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Background: The opportunity to quantitatively predict next-season injury risk in the National Hockey League (NHL) has become a
reality with the advent of advanced computational processors and machine learning (ML) architecture. Unlike static regression
analyses that provide a momentary prediction, ML algorithms are dynamic in that they are readily capable of imbibing historical
data to build a framework that improves with additive data.

Purpose: To (1) characterize the epidemiology of publicly reported NHL injuries from 2007 to 2017, (2) determine the validity of a
machine learning model in predicting next-season injury risk for both goalies and position players, and (3) compare the perfor-
mance of modern ML algorithms versus logistic regression (LR) analyses.

Study Design: Descriptive epidemiology study.

Methods: Professional NHL player data were compiled for the years 2007 to 2017 from 2 publicly reported databases in the
absence of an official NHL-approved database. Attributes acquired from each NHL player from each professional year included
age, 85 performance metrics, and injury history. A total of 5 ML algorithms were created for both position player and goalie data:
random forest, K Nearest Neighbors, Naı̈ve Bayes, XGBoost, and Top 3 Ensemble. LR was also performed for both position player
and goalie data. Area under the receiver operating characteristic curve (AUC) primarily determined validation.

Results: Player data were generated from 2109 position players and 213 goalies. For models predicting next-season injury risk for
position players, XGBoost performed the best with an AUC of 0.948, compared with an AUC of 0.937 for LR (P< .0001). For models
predicting next-season injury risk for goalies, XGBoost had the highest AUC with 0.956, compared with an AUC of 0.947 for LR (P<
.0001).

Conclusion: Advanced ML models such as XGBoost outperformed LR and demonstrated good to excellent capability of
predicting whether a publicly reportable injury is likely to occur the next season.
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Ice hockey is one of the fastest and most physical team sports
in the world.6 With players reaching speeds of up to 30 miles
per hour, puck speeds reaching 100 miles per hour, and an
ingrained cultural encouragement of physical contact and
aggressive play, the risk of injury in ice hockey played at
any level of competition is very high.9,16,26 To mitigate injury
risk and increase the availability of these elite athletes, pro-
fessional hockey teams invest millions of dollars per year on
injury prevention.20 In the National Hockey League (NHL),

the premier ice hockey league in the world, injuries are
estimated to cost the league $218 million in missed player
time every year, with concussion alone costing $42.8 mil-
lion a year.11 In a league where teams are challenged to
obtain any incremental competitive advantage, the ability
to quantitatively predict which players are most vulnera-
ble to injury at a given moment represents a promising
possibility.14 For this purpose, machine learning may be
a suitable tool.

Machine learning, a subset of artificial intelligence, is
the application of computational algorithms that can recog-
nize patterns in data without explicit human instruction or
supervision.3,5 From these data, patterns and inferences
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are incorporated into the creation of intelligent, predictive
models. In essence, machine learning is a technique that is
capable of analyzing large sets of data, learning from histor-
ical data to make predictions about the future.3,5,22 First,
real-world data sets are divided into “training sets” and “test
sets.” The training sets are fed into machine learning mod-
els, which recognize subtle patterns in the data. Then, the
accuracy of the algorithm is assessed with a test set, whose
outcomes are already known and can be compared with the
output of the algorithm. With larger training sets and an
increased number of training/testing repetitions, these algo-
rithms can self-correct and reach higher levels of predictive
accuracy.5

Previous research has examined the application of
machine learning techniques to the NHL. In 2019, Gu
et al13 described an expert system that used a support vec-
tor machine to predict game outcomes. In 2015, Demers10

compared the performance of 2 Stanley Cup prediction sys-
tems using a relevance vector machine algorithm and a
support vector machine algorithm. In these studies,

machine learning concepts were applied with the goal of
accurately predicting the outcomes of hockey games. How-
ever, research is lacking on the use of machine learning to
predict future injuries in professional hockey players, likely
because of the absence of an official centralized NHL injury
reporting database. To the end of leveraging available ana-
lytics to permit data-driven injury prevention strategies
and informed decisions for NHL franchises beyond super-
vised logistic regression analysis, the objective of this study
of NHL players was to (1) characterize the epidemiological
patterns of publicly reported NHL injuries from 2007 to
2017, (2) determine the validity of a machine learning
model in predicting next-season injury risk for both goalies
and position players, and (3) compare the performance of
modern machine learning algorithms versus logistic
regression analyses. We hypothesized that an algorithm,
trained on previous injury history, player performance
metrics, and player characteristics, would be able to predict
the likelihood of a player being injured in the subsequent
season of play.
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TABLE 1
Definitions of Machine Learning Terms and Concepts

Term Definition

Variance inflation factor (VIF) A measure of multicollinearity in a regression analysis. A higher VIF indicates that
predictors are highly correlated with each other, generally indicating a less reliable
result.

Python StatsModel package A Python module that provides resources for conducting statistical analysis in Python.
K Nearest Neighbors A pattern recognition algorithm used for both classification and regression. This algorithm

classifies a case based on the classification of a majority of its neighbors.
Naı̈ve Bayes An algorithm that classifies cases based on the application of Bayes’ theorem with the

assumption of conditional independence.
XGBoost A machine learning algorithm that uses a gradient boosting framework to solve prediction

problems.
Top 3 Ensemble An ensemble algorithm that incorporates multiple machine learning algorithms (top 3) to

augment predictive performance.
Broyden-Fletcher-Goldfarb-Shanno optimizer An iterative algorithm that allows for the solving of unconstrained optimization problems.
Brier score loss A calculation of the mean squared error between predicted and expected values. A low Brier

score indicates better predictions.
Area under the curve (AUC) of the receiver

operating characteristic curve
An aggregate measure of a model’s classification performance. AUC ranges in value from

0 to 1.0, with an AUC 1 meaning that a model is capable of distinguishing between
classes 100% of the time.

Shapley Additive Explanations (SHAP) score A measure of feature importance in predictive modeling. A higher SHAP value indicates a
factor that predicts higher injury probability, whereas a lower SHAP value indicates a
factor that predicts a lower injury probability.
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METHODS

Injury data for players in the NHL from the years 2007 to
2017 were compiled from the Pro Sports Transactions21

archives in the absence of an official NHL-approved data-
base. Relevant data included player name, team at the time
of injury, date of the injury, and descriptive characteristics of
the injury. Because date of return was not reported, we could
not document overall time or games missed. Although Pro
Sports Transactions is not officially regulated by the NHL,
the database is widely considered reliable, and several pre-
vious studies have used data from Pro Sports Transactions
over its 15-year history.4,27 Performance and player avail-
ability metrics were compiled from Hockey Reference,17 a
publicly accessible website. These data were systemati-
cally extracted using a custom Python (Version 3.7.3;
Python Software Foundation) script. Injuries were desig-
nated as day-to-day injuries versus more interruptive
injuries. Raw data were compiled using R (Version 3.5.1;
R Foundation for Statistical Computing) and Python. All
player injuries were grouped by year and totaled to arrive
at the total number of injuries for each year. These data
were then matched with player statistics for each season,
resulting in a list of player statistics and injuries for each
season players were in the NHL. Table 1 further explains
the technical machine learning terms and concepts.

Data Processing and Feature Selection

Data attributes were selected from the model for each
player. All predictor variables used in the model were
assessed for multicollinearity using the variance inflation
factor (VIF) for each variable in an ordinary-least-squares
regression context using the Python StatsModel package.25

In doing so, we identified 23 variables with a VIF of>10 that
did not contribute to the predictive power of the model but
did increase its variance23 and thus were excluded from the
model in a sequential fashion until all variables had a VIF
�10. Final features selected for position players and goalies
can be found in Appendix Tables A1 and A2.

Machine Learning Model: Development and
Validation

Machine learning modeling was performed on a Macintosh
computer with 2.4-GHz Intel Core i5 processor. Several dif-
ferent machine learning models were created using the
scikit-learn Python library (Version 0.21.2), including logis-
tic regression, random forest, K Nearest Neighbors, Naı̈ve
Bayes, XGBoost, and Top 3 Ensemble.19,24 Logistic regres-
sion models were created through use of the limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno optimizer using
4000 iterations.1 Random forest models were created with
10,000 estimators. K Nearest Neighbors models, multino-
mial Naı̈ve Bayes, and extreme gradient boosting (XGB)
machines were all created with default parameters. XGB
models were created with the XGBoost library.8 Top 3
Ensemble models were created with the generalized “top
3” models for the overall data set: logistic regression, ran-
dom forest, and XGBoost using the above parameters.12,15

The ensemble was created through use of soft voting.
To avoid model overfitting and thereby increasing gener-

alizability, we used k-fold cross-validation for each model
using 10 folds. In this cross-validation approach, we split
the data into 2 sets: 90% as the training set and 10% as the
test set. The model was then fine-tuned using the training
set and tested for accuracy, reliability, and responsiveness

Figure 1. Schematic describing the predictive injury model for National Hockey League players.
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using the test set. This process was then repeated for an
arbitrary total of 10 times, using each unique 10% subset of
the data as the test set. Figure 1 schematically illustrates
the predictive model process.

Machine Learning Algorithm Calibration

The machine learning algorithms were tested for calibra-
tion against one another to ensure that the probability of
player injury was appropriately calculated. Noncalibrated
classifiers may be able to accurately predict player injury,
but their probability outputs can be incorrect without cali-
bration. Figure 2 illustrates the calibration curve for the
included classifiers for position players and goalies, respec-
tively, tested against overall player injury.

Statistical Analysis

Descriptive statistics were calculated for the cohort.
Each model was compared using accuracy, area under
the receiver operating characteristic curve (AUC), F1

score, and Brier score loss (BSL). AUC for each model
was calculated using a trapezoidal Riemann sum. Values
of 0.6-0.7 are poor, 0.7-0.8 fair, 0.8-0.9 good, and >0.9
excellent.28 AUC values were compared using analysis
of variance with a Tukey post hoc analysis.

The accuracy of the model summarizes the number of
players correctly classified divided by the total number of
players in each analysis. An F1 score represents the
weighted average of precision and recall.12 F1 scores are
calculated by multiplying precision and recall by 2 and
dividing by precision plus accuracy. Poor F1 scores are
closer to 0, whereas better F1 scores are closer to 1. Unlike
AUC, accuracy, and F1, a lower BSL indicates a better
model and signifies the mean squared difference between
the predicted probability and the actual probability.
Because actual probabilities are necessarily 0 or 1, a perfect
BSL (indicating a perfectly calibrated model) is 0 when pre-
dicted probabilities are equal to actual probabilities.15 Con-
versely, a BSL of 1 means that the predicted probabilities
are the opposite of the actual probabilities.15 The weight of
the input variables contributing to overall injury risk was

Figure 2. (A) Calibration curve for position players. The x-axis depicts the fraction of positive values at the designated probability.
As an example, assume a subcohort of 100 players with a predicted probability of 30% of being injured in the future. A perfectly
calibrated classifier will correctly classify 30 of these 100 players as having a future injury. A perfectly calibrated classifier will also
behave similarly across all player subcohorts with differing probabilities of being injured. Thus, a theoretical perfectly calibrated
classifier will have a diagonal line in a calibration curve (dashed line). The bottom panel of the calibration curve shows the count of
predicted probabilities across each predicted probability. For position players, logistic regression (blue line) is the best calibrated,
as this line most nearly matches the 45� diagonal in the top plot, along with K Nearest Neighbors (green line). Random forest
(orange line), XGBoost (purple line), and the Top 3 Ensemble (brown line) are the next best calibrated, with curves appearing in a
sigmoid shape. Naı̈ve Bayes (red line) is poorly calibrated. (B) Calibration curve for goalies. Logistic regression (blue line) is the best
calibrated curve, followed by random forest (orange line). The remaining curves are more poorly calibrated. This is likely a
consequence of fewer data points in the goalie cohort. The mean predicted value range for both nongoalies and goalies is from
0 to 1, representing the spectrum of predicted results for player injury between 0 (not injured) and 1 (injured). In both the goalie and
the nongoalie cohort, a bimodal distribution can be seen for most models at 0 and 1.
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calculated using Shapley Additive Explanations (SHAP)
scores. R (Version 3.5.1; R Foundation for Statistical Com-
puting) was used for all statistical analyses.

RESULTS

Player Cohort

The cohort consisted of 2322 male hockey players: 2109 posi-
tion players and 213 goalies. Position players had a mean
age of 27 years (range, 18-48 years). Of the position players,
1317 were injured, with a total of 6673 injuries that

contributed to the analysis. Within position player injuries,
an average of 4.12 prior injuries had occurred (range, 0-32
prior injuries). A majority of the position player (85%) inju-
ries were designated as “day-to-day” injuries. Injury pattern
for position players is summarized in Table 2.

Of the 213 goalies, 104 had injuries, for a total of 509
injuries contributing to the analysis. Goalies had a mean age
of 28 years (range, 19-42 years). Within goalie injuries, an
average of 3.66 prior injuries had occurred (range, 0-18). The
majority of injuries were day-to-day injuries (84%). The most
common injury type for goalies was a lower extremity injury
(34%). Injury pattern for goalies is summarized in Table 3.

Predicting Next-Season Player Injury

Next-season player injuries were predicted using each
player’s injury and performance data from the most recent
season. Each player-year was treated independently from
every other (ie, past injuries were not propagated through
to future years). Table 4 shows the accuracy, AUC, F1 score,
and BSL of each model for predicting future anatomic
injury. For models predicting next-season injury risk for
position players, XGBoost had the highest AUC of 0.948,
compared with an AUC of 0.937 for logistic regression
(P < .0001). The XGBoost model predicted next-season
injury with an accuracy of 94.6% (SD, 0.5%)

For models predicting nest-season injury risk for goalies,
XGBoost performed the best with an AUC of 0.956, com-
pared with an AUC of 0.947 for logistic regression (P <
.0001). The XGBoost model predicted next-season injury for
goalies with an accuracy of 96.7% (SD, 1.3%). SHAP anal-
yses identifying risk factors for future injury count are
depicted for goalies and position players in Figure 3.

DISCUSSION

Historically, injury prevention for athletes was performed
on a case-by-case basis, with the coaching and training staff

TABLE 2
Most Common Injury Types Seen in the Data

for Position Players

Injury Type n (% of total)

Lower extremity 1925 (29)
Upper extremity 1805 (27)
Systemic illness 795 (12)
Concussion 450 (7)
Day-to-day designation 5673 (85)
Total injuries 6673

TABLE 3
Most Common Injury Types Seen in the Data for Goalies

Injury Type n (% of total)

Lower extremity 171 (34)
Systemic illness 82 (16)
Sports hernia 67 (13)
Upper extremity 56 (11)
Day-to-day designation 426 (84)
Total injuries 309

TABLE 4
Accuracy and Area Under the Receiver Operating Characteristic Curve (AUC)

for Predicting Next-Season Injury Risk for Position Players and Goaliesa

Model Accuracy AUC F1 Score Brier Score Loss

Position players
Logistic regression 0.946 ± 0.005 0.937 ± 0.011 0.898 ± 0.016 0.050 ± 0.004
Random forest 0.946 ± 0.005 0.936 ± 0.012 0.898 ± 0.016 0.053 ± 0.004
K Nearest Neighbors 0.700 ± 0.020 0.752 ± 0.028 0.577 ± 0.036 0.223 ± 0.014
Naı̈ve Bayes 0.854 ± 0.027 0.917 ± 0.015 0.775 ± 0.035 0.126 ± 0.023
XGBoost 0.946 ± 0.005 0.948 ± 0.010 0.898 ± 0.016 0.048 ± 0.004
Top 3 Ensemble 0.946 ± 0.005 0.946 ± 0.010 0.898 ± 0.016 0.049 ± 0.004

Goalies
Logistic regression 0.968 ± 0.015 0.947 ± 0.045 0.920 ± 0.045 0.033 ± 0.015
Random forest 0.967 ± 0.013 0.937 ± 0.033 0.917 ± 0.040 0.036 ± 0.012
K Nearest Neighbors 0.808 ± 0.041 0.816 ± 0.076 0.618 ± 0.105 0.147 ± 0.030
Naı̈ve Bayes 0.943 ± 0.023 0.936 ± 0.031 0.869 ± 0.054 0.053 ± 0.023
XGBoost 0.967 ± 0.013 0.956 ± 0.026 0.917 ± 0.040 0.030 ± 0.011
Top 3 Ensemble 0.968 ± 0.015 0.952 ± 0.029 0.920 ± 0.045 0.032 ± 0.013

aValues are reported as mean ± SD across 10 K-folds.
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working collaboratively to create training regimens and
manage workloads for each individual athlete. As the
implementation of “advanced analytics” in professional
hockey begins to become standard across the NHL,
teams must turn to new areas of potential improve-
ment.7 We hypothesized that a machine learning algo-
rithm, when applied to hockey players in the NHL,
would be a powerful tool in injury risk assessment and
prevention. Such an algorithm would provide an oppor-
tunity for team physicians and coaching staff to provide
targeted preventive care, acutely manage player

workloads, and potentially arbitrate contracts to reflect
the value of availability.

From publicly available online resources, we compiled a
comprehensive database detailing NHL player injury his-
tory, age, and 85 player performance metrics. From this
database, we applied modern machine learning algorithms
to create models capable of predicting next-season injury
with good to excellent accuracy. For position players,
XGBoost and Top 3 Ensemble provided improved perfor-
mance over logistic regression. For goalies, only XGBoost
provided improved performance over logistic regression.
For both position players and goalies, the XGBoost algo-
rithm provided the best performance, with excellent AUCs
of 0.948 and 0.956, respectively. Based on SHAP analysis
for both position players and goalies, prior injury count was
the greatest predictor of future injury count (Figure 3). The
superiority of machine learning in rudimentary predictive
models suggests that regression analysis should not be the
gold standard in injury prediction analytics.

Data science and the application of machine learning com-
prise a growing area of study that has already begun to
revolutionize both industry and academia.18 As machine
learning and artificial intelligence loom large over the field
of medicine, doctors must learn not only to adjust but to
improve. Although some physicians may be recalcitrant in
accepting the integration of artificial intelligence into their
practice, the impact that artificial intelligence will have on
the field in the coming years is unarguable. Although phy-
sicians might not need to understand the theory or technical
aspects involved in the construction of machine learning
models, their practice of medicine would be greatly aug-
mented by an ability to interpret the outputs of those models
and communicate the risk of a given injury on the trajectory
of an athlete’s career. Additionally, novel clinical inferences
can be extracted from characteristics of the optimized model.

For example, imagine an orthopaedic surgeon working
with a professional hockey team using the optimized model
created in this study. From the model, the physician can
receive an objective prediction of the level of injury risk for
a given player, which can be used to guide course of care on
a day-to-day basis as well as longitudinally throughout the
season. Beyond providing individualized care, the physi-
cian can also analyze performance metrics and certain
aspects of the model, such as the SHAP score, to better
counsel their coaches and team general managers on injury
prevention, team strategy, and player acquisition. For each
variable used in the construction of the model, a SHAP
score is calculated that effectively reflects the weight of that
variable’s contribution in determining the output of the
model. For example, suppose “Average time on ice per game
while short-handed” (ATOI.SH) is found to be an important
feature in the creation of the definitive injury prediction
model. Coaches can then alter their rotations to prevent
high-risk players from playing when the opposing team has
a numerical advantage. Given the competitive nature of the
sport, coaches might hesitate to not play their best players;
however, machine learning can offer an objective evalua-
tion of player-specific risk that may better inform coaches’
decision making in a long, grueling NHL season. Potential
clinical insights such as this should incentivize physicians

Figure 3. A summary Shapley Additive Explanations (SHAP)
plot for National Hockey League goalies (A) and position
players (B). The top 14 most important factors for model output
are on the y axis. Factor impact on the model is on the x axis.
For each factor, the distribution of values is displayed. A higher
SHAP value indicates a factor that predicts higher injury prob-
ability, whereas a lower SHAP value indicates a factor that
predicts a lower injury probability. Each datapoint is colored
by the feature value. For example, age is colored blue for lower
age values and red for higher age values.
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and physicians-in-training to familiarize themselves with
the field of machine learning and data analysis.

This study is not without limitations. One such limitation
was the lack of publiclyaccessible datasurrounding the NHL.
Many NHL teams hire teams of analysts that record custom,
in-house metrics.7,14 These metrics, which differ team by
team, go far beyond the metrics available to the public. For
example, certain teams are currently experimenting with
puck and player tracking technology; others are contracting
outside companies to track offensive zone time, in an attempt
to assess player tendencies and possession quality.2,20

Although our model was trained using >85 player metrics
and was able to reach an excellent degree of accuracy in pre-
dicting future injury, the integration of a larger database of
boutique statisticswouldonly add to the predictive power and
build upon all the model has already “learned” to correct and
fine-tune predictions. One potential area of interest for future
study could be the incorporation of specific player position
(such as forward vs defense) in the assessment of future
injury risk. Another limitation to our model is that all past
injury history was considered equally, not accounting for
degree of severity. A target of future study, given the acqui-
sition of more explicit injury data, would be the assessment of
degree of severity of past injury and its effect on future injury
risk. Certainly, we expect more severe injuries to have a
greater effect on future injury risk than minor ones; this
remains a target of future model refinement.

Finally, the level of granularity of our data can be consid-
ered a limitation. Our injury data were often not specific;
entries included phrases such as “upper limb injury” or “ankle
injury.” As such, the clinical applicability is not readily deploy-
able, as it depends on the existence of a centralized official
injury database. Because of this ambiguity, we decided to
include only prior injury count as a factor in the model, which
is certainly unreliable and possibly clinically misleading with-
out accounting for severity. The ability to incorporate more
specific, graded injury data would present the opportunity for
a more accurate next-season injury prediction model. Addi-
tionally, such data would allow the creation of new models
that answer more complex questions beyond injury risk the
subsequent season. One example would be a model that pre-
dicts the risk of a specific injury, such as the risk of a groin
strain versus the risk of a stress fracture.

CONCLUSION

Advanced machine learning models such as XGBoost out-
performed logistic regression and demonstrated good to
excellent capability of predicting whether a publicly report-
able injury is likely to occur the next season.
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APPENDIX

TABLE A1
Nongoalie Cohort Characteristics, Including Sabermetric
Measures of Performance and Prior and Future Injurya

Variable
Name Feature

Age Player age
þ/- Plus/minus (scoring)
PIM Penalties in minutes (scoring)
EV Even strength goals
PP.Special

Teams
Power play goals (special teams)

SH.Special
Teams

Short-handed goals (special teams)

GW Game-winning goals
PP.Assists Power play assists
SH.Assists Short-handed assists
S% Shooting percentage
BLK Blocks at even strength
HIT Hits at even strength
FOW Faceoff wins at even strength
FO% Faceoff win percentage at even strength
FF% rel Relative Fenwick for percentage at even strength
oiSH% Team on-ice shooting percentage at even strength
Shift Average shift length per game
GP Games played
oZS% Offensive zone start percentage at even strength
TK Takeaways
GV Giveaways
E þ/- Expectedþ/- (given where shots came from, for and

against, while this player was on the ice at even
strength)

ATOI.ES Average time on ice per game while at even strength
CF% Rel.ES Relative Corsi for percentage while at even strength
GA/60.ES On-ice goals against per 60 minutes while at even

strength
ATOI.PP Average time on ice per game while on the power play
CF% Rel.PP Relative Corsi for percentage while on the power play
GF/60.PP On-ice goals for per 60 minutes while on the power

play
GA/60.PP On-ice goals against per 60 minutes while on the

power play
ATOI.SH Average time on ice per game while short-handed
CF% Rel.SH0 Relative Corsi for percentage while short-handed
GF/60.SH On-ice goals for per 60 minutes while short-handed
GA/60.SH On-ice goals against per 60 minutes while short-

handed
TOI.Total Total time on ice per season
Prior injury

count
Number of prior injuries, counted at the end of a

season

aVariablename refers to the coded name for the variable as used
in the Python program. Feature is a description of the variable.

TABLE A2
Goalie Cohort Characteristics, Including Sabermetric

Measures of Performance and Prior and Future Injurya

Variable Name Feature

Age Goalie age
GAA Goals against average
QS% Quality start percentage
GSAA Goals against average
PIM Penalties in minutes
GS Games started
L Losses
T/O Ties plus overtime/shootout losses
SO Shutouts
GA%- Goals allowed percentage relative to league goals

allowed percentage
A Assists
GP Games played
MIN Minutes played, in season
Prior injury

count
Number of prior injuries, counted at the end of a

season

aVariable name refers to the coded name for the variable as
used in the Python program. Feature is a description of the vari-
able.
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