS; P ≤ 0.001,***).
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fragments highly similar to the five motifs located in the 456–
809-bp region (Figure 5C). We inferred that the five DNA
segments may be the functional binding sites of CDCA7 with
CCNA2. In order to further research whether CDCA7 directly
binds to CCNA2 through these sites, ChIP-PCR was performed.
We found that CDCA7 bound to the DNA fragment from 484 to
495, 641 to 654, 670 to 679, and 711 to 722 bp in the CCNA2
genomic region (Figure 5E). To identify whether CDCA7
regulates CCNA2 through these binding sites, we constructed a
dual-luciferase reporter plasmid with the segments of CCNA2
from −90 and 809 bp which deleted the 484–495, 641–654, 670–
679, and 711–722 bp. The results showed that CDCA7 could not
activate the expression of downstream reporter gene when the
four binding sites were knocked out (Figure 5F). It proved again
that CDCA7 may regulate the transcription and expression of
CCNA2 by binding with these four binding sites.

CDCA7 Promotes Cell Cycle Through
Regulating CCNA2
To confirm whether CDCA7 promotes cell cycle through
CCNA2, we carried out the interference and rescue experiment
of CCNA2. The results showed that forced overexpression of
CCNA2 in CDCA7 knockdown ESCC cells (Figure 6A) was
performed, and a series of phenotype changes had been identified
in ESCC cells. The results showed that CCNA2 overexpression
promoted the proliferation and colony formation (Figure 6B)
induced by CDCA7 knockdown in KYSE450 cells. Meanwhile,
when we silenced its expression in CDCA7 overexpression ESCC
cells (Figure 6C), the results of cell phenotype experiments
showed that knockdown of CCNA2 can reduce cell
proliferation and colony formation ability (Figure 6D) induced
by CDCA7 overexpression in KYSE180 cells. These results
suggested that the acceleration effect of CDCA7 on cell cycle
may depend on its transcription regulation of CCNA2, and
CCNA2 inhibition may partially reverse the cell proliferation
progression induced by CDCA7 overexpression.

The results indicated that CDCA7 gene might act as a tumor
promoter in ESCC and its copy number amplification or
increased expression may accelerate the cell cycle process and
promote cell proliferation by binding to the genome of CCNA2
functional domain and increasing its expression in ESCC. When
CDCA7 is knocked down or decreased, its transcription
regulation effect is attenuated, and the cell cycle process and
the cell proliferation of ESCC are inhibited as the expression of
CCNA2 is depressed. Furthermore, the mechanism that CDCA7
acts as an oncogene possibly through regulation of cell
proliferation might be applied in various types of SCC.
DISCUSSION

Previous reports showed that overexpression of CDCA7 predicts
poor prognosis and tumor progression in human breast cancer,
lung adenocarcinoma and lymphoma, colorectal cancer, and
pancreatic diseases (29–33). In this study, we uncovered the
potential prognostic value of CDCA7, one of the copy number
Frontiers in Oncology | www.frontiersin.org 11
altered genes, for ESCC patients; revealed the tumor-promoting
role of CDCA7 gene; and explored its possible mechanism in
ESCC for the first time. CDCA7 was highly expressed in not only
ESCC but also SCC in transcriptome sequencing data. The
Kaplan–Meier survival analysis showed that patients with high
expression level of CDCA7 had poor prognosis. This result
reminded us that CDCA7 may be used as a candidate target to
guide the individual diagnosis and a biomarker to establish a
technical system for the molecular classification of ESCC.

Further functional studies reveal that CDCA7 may exert its
oncogenic roles via directly binding to the position of 484–495,
641–654, 670–679, and 711–722 bp from the transcription start
site of CCNA2. The data of TCGA and GSE53625 further
confirmed the positive correlation between CDCA7 and
CCNA2 in ESCC, indicating that the high expression level of
CDCA7may be an important driving event in the occurrence and
development in ESCC.

CCNA2, which is one of the two A-type cyclins and
ubiquitously expressed in cultured cells, has been reported to
be upregulated in a variety of cancers (34–37). CCNA2 is
considered to be the critical S-phase cyclin in mammalian cells
(18, 38). CCNA2 is expressed at the beginning of the S-phase (16,
39) and existed in both the S- and G2-phases. Once synthesized,
it binds with its catalytic partners, the cyclin-dependent kinases
(CDK) CDK2 and CDK1, and activates its catalytic activity. The
CDK2/CCNA2 complex promotes DNA replication through
localizing to replication foci in the nucleus (17, 40). The
complexes phosphorylate the proteins which play important
roles in DNA synthesis and thus drive the S-phase progression
(16, 18, 19, 41–43). In addition, a second function of CCNA2 is
involved in the entry of cells into mitosis since it also is expressed
at the G2-phase (44). The accumulation of CCNA2 is rate-
limiting for S-phase entry, so overexpression of CCNA2 can
induce cultured cell early entry into the S-phase under normal
circumstances (45, 46). Indeed, inhibition of CCNA2 function by
p21Cip1 during the G2-phase or injection of anti-CCNA2
antibodies into cultured fibroblasts both can block the process
of cells into mitosis (41, 47).

It is known to all that disorder of the cell cycle process is one
of the causes of many cancers (48–52). Cancer cells lose many of
the inhibitory controls in the cell cycle because of the inactivation
or mutation of suppressor genes and overexpression or
amplification of oncogenes (53). The aberrant transcription of
upregulation of cyclins and CDKs can result in uncontrolled cell
cycle progression and mitosis. Our study showed that CCNA2
was a direct downstream target gene of CDCA7, and its
expression may be activated by CDCA7 on both the
transcription level and the protein level. Therefore, the copy
number amplification or increase of CDCA7 may lead to a high
level expression of CCNA2 to accelerate the cell cycle process.
This may be a mechanism and indicate the important role of
CDCA7 in ESCC. Therefore, we speculated that patients with
high expression of CDCA7 could be treated with cell cycle-
specific agents (CCSA) since the expression of CCNA2 and the
number of cells in the proliferative phase are correspondingly
increased. This study provides a theoretical and experimental
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foundation for the research and development of drug targets for
clinical treatment of ESCC in China.

In summary, our study shows that CDCA7, a copy number
amplification gene in ESCC, may act as a tumor promoter via
regulating CCNA2 directly and accelerate the cell cycle process of
ESCC cells. The copy number amplification may lead to
Frontiers in Oncology | www.frontiersin.org 12
tumorigenesis and progression of ESCC. Our findings provide
a new insight into the molecular mechanisms involved in ESCC
development. However, there are still some deficiencies in our
research process. Whether the high expression level of CDCA7 is
more sensitive to CCSA as we expected needs further
experimental verification. Meanwhile, further in-depth research
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FIGURE 6 | CDCA7 promotes S-phases via transcriptionally regulating CCNA2 expression. (A) CCNA2 overexpression in KYSE450 cell line with CDCA7
knockdown; the mRNA and protein expression levels of CCNA2 and GAPDH were detected by qRT-PCR and Western blot. GAPDH was used as a loading control.
(B) CCNA2 overexpression promoted the proliferation induced by CDCA7 knockdown. (C) CCNA2 knockdown in KYSE180 cell line with CDCA7 overexpression;
the mRNA and protein expression levels of CCNA2 and GAPDH were detected by Western blot. GAPDH was used as a loading control. (D) CCNA2 knockdown
inhibited the proliferation induced by CDCA7 overexpression. (0.01 < P ≤ 0.05, *;0.001 < P ≤ 0.01,**,P ≤ 0.001,***).
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is needed to clarify the mechanism of ECSS carcinogenesis, to
develop the prognostic method, and to identify feasible
therapeutic targets which could be used to overcome the disease.
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