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A B S T R A C T   

Background: Anoikis-related long non-coding RNAs (ARLs) play a critical role in tumor metastasis 
and progression, suggesting that they may serve as risk markers for cancer. This study aimed to 
investigate the prognostic value of ARLs in patients with lung adenocarcinoma (LUAD). 
Methods: Clinical data, RNA sequencing (RNA-seq) data, and mutation data from the LUAD 
project were obtained from The Cancer Genome Atlas (TCGA) database. The Molecular Signatures 
Database (MSigDB) and the GeneCard database were used to collect an anoikis-related gene 
(ARG) set. Pearson correlation analysis was performed to identify ARLs. LASSO and Cox 
regression were then used to establish a prognostic risk signature for ARLs. The median risk score 
served as the basis for categorizing patients into high and low-risk groups. Kaplan-Meier analysis 
was utilized to compare the prognosis between these two groups. The study also examined the 
associations between risk scores and prognosis, clinicopathological characteristics, immune sta-
tus, tumor mutation burden (TMB), and chemotherapeutic agents. LncRNA expression was 
assessed using quantitative real-time PCR (qRT-PCR). 
Results: A total of 480 RNA expression profiles, 501 ARGs, and 2698 ARLs were obtained from the 
database. A prognostic ARL signature for LUAD was established, consisting of 9 lncRNAs. Patients 
in the low-risk group exhibited significantly better prognosis compared to those in the high-risk 
group (P < 0.001). The 9 lncRNAs from the ARL signature were identified as independent 
prognostic factors (P < 0.001). The signature demonstrated high accuracy in predicting LUAD 
prognosis, with area under the curve values exceeding 0.7. The risk scores for ARLs showed strong 
negative correlations with stroma score (P = 5.9E-07, R = − 0.23), immune score (P = 9.7E-09, R 
= − 0.26), and microenvironment score (P = 8E-11, R = − 0.29). Additionally, the low-risk group 
exhibited significantly higher TMB compared to the high-risk group (P = 4.6E-05). High-risk 
status was significantly associated with lower half-maximal inhibitory concentrations for most 
chemotherapeutic drugs. 
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Conclusion: This newly constructed signature based on nine ARLs is a useful instrument for the 
risk stratification of LUAD patients. The signature has potential clinical significance for predicting 
the prognosis of LUAD patients and guiding personalized immunotherapy.   

1. Introduction 

Lung cancer is a primary malignancy of the lung, and it has the highest mortality and morbidity rates among all cancers [1], with 
approximately 1.76 million deaths and 2 million new cases each year [2]. A major type of lung cancer is lung adenocarcinoma (LUAD), 
which has extremely low patient survival rates [3]. Although surgical excision is still the preferred method of radical treatment in the 
early stages of LUAD [4], and significant efforts have been made to develop new therapies, patient prognosis remains poor [5]. 
Conventional bronchoscopy and computed tomography are inadequate for detecting early-stage LUAD [6], and even timely treatment 
with targeted therapies, radiotherapy, and surgery cannot change the highly lethal nature of LUAD [7]. Therefore, there is a great need 
for new effective methods of LUAD diagnosis, as well as the identification of molecular features associated with patient survival. This 
will help in the development of more effective prognostic biomarkers for LUAD. 

Cells undergo mutual interactions with adjacent cells and the extracellular matrix (ECM) [8]. A lack of proper cell/ECM attachment 
causes a type of programmed cell apoptosis called anoikis [9–11]. Anoikis prevents the re-adhesion of dislodged cells to incorrect 
locations and blocks their subsequent growth [10], which supports the removal of dislodged or misplaced cells to maintain tissue 
homeostasis. Anoikis is involved in a variety of pathological mechanisms, including oncogenic effects. Cancer cells detach from other 
cancer cells and the ECM, metastasize, and attach to new sites. Subsequent proliferation at these new sites results in the diffusion of the 
tumor and greatly worsens the patient’s prognosis [12]. 

Anoikis serves as a crucial physiological barrier that is activated by the rapid activation of cell surface death receptors or disruption 
of the mitochondrial pathway [13,14]. Nevertheless, cancer cells possess the ability to evade anoikis, thus enabling them to detach 
from their primary site and metastasize through various mechanisms. These mechanisms include altering the expression patterns of 
cellular integrins, activating pro-survival signaling pathways, and secreting growth factors [15]. By doing so, cancer cells are able to 
evade death signaling pathways after detachment from the primary site [16] and spread through the circulatory and lymphatic systems 
[17]. Anoikis resistance plays a significant role in tumor development and is considered an emerging marker of tumor cells [18,19]. In 
the context of lung cancer, anoikis resistance is achieved through the TGF-β1/SH2B3 axis, which modulates the SHP2/Grb2 and 
JAK2/STAT3 signaling pathways [20]. Additionally, the binding of MTHFD1 and PRMT5 has been found to be associated with cancer 
metastasis and increased resistance to anoikis. This binding enhances the arginine methylation modification of MTHFD1, leading to a 
significant increase in the metabolic activity of NADPH [21]. Furthermore, recent studies have demonstrated that the interregulation 
of SMAD1-SMAD3 and SOX2 is crucial for cancer metastasis and resistance to anoikis [22]. In summary, anoikis-related genes (ARGs) 
play a critical role in tumor development; however, there is a lack of systematic studies that have reviewed the impact of 
anoikis-related long non-coding RNAs (ARLs) on the prognosis of patients with LUAD. 

Long non-coding RNAs (lncRNAs) exhibit diverse sequences, structures, and functions [23], ranging in length from 200 nt to 
approximately 100,000 bases [24]. Through their multifaceted functions [25], lncRNAs can regulate nucleosome assembly and 
functions, control chromatin activities, directly bind to target RNAs to modulate translation or stability [26], and interfere with 
signaling pathways, thereby participating in gene regulation [27]. As crucial regulatory molecules, lncRNAs play a pivotal role in 
various biological processes, including apoptosis, cell migration, cell proliferation, and metabolic regulation, operating through 
diverse pathways [28], particularly during tumorigenesis [29]. Consequently, dysregulated lncRNAs hold potential as prognostic 
biomarkers for tumors [30]. Numerous studies have highlighted the significant roles of lncRNAs in cancer development, such as 
MALAT1 in LUAD [31], RMRP in bladder cancer [32], TLNC1 in liver cancer [33], and HOXA10-AS in oral cancer [34]. Given the 
pivotal functions of lncRNAs in tumors, they represent promising targets for precision tumor therapy. Therefore, it is crucial to further 
investigate the roles of ARLs in LUAD. 

In this study, our objective is to explore the prognostic value of ARL in LUAD and develop a novel ARL signature using LUAD data 
from The Cancer Genome Atlas (TCGA). Our research will provide valuable insights into effective prognostic biomarkers and potential 
therapeutic strategies for LUAD. 

2. Materials and methods 

2.1. Datasets and preprocessing 

Mutation data, clinical data, and RNA-seq data for 480 cases of LUAD were downloaded from the TCGA repository (https://portal. 
gdc.cancer.gov/repository) as of November 2022. Transcripts per kilobase of exon model per million mapped reads (TPM) data and 
fragments per kilobase of exon model per million mapped fragments (FPKM) data from RNA-seq were extracted using the Perl lan-
guage (version 5.30.0.1), and the lncRNAs> matrix was also extracted from the RNA-seq dataset. A total of 501 ARGs were identified 
from MSigDB (https://www.gsea-msigdb.org/gsea/) and GeneCard (https://www.genecards.org/) as of November 2022. 
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2.2. Differential gene expression and functional enrichment analysis 

The “limma” package (Ritchie et al., 2015) in R software (version 4.2.0) was used to filter out differentially expressed ARGs, with 
the screening thresholds set to FDR <0.05 and |log2FC| > 1. Then, differentially expressed genes (DEGs) related to anoikis were 
analysed using the “clusterProfiler” package for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. 

2.3. Construction of the ARG LncRNA predictive signature 

The correlations between ARGs and lncRNAs were analysed using the “limma” package. The filtering criteria were set using the 
correlation coefficient (P < 0.001 and R2 > 0.4). A total of 2698 ARLs were screened. Based on the screened ARLs, we first obtained 
prognosis-associated ARLs from LUAD patients using univariate Cox regression and then performed LASSO regression to eliminate 
overfitting lncRNAs. Finally, multivariate Cox regression was used to construct a prognostic signature for ARLs. The risk score was 
computed with the following formula: 

Risk score=
∑n

i=1
(coefficient lncRNAn × lncRNAn expression)

For more in-depth analysis, we computed the risk score of all LUAD patients using the risk score formula, and used the median risk 
score as the cutoff value to categorise the LUAD patients into high-risk and low-risk groups. Risk score distribution, survival status, and 
lncRNA expression heatmaps were plotted. 

2.4. Construction of the mRNA–LncRNA network 

According to the correlations between ARGs and lncRNAs, the regulatory network of mRNAs-lncRNAs was generated by using Perl 
software and Cytoscape software (version 3.6.1) based on the identified anoikis prognosis-associated lncRNAs with mRNAs, and the 
network relationships were visualized using Sankey diagrams with the “galluvial” package. 

2.5. Construction of the nomogram 

Univariate and multivariate Cox regression analyses were conducted to assess the impact of clinical traits such as stage, sex, and 
age. Based on the independent predictor variables, a predictive nomogram was constructed using the “rms” package. The reliability of 
the nomogram was evaluated through receiver operating characteristic (ROC) and calibration curves. Additionally, LUAD patients 
were categorized for survival analysis and multivariate ROC curve analysis, considering different clinical traits, to further explore the 
associations between these traits and the risk score. 

2.6. Validation of the predictive signature 

To assess the applicability of the predictive signature in the complete LUAD dataset, the 480 LUAD patients were randomly divided 
into two cohorts at a 1:1 ratio. Risk assessment analysis based on the risk score formula was performed on the two internal validation 
sets, followed by ROC curve analysis and survival analysis. 

2.7. Gene set enrichment analysis (GSEA) 

For further functional analysis of the two risk groups, GSEA software (version 4.2.3) was utilized. The analysis focused on two gene 
sets, namely “KEGG” and “GO”. The “phenotype labels” option was set as “high-risk than low-risk”, the “number of permutations” was 
set to “1000″, and all other settings were kept as default. The filtering condition was set as “FDR <0.25, NOM P value < 0.05". 

2.8. Immune analysis of the signature 

To assess immune infiltration, various algorithms including MCPCOUNTER, EPIC, TIMER, QUANTISEQ, CIBERSORT-ABS, 
CIBERSORT, and XCELL were employed. Immune scores, tumor microenvironment scores, and stromal scores were also calculated 
using xCELL. Additionally, we analysed the correlations between prognostic features and immune checkpoints such as BTLA, ICOS, 
CTLA4, and CD274 in different risk groups. 

2.9. Mutation status analysis of the signature 

To further understand the immunological nature of the risk scores, mutation analysis was performed separately for each risk group. 
Firstly, tumor mutation burden (TMB) analysis was conducted using the “maftools” package to identify mutated genes and explore 
their interactions. Secondly, the associations between risk scores, TMB, and patient prognosis were investigated using the “survminer” 
and “survivor” packages for survival analysis. 
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2.10. Chemotherapy drug response 

Chemotherapy remains a more effective treatment for patients with advanced LUAD. To investigate sensitivity (IC50) to chemo-
therapy agents in the risk groups, drug response information was obtained from Genomics of Drug Sensitivity in Cancer (GDSC), and 
the “pRRophetic” package in R (version 4.1.0) was applied to predict the effect of chemotherapy drugs on each patient in the two 
different risk groups. 

2.11. Cell culture and qRT-PCR 

HBE cells were cultured in KM medium (ScienCell Research Laboratories, Carlsbad, CA, USA), A549 cells were cultured in DMEM 
(Gibco, Invitrogen Carlsbad, CA, USA) with 10% fetal bovine serum (FBS), and H1299 cells were cultured in RPMI-1640 medium 
(Gibco) with 10% FBS. All cells were incubated at 37 ◦C with 5% CO2. Total RNA was extracted using TRIzol reagent (Invitrogen) and 
evaluated using a multifunctional enzyme marker SpectraMax® i3x (Molecular Devices, Shanghai, China). The PrimeScript™ RT 
Reagent Kit with gDNA Eraser (TaKaRa, Dalian, Liaoning, China) was used for reverse transcription of RNA to synthesize cDNA. cDNA 
was then synthesized using TB Green® Premix Ex Taq™ (TaKaRa) on a LightCycler® 480II (Roche Diagnostics Ltd., Rotkreuz, 
Switzerland), with GAPDH serving as an internal control for qRT-PCR. The relative expression levels of lncRNA were determined in 
triplicate using the 2− △△Ct method. The primer sequences used in this study are provided in Supplemental File 1. 

Fig. 1. Overall flowchart of the study.  
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2.12. Statistical analysis 

Statistical analysis and data visualization were performed using R software (versions 4.1.0 & 4.2.0), Perl language (version 
5.30.0.1), and GraphPad Prism software (version 8.0.2). T-tests and one-way ANOVA were used for parametric data analysis. The chi- 
square test was used to compare differences between high-risk and low-risk groups. Survival analysis was conducted using the Kaplan- 
Meier method and log-rank tests. LASSO Cox regression analysis was employed to establish the ARL prognostic signature. A p-value of 
<0.05 was considered statistically significant unless otherwise specified. 

3. Results 

3.1. Differential gene expression and functional enrichment analysis 

Fig. 1 illustrates the workflow diagram for this study. Through differential analysis, we identified 138 differentially expressed genes 
(DEGs) related to anoikis (Fig. 2A), with 103 genes upregulated and 35 genes downregulated. KEGG pathway analysis revealed that the 
anoikis DEGs were primarily enriched in focal adhesion, prostate cancer, fluid shear stress and atherosclerosis, microRNAs in cancer, 
the cell cycle, bladder cancer, melanoma, ECM-receptor interaction, the IL-17 signaling pathway, and the PI3K-Akt signaling pathway 
(Fig. 2B). GO analysis demonstrated that the DEGs were mainly enriched in the regulation of protein serine/threonine kinase activity, 

Fig. 2. Identification of an anoikis-related lncRNA signature to predict the prognosis of patients with LUAD. (A) Volcano diagram shows the 
differentially expressed genes with the threshold set at FDR <0.05 and |log2FC| > 1. (B) Loop diagram of KEGG analysis of anoikis-associated DEGs. 
log2FC > 1 for upregulated, log2FC < 1 for downregulated. (C) Loop diagram of GO analysis of anoikis-associated DEGs. The outer circle shows a 
scatter diagram of each term’s log fold change (FC) value. log2FC > 1 for upregulated, log2FC < 1 for downregulated. (D) Distribution plot of the 
partial likelihood deviation from the LASSO regression. (E) Cross-validation for tuning parameter selection in the LASSO regression. (F) The 
expression levels of nine anoikis-related lncRNAs in LUAD and normal tissues. (G) Prognostic coexpression network of the nine anoikis-related 
lncRNAs and mRNAs. (H) Sankey diagram of the relationship between lncRNAs and mRNAs. KEGG, Kyoto Encyclopedia of Genes and Genomes; 
GO, Gene Ontology; DEGs, differentially expressed genes; FDR, false discovery rate; FC, fold change; N, normal; T, tumor. 
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anoikis, gland development, the response to reactive oxygen species, wound healing, the regulation of anoikis, the response to hypoxia, 
the regulation of epithelial cell proliferation, the response to decreased oxygen levels, and epithelial cell proliferation (Fig. 2C). 

3.2. Construction of the anoikis-related LncRNA predictive signature 

A total of 2698 anoikis-related lncRNAs (ARLs) were screened based on the calculated correlations. Univariate Cox regression 
analysis identified 98 ARLs associated with prognosis in LUAD patients, and LASSO regression further narrowed it down to 43 
prognosis-related ARLs (Fig. 2D–E). Finally, 9 prognosis-related ARLs (AC012186.2, GASAL1, AC073316.3, AC068228.1, AL513550.1, 
AC026369.3, FRMD6-AS1, GCC2-AS1, and AC245297.3) were selected to construct a predictive signature (Table 1). The expression 
levels of these 9 ARLs are shown in the heatmap (Fig. 2F). According to the mRNA-lncRNA regulatory network map (Fig. 2G), 
AC012186.2/AL513550.1/FRMD6-AS1 were coexpressed with 6 ARGs (ZEB2, ZEB1, SNORA80E, MALAT1, LTB4R2, and BRCA2), 
GASAL1 was coexpressed with 8 ARGs (KIF18A, PBK, PLK1, BIRC5, BUB1, CDC25C, CDKN3, and CENPF), AC073316.3 was coex-
pressed with 2 ARGs (ONECUT1 and BRCA2), AC068228.1 was coexpressed with 2 ARGs (TUBB3 and ANGPTL4), AC026369.3 was 
coexpressed with 2 ARGs (DOK2 and CEACAM8), GCC2-AS1 was coexpressed with one ARG (BUB1), and AC245297.3 was coexpressed 
with 3 ARGs (ZEB2, SNORA80E, and ALAT1). Based on the hazard ratio values from multifactorial Cox regression analysis and the 
mRNA-lncRNA regulatory network, the “galluvial” package was used to plot the Sankey diagram (Fig. 2H), which revealed that 
AC012186.2, AC073316.3, AL513550.1, and AC026369.3 were protective factors, while GASAL1, AC068228.1, FRMD6-AS1, GCC2- 
AS1, and AC245297.3 were risk factors. 

Afterwards, the risk scores for each patient with LUAD were calculated using a specific formula, and then the patients were divided 
into high-risk and low-risk groups based on the median value of their risk scores. To assess the predictive value of these risk scores on 
the prognosis of LUAD patients, Kaplan-Meier analysis was employed to analyze the overall survival (OS) and progression-free survival 
(PFS) times in both the high-risk and low-risk groups. The OS and PFS curves (Fig. 3A–B) clearly demonstrate that the survival rates 
were significantly better in the low-risk group compared to the high-risk group (P < 0.001), and mortality increased as the risk scores 
increased (Fig. 3C–D). The ROC curve analysis yielded area under the curve (AUC) values of 0.741, 0.753, and 0.77 at 1, 3, and 5 years, 
respectively (Fig. 3E), indicating the accuracy of the prognostic predictions made by the signature. 

3.3. Construction of a predictive nomogram 

Univariate and multivariate Cox regression analyses were performed by combining clinicopathological traits with the risk scores. 
The univariate Cox regression analysis revealed that the risk scores, T/N stage, and stage were all significantly associated with 
prognosis (Fig. 3F), while the multivariate Cox regression analysis showed that the risk scores and stage remained significantly 
correlated with prognosis (Fig. 3G), suggesting that the ARLs used in our signature can serve as independent prognostic factors. To 
further enhance the predictive power of these ARLs, clinical factors were integrated with the ARL signature to create a nomogram 
(Fig. 3H). The calibration curves for 1-, 2-, 3-, and 5-year survival times demonstrated the prognostic value of this nomogram (Fig. 3I- 
L). 

3.4. Correlations between various clinicopathological traits of LUAD and risk scores 

To further investigate the correlations between various clinicopathological traits and risk scores, LUAD patients were grouped 
based on different clinicopathological traits for survival analysis and multivariate ROC curve analysis. The multivariate ROC curves 
revealed that the ARL signature had a much higher AUC than other clinical traits (Fig. S1A). The risk curves for different clinical 
characteristics also showed that the OS in the high-risk group was significantly worse than that in the low-risk group (Figs. S1B–E). 

3.5. Validation of the predictive signature 

The clinicopathological traits of LUAD patients are shown in Table 2. Consistent with the results for the complete dataset, the 
number of deaths in each internal cohort was proportional to the risk score (Fig. 4A–B, E-F). In both internal cohorts, the low-risk score 

Table 1 
The assiciation of anoikis-related lncRNAs signature with the prognosis of patients with lung adenocarcinoma.  

lncRNA Coefficient HR HR (95% CI) P 

AC012186.2 − 0.63 0.53 0.34–0.82 0.004251 
GASAL1 0.38 1.46 0.93–2.32 0.103305 
AC073316.3 − 0.48 0.62 0.36–1.04 0.071933 
AC068228.1 0.41 1.50 1.05–2.16 0.027706 
AL513550.1 − 0.58 0.56 0.39–0.80 0.001609 
AC026369.3 − 0.20 0.82 0.65–1.03 0.094031 
FRMD6-AS1 0.81 2.26 1.24–4.09 0.007383 
GCC2-AS1 0.55 1.74 0.99–3.06 0.055569 
AC245297.3 0.49 1.63 1.06–2.51 0.025193 

HR: hazard ratio. CI: confidence interval. 
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group had significantly better survival rates (Fig. 4C, G). The ROC curves for both cohorts also indicated high accuracy for predicting 
prognosis, with AUCs of 0.757, 0.757, and 0.828 at 1, 3, and 5 years, respectively, for the first internal cohort (Figs. 4D), and 0.714, 
0.756, and 0.736, respectively, for the second internal cohort (Fig. 4H). 

3.6. Gene set enrichment analysis 

In the top 10 GO analysis, several biological process (BP) terms were found to be significantly enriched in the group with high-risk 
scores. These include meiotic cell cycle process, nuclear chromosome segregation, and positive regulation of cell cycle. Additionally, 
the molecular function (MF) term cadherin binding and the cellular component (CC) term condensed chromosome were also signif-
icantly enriched in this group. On the other hand, the group with low-risk scores showed significant enrichment in BP terms such as 
activation of Janus kinase activity, leukotriene biosynthetic process, positive regulation of neuroinflammatory response, and response 
to macrophage colony-stimulating factor. The CC term MHC protein complex was also significantly enriched in this group 
(Figs. S2A–B). 

Furthermore, the top five significantly enriched KEGG pathways in the high-risk score group were cell cycle, N glycan biosynthesis, 
ubiquitin-mediated proteolysis, p53 signaling pathway, and small cell lung cancer. In contrast, the top five significantly enriched 
KEGG pathways in the low-risk score group were primary bile acid biosynthesis, autoimmune thyroid disease, haematopoietic cell 
lineage, intestinal immune network for IgA production, and asthma (Figs. S2A–B). 

3.7. Immunity analysis of the signature 

To investigate the relationship between the signature and the tumor immune landscape, we performed an immune cell infiltration 
analysis using different algorithms. The results showed that the majority of immune cells from the tumor microenvironment (TME) 

Fig. 3. Construction of a model based on the anoikis-related lncRNA signature to predict the prognosis of patients with LUAD. (A-B) Kaplan‒Meier 
analysis of the OS and PFS rates of LUAD patients in the high- and low-risk groups. (C-D) Distribution of risk scores and survival status for the 
predictive signature. (E) Time-dependent ROC analysis of the predictive signature. (F-G) Forest plot for univariate and multivariate Cox regression 
analyses. (H) The nomogram predicts the probability of 1, 3, and 5 years of OS. (I-L) The calibration curves test consistency between the actual OS 
rates and the predicted survival rates at 1, 2, 3, and 5 years. AUC, area under the curve; T, tumor; M, metastasis; N, lymph node. 

Table 2 
Clinicopathological characteristics of the LUAD patient.  

Clinicopathological Variables Entire TCGA cohort (n = 480) First cohort (n = 240) Second cohort (n = 240) 

Age (years) 
≤ 65 231 (48.13%) 114 (47.5%) 117 (48.75%) 
>65 249 (51.88%) 126 (52.5%) 123 (51.25%) 

Gender 
Female 259 (53.96%) 122 (50.83%) 137 (57.08%) 
Male 221 (46.04%) 118 (49.17%) 103 (42.92%) 

Stage 
Stage I 255 (53.13%) 123 (51.25%) 132 (55.00%) 
Stage II 114 (23.75%) 60 (25.00%) 54 (22.50%) 
Stage III 78 (16.25%) 38 (15.83%) 40 (16.67%) 
Stage IV 25 (5.20%) 15 (6.25%) 10 (4.17%) 
Unknow 8 (1.67%) 4 (1.67%) 4 (1.67%) 

T 
T1 160 (33.33%) 73 (30.42%) 87 (36.25%) 
T2 256 (53.33%) 130 (54.17%) 126 (52.50%) 
T3 43 (8.96%) 24 (10.00%) 19 (7.92%) 
T4 18 (3.75%) 11 (4.58%) 7 (2.92%) 
TX + unknow 3 (0.63%) 2 (0.83%) 1 (0.42%) 

M 
M0 316 (65.83%) 161 (67.08%) 155 (64.58%) 
M1 24 (5.00%) 14 (5.83%) 10 (4.17%) 
MX + unknow 140 (29.17%) 65 (27.08%) 75 (31.25%) 

N 
N0 309 (64.38%) 154 (64.17%) 155 (64.58%) 
N1 91 (18.96%) 49 (20.42%) 42 (17.50%) 
N2 67 (13.96%) 30 (12.50%) 37 (15.42%) 
N3 2 (0.42%) 1 (0.42%) 1 (0.42%) 
NX + unknow 11 (2.29%) 6 (2.50%) 5 (2.08%) 

Risk score 
High 232 (48.33%) 120 (50.00%) 112 (46.67%) 
Low 248 (51.67%) 120 (50.00%) 128 (53.33%) 

T: tumor; N: node; M: metastasis. 
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were significantly correlated with high-risk scores (Fig. S3, Figs. S4A–I). Interestingly, the TME scores, stromal scores, and immune 
scores computed with the xCELL algorithm were higher in the low-risk score group (Fig. S4J-L). 

Furthermore, we examined the expression levels of several immune-related genes. BTLA, ICOS, and CTLA4 showed lower 
expression levels in the group with high-risk scores, while the difference in CD274 expression was not significant (Fig. 5A–D). 

3.8. Mutation analysis of the signature 

Notably, 13 genes exhibited a higher frequency of mutations in the group with high-risk scores compared to the group with low-risk 
scores. These genes include COL11A1, ZNF536, NAV3, SPTA1, XIRP2, USH2A, ZFHX4, LRP1B, RYR2, CSMD3, MUC16, TTN, and 
TP53, with TP53 having the highest mutation frequency. Missense mutations were the most common type of mutations observed in 
both subgroups (Fig. 5E–F). 

Furthermore, we conducted analysis on tumor mutational burden (TMB) and survival. We found that the high-TMB group had a 
better prognosis compared to the low-TMB group (P = 0.014), with the best prognosis observed in the group with low-risk scores and 
high TMB (P < 0.001) (Fig. 5G–H). Additionally, we compared TMB between the high and low-risk groups and found that TMB was 
higher in the high-risk score subgroup (Fig. 5I). 

3.9. Chemotherapy drug response 

Based on the IC50 values from the GDSC database, we identified several commonly used anticancer drugs, including cytarabine, 
cisplatin, doxorubicin, docetaxel, erlotinib, etoposide, gefitinib, gemcitabine, methotrexate, paclitaxel, and vinorelbine (Fig. 5J-T). 
Patients in the high-risk score group showed increased sensitivity to all of these anticancer drugs, except for methotrexate. 

3.10. Validation of the LncRNAs in LUAD cells 

Comparing LUAD cells to HBE cells, we observed significant downregulation of AC012186.2, AC068228.1, FRMD6-AS1, and 
AC245297.3, and marked upregulation of GCC2-AS1 and GASAL1. A549 cells showed significant downregulation of AL513550.1. qRT- 
PCR results confirmed that ARLs have high prognostic value for LUAD (Fig. 6A–G). 

4. Discussion 

ARGs play a critical role in cancer metastasis and invasion [35–37]. However, there have been limited studies that systematically 
evaluate the correlations between the prognosis of LUAD patients and ARLs. In our present study, we are the first to investigate and 
identify the relationships between ARLs and the prognosis of LUAD patients. Our prognostic signature, based on nine ARLs, dem-
onstrates accurate prediction of outcomes for LUAD patients. Additionally, we have developed an ARL correlation nomogram model 
that provides a visual prediction of overall survival (OS) for LUAD patients. Importantly, the selected ARLs act as independent clinical 
prognostic factors and exhibit better predictive accuracy than individual clinical characteristics. 

In our study, KEGG analysis was conducted on DEGs associated with anoikis. The results revealed several major enriched pathways, 
including focal adhesion, prostate cancer, fluid shear stress and atherosclerosis, microRNAs in cancer, bladder cancer, melanoma, the 
IL-17 signaling pathway, the PI3K-Akt signaling pathway, the cell cycle, and ECM-receptor interaction. Several studies have 
demonstrated the significance of focal adhesions in the progression of anoikis. Zhang et al. [38] conducted a comprehensive analysis to 
determine the impact of PCMT1 on cancer metastasis and focal adhesion kinetics, elucidating the drivers of anoikis resistance. Vivo 
et al. [39] discovered that focal adhesion kinase interacts with p14ARF to safeguard cells against anoikis. Hasnat et al. [40] observed 
that apigenin attenuates melanoma cell migration by inducing anoikis through integrin and focal adhesion kinase inhibition. Similarly, 
Enkhbat et al. [41] employed a colloidal self-assembled pattern to promote anoikis and p53 accumulation in A549 cells via focal 
adhesion. It is important to acknowledge the involvement of other enriched signaling pathways. For instance, Zhou et al. [42] revealed 
that AEG-1-dependent anoikis resistance is triggered through the PI3K/Akt pathway, which can be reversed by the PI3K inhibitor 
LY294002. Furthermore, Macabenta et al. [43] demonstrated that during collective mesenchymal migration, BMP-gated cell cycle 
processes drive anoikis. These studies have shed light on the pivotal roles of signaling pathways such as focal adhesion, cell cycle, and 
PI3K/Akt pathways in the process of anoikis, suggesting that ARGs may regulate the development of LUAD through these pathways. 
However, further comprehensive investigations are necessary to establish the association between ARGs and the development of 
LUAD. 

We utilized LASSO regression and Cox regression analyses to construct predictive models involving nine ARLs (AC012186.2, 
GASAL1, AC073316.3, AC068228.1, AL513550.1, AC026369.3, FRMD6-AS1, GCC2-AS1, and AC245297.3). Notably, GASAL1 has 
been implicated in driving the progression of hepatocellular carcinoma by upregulating usp10, thereby stabilizing PCNA [44]. 
Additionally, the interaction between SRSF1 and GASAL1 has been identified as a regulator of apoptosis, invasion, and trophoblast 

Fig. 4. Validation of the model based on the anoikis-related lncRNA signature for predicting the prognosis of patients with LUAD. (A-B) Distribution 
of risk scores and survival status for the first internal cohort. (E-F) Distribution of risk scores and survival status for the second internal cohort. (C, G) 
Kaplan‒Meier survival curve for the first and second internal cohorts. (D, H) Time-dependent ROC analysis of the first and second internal cohorts. 
AUC, area under the curve. 
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proliferation through the mTOR signaling pathway [45]. 
Furthermore, our findings were corroborated through in vitro experiments, where we validated the statistically significant dif-

ferential expression profiles of seven lncRNAs, including GASAL1, in LUAD cells versus normal cells (HBE) using qRT-PCR. Collec-
tively, these observations underscore the substantial role played by ARLs in the development of LUAD. It is important to note that the 

Fig. 5. Immune checkpoint analysis, gene mutation status analysis, and drug sensitivity analysis for the signature. (A-D) Expression levels of BTLA, 
ICOS, CTLA4, and CD274 in the high- and low-risk groups. (E) Top 15 gene mutations in the high-risk subgroup. (F) Top 15 gene mutations in the 
low-risk subgroup. (G) Kaplan‒Meier survival curve of the high- and low-TMB groups. (H) Kaplan‒Meier survival curve under the combined effect 
of risk score and TMB. (I) High and low TMB in the high- and low-risk groups. TMB, tumor mutation burden. (J) Cisplatin. (K) Cytarabine. (L) 
Docetaxel. (M) Doxorubicin. (N) Erlotinib. (O) Etoposide. (P) Gefitinib. (Q) Gemcitabine. (R) Methotrexate. (S) Paclitaxel. (T) Vinorelbine. IC50, 
half-maximal inhibitory concentration. *p < 0.05; **p < 0.01; ***p < 0.001; ns for no significance. 
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precise regulatory mechanisms of these ARLs in LUAD necessitate further experimental exploration. It’s worth mentioning that 
AC073316.3 and AC026369.3 were excluded from these experiments due to unsuccessful primer designs resulting in inadequate 
amplification and solubility curves. 

Immunotherapy’s impact on the prognosis of cancer patients is intricately intertwined with the regulation of cancer and immune 
cells within the tumor microenvironment (TME), a determinant of immunotherapy response [25]. Our study demonstrated a signif-
icant inverse association between most immune cells and high-risk scores. Notably, the low-risk score group displayed elevated 
stromal, tumor microenvironment, and immune scores compared to the high-risk score group. This observation suggests that risk 
scores effectively reflect the immune status of LUAD. Intriguingly, a substantial negative correlation emerged between 
pro-inflammatory immune cells (e.g., CD8+ T-cells, CD4+ T-cells, etc.) and regulatory immune cells (e.g., Tregs, M2 macrophages, etc.) 
with the risk score. This implies heightened immune activity within the low-risk group and, conversely, a relatively suppressed im-
mune state in the high-risk group. Consequently, integrating these immune cell profiles with our ARL signature could enhance the 
accuracy of patient prognosis prediction. 

Our investigation also explored the link between immune checkpoint-associated gene expression and the prognostic signature. The 
findings highlighted significantly lower expression of BTLA, ICOS, and CTLA4 in the high-risk group, suggesting their potential as 
targets for immune checkpoint therapy in LUAD patients. It’s been proposed that TP53 could serve as an immune checkpoint inhibitor 
biomarker for LUAD [46,47]. In mutation analysis, we observed TP53’s highest mutation frequency, with missense mutations being 
most prevalent in both risk score subgroups. Additionally, survival analysis of tumor mutation burden (TMB) revealed better survival 
in the high-TMB group, particularly among those with low-risk scores. This implies a strong connection between TP53 gene mutations 
and LUAD prognosis. However, in-depth research is needed to fully comprehend this relationship. 

Finally, our signature was employed to predict drug sensitivity, identifying several common anticancer drugs. The outcomes 
underscored the promise of our prognostic signature as a predictor of anticancer drug response. Taken together, our signature emerges 
as a valuable resource for identifying therapeutic targets and immune biomarkers for LUAD patients. 

Fig. 6. The expression of anoikis-related lncRNAs in LUAD cells. (A) AC012186.2, (B) GASAL1, (C) AC068228.1, (D) AL513550.1, (E) FRMD6-AS1, 
(F) GCC2-AS1, and (G) AC245297.3 expression in normal (HBE) and LUAD cell lines. *p < 0.05; **p < 0.01; ***p < 0.001; ns for no significance. 
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However, our study is not without limitations. Firstly, the validation of our signature solely relied on TCGA data, and it is 
imperative to employ Gene Expression Omnibus data for result confirmation, including model performance evaluation. Secondly, we 
did not establish the reliability of our signature through in vivo experiments. Thirdly, our study lacked comprehensive experimental 
data elucidating the precise regulatory mechanisms of ARLs in LUAD. Thus, our future endeavors will delve deeper into understanding 
how ARLs contribute to the development of LUAD. 

5. Conclusions 

We developed a novel prognostic signature on the basis of ARLs. Further verification showed that this signature has potential value 
for predicting the prognosis of LUAD patients. Furthermore, our study provides insights for researchers exploring the regulatory 
mechanisms of anoikis in LUAD. 
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