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Análises Clı́nicas e Toxicológicas, Faculdade de Farmácia Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 6 Departamento de Patologia Geral, Instituto de

Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 7 Departamento de Bioquı́mica e Imunologia, Instituto de Ciências Biológicas,

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 8 Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo

Horizonte, Brazil, 9 Departamento de Fı́sica – Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 10 Laboratory of

Immunology Safety, State Research Center of Virology and Biotechnology ‘‘Vector’’, Koltsovo, Russian Federation, 11 State Institute of Standardizing and Control by Name

of Tarasevich, Moscow, Russian Federation

Abstract

There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations
found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the
adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical
changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-c
expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18.
In DENV-3-inoculated IFN-c2/2 mice, there was enhanced lethality, which was preceded by severe disease manifestation
and virus replication. Lack of IFN-c production was associated with diminished NO-synthase 2 (NOS2) expression and higher
susceptibility of NOS22/2 mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-c-
NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to
DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice
described here represents a significant advance in animal models of severe dengue disease and may provide an important
tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection.
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Introduction

Dengue viruses (DENV) are the most prevalent mosquito-borne

RNA viruses worldwide, classified serologically into four antigen-

ically distinct types (DENV-1–4). They are transmitted to humans

by the mosquitoes Aedes aegypti and Aedes albopictus [1–3]. According

to the World Health Organization (WHO) a total of 500,000 cases

of dengue hemorrhagic fever (DHF) occur annually, and 20,000

deaths are estimated to happen every year [4–5]. The hallmark of

severe dengue infection is a transient increase in vascular

permeability, characterized by hemorrhagic manifestations,

thrombocytopenia, and hemoconcentration, resulting in plasma

leakage, which is believed to be immune mediated [4,6–7].

Furthermore, deranged liver function is very common in patients

with dengue infection and is generally manifested by the elevation

of transaminase levels representing reactive hepatitis [8–10].

Treatment of dengue fever (DF) and of the severe forms of

dengue infection is largely supportive [7,11].

The pathogenesis of DENV infection remains poorly under-

stood and involves a complex interplay of viral and host factors

[1,3,6,12–15]. The lack of a suitable animal model that emulate

dengue disease, specially the severe forms (DHF/DSS), has
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hindered progress in many areas of dengue research, including

pathogenesis, immunity, drug development and vaccine design

and testing [7,16]. Several studies in mice and humans have noted

higher levels of viremia in severe dengue disease, which supports

the assertion that increased viral replication is associated with

more severe disease manifestation [17–21]. However, we and

other groups have also demonstrated that inflammatory response,

characterized by cytokine storm, also plays a fundamental role in

dengue pathogenesis [7,22–29]. Most of these studies were first

characterized in a model of dengue infection using a mouse-

adapted DENV-2 strain that mimics several clinical parameters

seen in human disease, without affecting the CNS [22,24–28]. In

addition to characterizing mechanisms associated with pathogen-

esis, the DENV-2 model showed to be adequate to study pathways

important for host resistance to infection. In this regard, we have

recently demonstrated that IFN-c production depends on IL-12

and IL-18 combined action and mediated host resistance to

DENV-2 infection in a nitric oxide-dependent manner [30].

The development of animal models of all 4 DENV serotypes is

extremely necessary and may help to determine: (i) whether

different pathogenetic mechanisms operate in the different

serotypes, (ii) the consequence of sequential infection and (iii) the

efficacy of drugs and vaccine candidates [11,31]. In this regard, in

the present study we characterize a novel model of DENV-3

infection in immunocompetent adult mice, using the same strategy

previously used for DENV-2 model. After inoculation of the

adapted DENV-3 strain, we observed the occurrence of the major

clinical manifestations of severe dengue infection, characterized by

inoculum-dependent lethality that was preceded by significant

clinical and biochemical alterations such as thrombocytopenia,

hemoconcentration, plasma extravasation, liver damage with

elevated AST/ALT levels in serum and massive cytokine

production. Moreover, DENV-3 was detected in spleen and liver

and viremia was detected from the fifth day of infection. There

was also enhanced expression of NS3 in liver and NS1

concentration in plasma. The development of animal models for

the four DENV serotypes will also allow to determine whether

mechanisms of protection to infection are similar or not among the

different serotypes. Hence, using this novel DENV-3 model, we

demonstrate that the IFN-c-induced Nitric Oxide production,

found to be essential for host resistance to DENV-2 infection [30]

plays a major role in host protection to DENV-3 infection. Mice

deficient for IFN-c and for NOS2 are markedly susceptible to

DENV-3 infection, with elevated lethality rates, more severe

disease and increased viral load after infection. Therefore, we

describe a novel model of DENV-3 infection in immunocompetent

mice that emulates many of the manifestations seen in human

disease. The present model may provide an important tool to

study host–virus interactions and mechanisms mediating protec-

tion or those associated with severe disease manifestation.

Methods

Ethics statement
This study was carried out in strict accordance with the

Brazilian Government’s ethical and animal experiments regula-

tions. The experimental protocol was approved by the Committee

on the Ethics of Animal Experiments of the Universidade Federal

de Minas Gerais (CETEA/UFMG, Permit Protocol Number 113/

09). All surgery was performed under ketamine/xylazine anesthe-

sia and all efforts were made to minimize animal suffering.

Animals
Mice deficient for IFN-c and NOS-2 were obtained from The

Jackson Laboratory and were bred and maintained at the

Gnotobiology and Immunology Laboratory of Instituto de

Ciências Biológicas. Mice deficient for IL-12p40 were kindly

provided by Dr. J. Magran through Dr. L. V. Rizzo (Instituto de

Ciências Biomédicas (ICB), University of São Paulo, São Paulo,

Brazil) and were bred and maintained at the Gnotobiology and

Immunology Laboratory of Instituto de Ciências Biológicas. Mice

deficient for IL-18 [32] and IFNGR1 were kindly provided by Dr.

F.Q. Cunha and were bred and maintained at the Gnotobiology

and Immunology Laboratory of Instituto de Ciências Biológicas.

All mice were on C57BL/6J genetic background (back-crossed at

least 10 times) and wild-type control C57BL/6J (WT) mice were

used. For experiments, 7–10 weeks old mice were kept under

specific pathogen–free conditions, in filtered-cages with autoclaved

food and water available ad libitum. Adult BALB/c mice (7–10

weeks) were also used. During DENV-3 virus adaptation process,

newborn and BALB/c mice of different ages (1-4 weeks old) were

maintained at the same conditions described above.

Virus
A clinical isolate of Dengue virus type 3 (DENV-3), genotype I,

was used (access number JN697379). All work with the infectious

virus was performed in a BSL-2 facility of the Laboratório de

Interação Microrganismo-Hospedeiro - ICB – UFMG. Dengue

virus 3 (DENV-3) was adapted similarly as previously described

[22]. Briefly, the virus had undergone two passages intracerebrally

(ICR) in suckling mice. The brains of the moribund mice were

harvested for preparing 10% (w/v) mice brain suspension in

modified Eagle’s medium (MEM). The death of the suckling mice

was observed on day 5 after cerebral infection. After that, 10

sequential passages through BALB/c mice of different ages (1–4

weeks old) by intraperitoneal (i.p.) injection were performed. Two

sequential passages were carried out for each age group of BALB/

c mice. After each passage, the brains of the moribund mice were

harvested for preparing 10% brain suspension and then used for

the next passage. The last passage of DENV-3 obtained from the

Author Summary

Dengue is a mosquito-borne disease caused by one of four
serotypes of Dengue virus (DENV-1-4). Dengue has esca-
lated in geographic distribution and disease severity to
become the most common arboviral infection of humans.
There are no vaccines or specific therapies for dengue and
the treatment is supportive. Immunopathogenesis of
dengue disease is also poorly understood, in part, due to
of the absence of proper animal models of infection. Here,
we describe the phenotype of infection of immunocom-
petent mice with an adapted DENV-3 strain. Infection
caused an inoculum-dependent lethality that was preced-
ed by significant clinical, virological and biochemical
changes resembling the severe manifestations of human
infection. In addition, we demonstrate that IFN-c produc-
tion is essential for the host to deal with DENV-3 infection
in a manner similar to that demonstrated previously for
DENV-2. Hence, reduced IFN-c production during DENV-3
infection was associated with diminished NOS2 expression
and Nitric oxide production. Mice deficient for each of
these molecules presented more severe disease manifes-
tation and increased viral replication. Therefore, we
describe a model of DENV-3 infection in immunocompe-
tent mice that proves to be an interesting tool to study
host–virus interactions and mechanisms mediating pro-
tection or those associated with severe disease manifes-
tation.
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brain of 4-week-old BALB/c mice was used for five sequential

passages in the brain of suckling mice ICR and was collected to

produce stocks. Ten percent brain suspension served as virus stock

and was stored at 270uC. In addition, virus stocks were produced

from infected mosquito C6/36 cells, in vitro. To calculate virus

titer, plaque assays were conducted in LLC-MK2 cells as

described below. Viral titer of stock was 5,86106 PFU/mL of

cell supernatant. Suspension from brain of non-infected mice was

prepared in a similar way and was used as control in all

experiments. In some experiments, the suspension of the adapted

DENV-3 virus was UV-irradiated (exposure of virus stock for

15 min to a UV lamp producing irradiation predominantly at

365 nm) or heat inactivated (56uC for 1 h) before inoculation of

mice.

Experimental procedure
For infection experiments, the virus-containing brain suspen-

sions were diluted in endotoxin-free PBS (3.2 mM Na2HPO4,

0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl) and injected i.p.

into mice. For the evaluation of lethality, mice were inoculated i.p.

and lethality rates evaluated every 12 h for 14 days. The various

other parameters were evaluated at 3, 5 and 7 days or daily after

i.p. inoculation of the virus. In all experiments using genetically

deficient mice, relevant WT controls were performed in parallel.

Non-infected animals were inoculated with brain suspension from

non-infected suckling-mice diluted in a similar manner. In the

experiments involving genetically deficient mice, the NI group

represents the pooled results obtained from the analysis of deficient

mice and WT non-infected mice. Results were pooled for ease

presentation.

In some experiments IL-18 was neutralized by daily i.p.

injection of 1mg/kg of recombinant human IL-18BP per animal

(hIL-18 bp), starting 1 hour after DENV-3 inoculation and lasting

until day 6 after virus inoculation. The dose was chosen based in a

previous study of [33]. Control animals received the vehicle saline

alone. The hIL-18 bp isoform was a kind gift of Dr. Amanda

Proudfoot from Merck-Serono Pharmaceuticals (Geneve, Switzer-

land). In other experiments, mice were pretreated i.p with 100 mL

anti-DENV-3 polyclonal antiserum or control serum, 60 min

before inoculation of the adapted DENV-3. The anti-DENV

serum utilized was kindly given by Dr. Ricardo Galler from

Departamento de Bioquı́mica e Biologia Molecular do Instituto

Oswaldo Cruz-Fiocruz, RJ, Brazil [34]. Serum was obtained from

Rhesus monkeys (macaca mullata) inoculated subcutaneously on the

anterior surface of the left forearm with 0,5 ml of the viral

suspension containing 105 PFU of the DENV-3 H87 (13 dpi) [34].

Cell culture and in vitro infection studies
Murine bone marrow cells were isolated from femurs and were

differentiated into myeloid DCs after culturing (change on days 3,

6, and 8) at 26106 cells/ml for 10 days in RPMI supplemented

with 10% FCS and 4% J558L cell-conditioned medium as a

source of GM-CSF as described [35]. DCs were plated in 96-well

microculture plates (at 26105 cells/well in DMEM supplemented

with 2 mM L-glutamine and 261025 M 2-ME) and for infection,

cells were incubated with 50 mL of the brain suspension containing

DENV-3 at a MOI of 0,05 PFU/cell in the presence or not of

IFN-c (100 U/ml). Negative controls were stimulated with sterile

brain suspensions submitted to the same procedures of the DENV-

3 containing brain homogenate. For positive controls, cells were

stimulated with TLR4 agonist LPS (Escherichia coli, serotype

O111:B4, Sigma-Aldrich, at 100 ng/ml). Cell supernatants were

harvested after 72 h of stimulation for nitrite measurements by

Griess reagents.

Quantification of nitrite in cell supernatants
Cell-free culture medium was obtained by centrifugation and

assayed for nitrite content, determined by the Griess method [36].

For this assay, 0.1 ml of culture medium or serum was mixed with

0.1 ml of Griess reagent in a multiwell plate, and the absorbance

at 550 nm read 10 min later. The NO2
2 concentration was

determined by reference to a NaNO2 standard curve (1 to

200 mM).

Estimation of nitric oxide production ex vivo
Diaminofluorescein diacetate (DAF-2DA), a non-fluorescent cell

permeable dye, was used. For NO estimation, esplenocytes of non-

infected and DENV-3- infected mice were isolated (106 cells/well)

and incubated with 10 mM, DAF-2DA for 30 min at 37uC and

fluorescence was determined in a fluorometer (Synergy 2,

BIOTEK, USA) at excitation wave length 488 nm and measuring

emission at 515 nm. Data were expressed as mean 6 SEM of fold

increase of fluorescence over stained-esplenocytes of NI mice.

Titration of virus
Mice were assayed for viral titers in blood, brain, spleen and

liver. Blood samples (50 mL) were collected in heparinized tubes,

diluted in 450 mL of endotoxin-free PBS (3.2 mM Na2HPO4,

0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl) and stored at

270uC. For virus recovery in brain, spleen and liver, the organs

were collected aseptically in different time points and stored at

270uC until assayed for DENV-3 virus. Tissue samples were

weighed, grounded by using a pestle and mortar and prepared as

10% (w/v) homogenates in minimal essential medium (MEM)

without fetal bovine serum (FBS). Viral load in supernatants of

tissue homogenates and blood samples were assessed by direct

plaque assay using LLC-MK2 cells as described [24,27]. In Brief,

LLC-MK2 cells were seed in 6 well plates and grown to

confluence. 24 hours later, cell layers were incubated with serially

diluted 0.4 mL of virus samples for 1 and half hour and overlaid

with 1,5% methylcellulose +199 medium, 3% FBS. Plates were

incubated for 7 days at 37uC, fixed in 10% formaldehyde, and

stained with 1% crystal violet in water for 30 min. Plaques were

counted by eye. The results were measured as plaque forming

units (PFU) per gram of tissue weight or per mL of blood. The

limit of detection of the assay was 100 PFU/g of tissue, or per mL.

In vitro plaque purification
Plaque purification was performed as previously described [37].

Briefly, LLC-MK2 cells were seeded in a 6-wells plate and grown

to 80% confluence. Then, cells were infected with different

inoculums of the brain adapted DENV-3, overlaid with agarose

0,5% prepared in DMEM 5% FBS. Culture was incubated at

37uC, 5% CO2 for 7 days and single plaques were picked for

expansion in LLC-MK2 cells. Nine clones were obtained and were

titrated in LLC-MK2 cells for further in vivo evaluation.

Evaluation of blood parameters
Blood was obtained from the cava vein in heparin-containing

syringes at the indicated times under ketamin and xylazine

anesthesia (150 mg/Kg and 10 mg/Kg, respectively) .The final

concentration of heparin was 50 u/ml. Platelets were counted in a

Neubauer chamber. Briefly, 10 ul of solution (amonium oxalate

1% and blood in a dilution of 1:100) were placed in the chamber

and platelets were visualized in a Nikon XP-1000 microscope,

magnification of 4006, using phase contrast. Results are presented

as number of platelets per ml of blood. For the determination of the

hematocrit, a sample of blood was collected into heparinized

DENV-3 Infection and IFN-g-Mediated Protection
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capillary tubes (Perfecta) and centrifuged for 10 min in a

Hematocrit centrifuge (Fanem, São Paulo, Brazil).

Detection of Dengue Virus NS1 Antigen
Dengue virus NS1 antigen was measured in individual serum

samples (1:3 dillution), using a commercially ELISA available kit

(BIO-RAD Platelia TM Dengue NS1 AG). The optical density

reading obtained with a spectrophotometer set at 450 nm was

proportional to the amount of NS1 antigen present in the sample.

Results are expressed as absorbance at 450 nm.

Measurement of cytokines/chemokine concentrations
The concentration of cytokines (TNF-a, IFN-c, IL-6, IL-12p40

and IL-18) in serum or tissue samples was measured using

commercially available antibodies and according to the procedures

supplied by the manufacturer (R&D Systems, Minneapolis, except

for IL-18, manufactured by BD Pharmingen). Results are

expressed as pg/mL or pg/100 mg of tissue. The detection limit

of the ELISA assays was in the range of 4–8 pg/ml.

Evaluation of changes in vascular permeability
The extravasation of Evans blue dye into the tissue was used as

an index of increased vascular permeability, as previously

described [38]. Briefly, Evans blue (20 mg kg21) was administered

i.v. (1 ml kg21) via an eye vein 30 min prior to mice sacrifice.

After that, one lobe of liver and the left lung were cut and allowed

to dry in a Petri dish for 24 h at 37.C. The right ventricle was

flushed with 10 ml of phosphate-buffered saline (PBS) to wash the

intravascular Evans blue in the lungs. The left lung was then

excised and used for Evans blue extraction. The dry weight of the

tissue was calculated and Evans blue extracted using 1 ml of

formamide (24 h at room temperature). The amount of Evans blue

in the tissue was obtained by comparing the extracted absorbance

with that of a standard Evans blue curve read at 620 nm in an

ELISA plate reader. Results are presented as the amount of Evans

blue per mg per 100 mg of tissue.

Transaminase activity
The transaminases Aspartate aminotransferase (AST) and

Alanine aminotransferase (ALT) activity were measured in

individual serum samples, using a commercially colorimetric

available kit (Bioclin, Quibasa, Belo Horizonte, Brazil). Results are

expressed as the mean mean 6 SEM of transaminase concentra-

tion in U/dL of plasma.

Body weight and hemodynamic measurements
Body weight (BW) and systolic blood pressure (SBP) were

measured in uninfected and infected mice on days 0,3,4,5,6 and 7

after infection. All animals were habituated to the blood pressure

measurement device for 7 days. SBP was determined with tail-cuff

plethysmography method in unanesthetized mice, as previously

described [39]. All data are expressed as mean 6 SEM. Changes

in SBP from baseline are expressed as absolute values as well as

areas under the BP curves.

Hypernociception assessment by a modified electronic
pressure-meter test for mice

Hypernociception was assessed as described by Sachs et al, 2010

[40]. Briefly, mice were placed in acrylic cages with a wire grid

floor 15–30 min before testing for environmental adaptation. In

these experiments, an electronic pressure-meter was used. It

consists of a hand-held force transducer fitted with a polypropyl-

ene tip (INSIGTH Instruments, Ribeirão Preto, SP, Brazil) [41]. A

standard large tip (0.5 mm2) was applied in the hind paw of the

DENV-3 infected mice or it respective controls and an increasing

perpendicular force was applied to the central area of the plantar

surface of the hind paw to induce the flexion of the knee joint,

followed by paw withdraw. After the flexion-elicited withdrawal

threshold, the intensity of the pressure was automatically recorded.

The value for the response was obtained by averaging three

measurements. Animals were tested daily after inoculation. Results

are expressed as D withdrawal threshold (g) calculated by

subtracting zero-time mean measurements from the time interval

mean measurements.

Conventional PCR and real time PCR
For typing of adapted-DENV-3 virus, RNA was extracted with

QIAMP viral RNA kit (Qiagen, Hilden, Germany) from the

adapted-DENV-3 after different passages in C6/36 mosquito cells

and of clone 4 obtained from the adapted DENV-3. The non-

adapted DENV-3 was also used as control. First-strand cDNA

synthesis for subsequent PCR assays was performed with

approximately 400 ng of total RNA and random primer C118A

(PROMEGA, Madison). A PCR assays was performed with

specific primer combinations D1/TS3 (DENV-3), previously

described by [42]. PCR products were run on a 1.5% agarose

gel stained with ethidium bromide.

For evaluation of NOS2 mRNA expression, spleens were

removed 3, 5 and 7 days after DENV-3 inoculation into mice.

Total RNA was isolated from tissues by using a QIAGen RNEasy

RNA Isolation Kit. The RNA obtained was resuspended in diethyl

pyrocarbonate treated water and stocked at 270uC until use.

Real-time RT-PCR was performed on a StepOne sequence-

detection system (Applied Biosystems) by using SYBR Green PCR

Master Mix (Applied Biosystems) after a reverse transcription

reaction of 2 mg of RNA by using M-MLV reverse transcriptase

(Promega). The relative level of gene expression was determined

by the comparative threshold cycle method as described by the

manufacturer, whereby data for each sample were normalized by

18S ribosomal RNA and expressed as a fold change compared

with non-infected controls or medium cultivated cells. The

following primer pairs were used: 18S ribosomal RNA, 59-

CGTTCCACCAACTAAGAACG-39 (forward) and 59-CTCAA-

CACGGGAAACCTC AC-39 (reverse); and nos2, 59- AG-

CACTTTGGGTGACCACCAGGA-39 (forward) and 59- AGC-

TAAGTATTAGAGCGGCGGCA -39 (reverse).

FACS analysis
Spleen cells were evaluated ex vivo for extracellular molecular

expression patterns and for intracellular cytokine expression

patterns. Briefly, spleens were removed from infected mice on

day 7 after infection and cells were isolated, and immediately

stained for surface markers, fixed with 2% formaldehyde and then

permeabilized with a solution of saponin and stained for 30 min at

room temperature, using anti-IFN-c monoclonal antibodies

directly conjugated with FITC. Preparations were then analyzed

using a FACScan (Becton Dickinson), gating on a total lympho-

cyte/monocyte population. The antibodies used for the staining

were rat immunoglobulin control(s), anti-CD4-PE, anti-CD8-PE,

anti-NK1.1-PE, anti-CD3-biotin and anti-IFN-c-FITC (all from

Biolegend Inc). For detection of CD3 staining, cells were

incubated with streptavidin conjugated to PE-Cy5 fluorochrome

(Serotec Inc) for 30 min at 4uC before fixing. Spleen cells were

analyzed for their intracellular cytokine expression patterns and

frequencies using the software Flow Jo 7.2 (Tree Star Inc). The

frequency of positive cells was analyzed using a gate that included

lymphocytes, large blast lymphocytes and monocytes/macrophag-
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es. Limits for the quadrant markers were always set based on

negative populations and isotype controls.

Histopathological analysis
Liver samples from adult euthanized mice were obtained at the

indicated time points. Afterwards, they were immediately fixed in

10% buffered formalin for 24 hours and embedded in paraffin.

Tissue sections (4 mm thicknesses) were stained with hematoxylin

and eosin (H&E) and evaluated under a microscope Axioskop 40

(Carl Zeiss, Göttingen, Germany) adapted to a digital camera

(PowerShot A620, Canon, Tokyo, Japan). Histopathology score

was performed according to a set of custom designed criteria

modified from [43] evaluating hepatocyte swelling, degeneration,

necrosis and hemorrhage, added to a five-points score (0, absent;

1, minimal; 2, slight; 3, moderate; 4, marked; and 5, severe) in

each analysis. For easy interpretation, the overall score was taken

into account and all the parameters totalized 20 points. A total of

two sections for each animal were examined and results were

plotted as the media of damage values in each mouse.

Immunohistochemistry analysis
For immunohistochemistry, sections were treated with 3%

H2O2 diluted in Tris-buffered saline (TBS) (pH 7.4) for 30 min-

utes. For antigen retrieval, tissue sections were immersed in citrate

buffer (pH 6.0) for 20 minutes at 95uC. For NOS2 detection the

slides were then incubated with the rabbit polyclonal anti-NOS2

(N-20, sc-651, Santa Cruz Biotechnology, Santa Cruz, CA) diluted

1:100; at 4uC overnight in a humidified chamber. For detection

and quantification of DENV-3 infected cells an anti-DENV NS3

MAb E1D8 or an isotype control was used in a dilution of 1:350

for liver and 1:100 for brain; at 4uC overnight in a humidified

chamber. After incubation, tissue sections were washed with TBS

and treated with a labeled streptavidin-biotin kit EnVisionH +
Dual Link System-HRP (Dako). Sections were then rinsed in PBS

with 3,39-diaminobenzidine tetrahydrochloride (K3468, Dako) for

5 minutes and stained with Mayer’s hematoxylin. For quantifica-

tion of NOS-2+ cells or NS3+ cells, cells counts were performed in

10 alternate microscopic high-power fields (6400) for each sample

(4–5 mice per group). It was counted the number of positive

hepatocytes, kupffer cells and inflammatory cells in each field.

Areas of necrosis and hemorrhage were excluded from the

analysis. The distribution of NS3 was assessed throughout the

brain on at least two different brain coronal sections.

Intravital confocal microscopy
Liver intravital microscopy was performed as previously

described [44]. Briefly, mice were anesthetized as describe

previously. Mice were placed in a right lateral position on an

adjustable microscope stage. A lateral abdominal incision along

the costal margin to the midaxillary line was made to exteriorize

the liver, and all exposed tissues were moistened with saline-soaked

gauze to prevent dehydration. The liver was placed on a stage for

an upright microscope and the liver surface was then covered with

a coverslip to hold the organ in position. The liver was visualized

using intravital multiphoton and confocal microscopy system

based on a modified Olympus confocal microscope (FV300) in an

up- right configuration (BX51 Microscope). The images presented

were obtained using the confocal laser at 488 nm using a 10/0.30

UplanFLN objective. Cells were fluorescently labeled by rhoda-

mine 6G (0,05%; i.v.) to assess hepatocyte size by measuring the

longest cell axis of 20–30 cells/field (Image J, NIH, USA).

Sinusoids were labeled by i.v. injection of phycoerythrin-anti

PECAM-1 (0,5 mg/mice ; PE anti-CD31, clone 390 ; Ebioscience,

USA) and the percentage of perfused sinusoids was assessed by

digital quantification of the area fraction stained by the antibody

(Image J, NIH, USA).

Statistical analysis
Results are shown as means 6 S.E.M. Percent inhibition was

calculated by subtracting the background values obtained in non-

infected animals. Differences were compared by using analysis of

variance (ANOVA) followed by Student-Newman-Keuls post-hoc

analysis. Differences between lethality curves were calculated using

Log rank test (Graph Prism Software 4.0). Changes in SBP from

baseline are expressed as absolute values as well as areas under the

BP curves. Results with a P,0.05 were considered significant.

Results

Disease parameters in immunocompetent mice infected
with an adapted strain of DENV-3

Infection of adult C57BL/6j (Figure 1A) or BALB/c (Figure

S1A) mice with an adapted strain of DENV-3 induced an

inoculum-dependent lethality that was usually observed around

the 7th or 6th days after inoculation of DENV-3, respectively. Next,

we performed series of experiments to characterize the disease

caused by the adapted DENV-3 in both mice strains. In all

experiments, control mice were inoculated with brain suspension

which caused no clinical or biochemical alterations in comparison

with non-inoculated mice (data not shown). Infection kinetic

studies were carried out with an inoculum of 10LD50 and 1LD50

for C57BL/6j and BALB/c mice strains, respectively. Inoculi were

equivalent to 1000 and 100 PFU, respectively, as verified by

plaque assay in LLC-MK2 cells. Experiments were conducted till

day 7, the peak of infection, as there was significant lethality in

WT mice after this period (Figures 1A and S1A). Lethality of both

strains of adult mice infected with DENV-3 was preceded by

significant changes in clinical and biochemical parameters as

shown in Figures 1, 2 and S1. There was marked weight loss,

beginning at day 4 after infection, reaching about 20% on day 7

after DENV-3 inoculation (Figure 1B and S1B). There was also

significant hypernociception in response to mechanical stimula-

tion, an index of pain in experimental animals, lasting from day 3

until day 7 post-infection (Figure 1C and S1C). In addition,

DENV-3 infection induced significant hematological alterations.

Thrombocytopenia was observed as early as 3 days after infection

and platelets counts were around 50% of normal at day 7

(Figure 1D and S1D, right panels). The hematocrit, a marker of

hemoconcentration, was elevated from day 3 and increased to

greater than 50% by day 7 (Fig. 1D and S1D, left panel). In

addition to hemoconcentration, there was marked plasma

extravasation in target organs, as assessed by increase in

concentration of Evans blue dye in liver and lungs, respectively

(Fig. 1E). These findings were accompanied by changes in

hemodynamic parameters, showed by reduction in systolic blood

pressure, more sharply on day 7 p.i. Hence, at this time point,

there was a striking 40 mmHg fall in systolic blood pressure in

DENV-3-infected mice (Figure 1F). The concentration of liver

enzymes in serum (Aspartate aminotransferase [AST] and Alanine

aminotranferease [ALT]) were elevated after DENV-3 infection.

There was an increase of AST and ALT of approximately 10 and

30 times, respectively, at day 7 after infection in both strains

(Figure 1G and S1E). Evaluation of the liver microvasculature by

intravital confocal microscopy revealed a significant increase in

hepatocyte diameter at day 7 after DENV-3 inoculation as

compared to non-infected mice (Figure S2A). There was a

decrease of sinusoidal perfusion which paralleled the increase in

hepatocyte diameter (Figure S2B). The levels of IL-6, TNF-a,
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IFN-c, IL-12/23p40 and IL-18 were evaluated in spleen or serum

of infected mice. Overall, there was a good correlation between

levels of cytokines in serum and spleen and the severity of disease

(Figure 1H-L). IL-6 levels were elevated at 5 and 7 dpi in spleen

and 7 dpi in serum after DENV-3 inoculation (Figure 1H). Levels

of TNF-a rose rapidly from day 3 in spleen and serum of infected

mice, peaking on day 7 (Figure 1I). Nevertheless, IFN-c peaked on

day 5, and still remained elevated at day 7 in spleen and serum of

DENV-3 infected mice as compared to NI group (Figure 1J).

There were detectable levels of both IL-12/23p40 (Figure 1L, left

panel) and IL-18 (Figure 1L, right panel) cytokines in the spleen of

WT mice already on day 5 of infection. IL-18 levels reduced to

basal values at the 7th day of infection, while IL-12/23p40

remained above background levels at this time point (Figure 1L

right and left panels, respectively).

Of note, neither limb paralysis nor any other sign of CNS

inflammation (eg. levels of TNF-a and IL-6 in brain) were noticed

after peripheral inoculation of DENV-3 into adult mice (data not

shown). Therefore, in summary, we show that immunocompetent

adult mice infected systemically with an adapted strain of DENV-3

virus presented several clinical and pathological systemic features

that resemble severe dengue disease in humans.

Characterization of virological and histopathological
parameters in immunocompetent mice infected with
DENV-3

After inoculation, the virus was detected from day 3 in the

spleen (Figure 2A and S3A), from day 5 in liver (Figure 2B and

S3B), and there was significant viremia from day 5 p.i. (Figure 2C

and S3C) in C57BL/6j and BALB/c mice, respectively. Viral load

escalated further at day 7 in all tissue aforementioned (Figure 2A–

C and S3A–C). In addition to high viremia, serum levels of dengue

virus NS1 antigen was increased on days 5 and 7 after DENV-3

infection (Figure 2D). The presence of DENV-3 in the liver tissue

of infected mice was also investigated by immunohistochemistry

assay using an anti-dengue NS3 antibody. As expected, negative

controls did not present any positive reaction (Figure 2E). On the

other hand, we found NS3-positive staining in liver of DENV-3

inoculated mice (Figure 2E), demonstrating active viral replication

of the virus in this target organ. The histoquantitative analyses

revealed elevated number of cells expressing virus antigens on day

7 after DENV-3 inoculation. Of the total number of NS3-positive

cells, 84% were hepatocytes, whereas there were also 8% kupffer

cells and 7% inflammatory cells, as assessed morphologically.

These results suggested that DENV-3 replicates in such cells,

Figure 1. Disease parameters in C57BL/6 mice infected with an adapted strain of DENV-3. (A) WT mice (n = 6 mice per group) were
inoculated with different inoculums of adapted-DENV-3 (i.p) and lethality was evaluated every 12 hours for 14 days. Results are expressed as % of
survival. In Figs (B–L) WT mice (n = 6 per group) were inoculated with 10LD50 (1000 PFU) of DENV-3 (i.p) and in the third, fifth or in the seventh day of
infection mice were culled and blood and tissues were collected for the following analysis: (B) Change in body weight was expressed as percentage of
initial weight loss. (C) Mechanical hypernociception was assessed daily. Results are shown as the difference between the force (g) necessary to induce
dorsal flexion of tibio-tarsal joint, followed by paw withdraw, before and after DENV-3 inoculation. In (D), hematocrit was expressed as % volume
occupied by red blood cells (left panel) and the number of platelets was shown as platelets 6103/ml of blood (right panel). (E) Changes in vascular
permeability in the liver and lungs are shown as mg Evans blue per 100 mg of tissue (left and right panels, respectively). (F) Shows changes in Systolic
blood pressure from baseline until day 7 after infection expressed as D of blood pressure in mmHg. (G) AST (left panel) and ALT (right panel) activity
determination in plasma of control and DENV-3-infected mice was shown as U/dL of plasma. (H–L) Concentrations of IL-6, TNF-a, IFN-c IL-12/23p40
and IL-18, quantified by ELISA. Results are shown as pg per mL (serum) or pg per 100 mg (tissue). All results are expressed as mean 6 SEM and are
representative of at least two experiments. * for P,0.05 when compared to control uninfected mice. 10 LD50 corresponds to 1000 PFU of adapted-
DENV-3. ND – not detectable. NA – not assessed. NI- Not-infected. dpi – days post-infection.
doi:10.1371/journal.pntd.0001663.g001
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mainly in hepatocytes, which are present in the same areas of

tissue damage (Figure 2E). Corroborating this data, marked

hepatic injury was found in DENV-3 infected mice at day 7 p.i.

(Figure 2F). Histopathological analyses revealed intense multifocal

to coalescing areas of hemorrhagic necrosis (Figure 2F). Overall,

all infected mice exhibited inflammatory infiltrates composed of

neutrophils, macrophages and lymphocytes around blood vessels

(portal and central veins) and scattered throughout the parenchy-

ma. Moderate to intense hepatocyte swelling and degeneration

were also detected. The total score in DENV-3 infected group was

13.664.2 points, in a total of 20 points, demonstrating a significant

degree of liver injury, possible directly associated with the higher

viral replication in this organ.

DENV-3 obtained from C6/36 cell culture supernatant induced

disease that was very similar to the disease induced by viral stocks

prepared from brain suspension (Figure 2G-H and S3D). UV

irradiation or heat inactivation of the virus prevented lethality and

any form of clinical manifestation of C57BL/6j mice in vivo

(Figure 2G and data not shown). Figure S4A demonstrates typing

of adapted-DENV-3 after several passages in mosquito C6/36

cells. Moreover, treatment of C57BL/6j mice with an anti-DENV-

3 polyclonal antiserum obtained from DENV-3-infected monkeys

reduced the mortality rate of adapted-DENV-3 infected mice to

approximately 50% (Figure 2H).

Plaque purification technique was performed to isolate DENV-3

clones and test the capacity of these clones to induce severe

disease. We obtained nine DENV-3 clones that were expanded in

LLC-MK2 cells and tested in vivo. These clones were designated

clones 1 to 9. BALB/c mice that were infected by the DENV-3

clones 1, 2 or 5–9 did not present any form of clinical

manifestation and therefore 100% survived to inoculation (Figure

S3D). However approximately 25% of mice infected with DENV-

3 clone 3 progressed to death (Figure S3D). In addition, all mice

infected with DENV-3 clone 4, BALB/c (Figure S3D) or C57BL/

6j (Figure S5A) strains, presented severe clinical manifestation of

disease showed by enhanced mortality rate (Figure S3D and S5A),

viremia, thrombocytopenia and hemoconcentration (Figure S5B–

D), similarly to mice infected with adapted-DENV-3 grown in C6/

36 or brain-derived DENV-3 adapted virus. Figure S4B demon-

strates typing of adapted DENV-3 (clone-4) after passage in

Figure 2. Characterization of virologic and histopathological parameters in C57BL/6j mice upon adapted-DENV-3 infection. (A–D)
C57BL/6j mice (n = 6 per group) were inoculated with 10LD50 (1000 PFU) of DENV-3 (i.p) and in the third, fifth or in the seventh day of infection, mice
were culled and blood and tissues were collected for the following analysis: (A–C) Viral loads were recovered from the spleen, liver and blood,
respectively. Results are shown as the log of PFU per g of tissue or per mL of blood. (D) Shows virus NS1 antigen serum levels by ELISA and expressed
as O.D. (E–F) C57BL/6j mice (n = 6 per group) were inoculated with 10LD50 (1000 PFU) of DENV-3 (i.p) and in the seventh day of infection mice were
culled and liver collected for the following analyses: (E) Liver was collected, formalin-fixed and processed into paraffin sections. Serial sections from
each tissue were stained with anti-DV NS3 antibody E1D8 (NS3) or an isotype control mouse IgG2a, and multiple sections of each tissue type were
thoroughly examined for staining. Positive staining for NS3 is brown while hematoxylin counterstain is blue. (F) shows semi-quantitative analysis of
hepatic damage and Hematoxylin & Eosin staining of liver sections of control and DENV-3-infected mice, seven days after infection (Scale Bar -
400 mm). The images presented are representative of an animal on the seventh day of infection. In (G) Viral inoculum (10LD50 or 1000 PFU) was heat
inactivated (Heat, 56uC, 60 min) or treated with UV light (UV, 15 min) before inoculation in C57BL/6j mice. Lethality was evaluated every 12 hours for
14 days. (H) WT mice (n = 6 mice per group) were pretreated i.p with 100 mL of Anti-DENV-3 antiserum or control serum (pre-immune serum) before
inoculation of 10LD50 (1000 PFU) of adapted-DENV-3 (i.p). Lethality was evaluated every 12 hours for 14 days. Results are expressed as % of survival.
Results are expressed as mean 6 SEM (except for A–C, expressed as median) and are representative of at least two experiments. * for P,0.05 when
compared to control uninfected mice. 10 LD50 corresponds to 1000 PFU of adapted-DENV-3. ND- not detected. NI- not-infected. dpi- days post-
infection. NC – Negative control. HS – hepatocyte swelling. N – necrosis. D – degeneration. H – hemorrhage. OS – Overall Score.
doi:10.1371/journal.pntd.0001663.g002
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LLCMK-2 cells. In addition, we have performed subsequent

rounds of plaque purification of the adapted Clone 4 of DENV-3

and we have found that injection of a clone from the clone in adult

mice induced disease that was similar to the disease seen in mice

infected with the original clone (hematocrit: NI: 38.860.9%;

DENV-3 (7th dpi): 4561.3%, p = 0.014; platelet counts: NI:

8916226103/mL of blood; DENV-3 (7th dpi): 5706316103/mL

of blood, p,0.001)

To evaluate the presence of virus in the CNS, we measured

number of DENV-3 plaques after systemic or CNS inoculation in

adult and weaning mice. Systemic injection of the virus in adult

mice resulted in detection of the virus in spleen (Figure 2A and

S6A) but no detection of virus in the brain (Figure S6B). In

contrast, systemic inoculation of the virus in weaning mice resulted

in significant detection of the virus in the brain (Figure S6B).

However, the viral load in the CNS was much higher when the

virus was inoculated directly into the brain (Figure S6B).

Immunohistochemistry analysis concurred with the findings above

and revealed that NS3 staining was only detect in newborn mice

and specially after direct injection into the brain (Figure S6C).

These data corroborate with the absence of neurologic symptoms

during disease, as well as with the lack of cytokine production in

brain tissue, as discussed above. Therefore, the adapted DENV3

strain still maintains its neurotropism in newborn mice which is

lost as mice ages and probably correlates with the development of

the blood brain barrier.

Production of IFN-c is required for host resistance to
adapted-DENV-3 primary infection

As shown in Figure 1J, during the time course of DENV-3

infection, there was an increase in levels of IFN-c in serum and

spleen from the 5th day of infection that was maintained at the 7th

day p.i. (Figure 1J, right and left panels, respectively). In addition,

IFN-c levels in the liver of adapted-DENV-3 mice were also

increased from day 5, reaching higher values on day 7

(NI = 36611 pg/100 mg of tissue; 3 d = 6466 pg/100 mg of

tissue; 5 d = 109611 pg/100 mg of tissue; 7 d = 216631 pg/

100 mg of tissue; n = 6, p,0.05). FACS analysis of esplenocytes

isolated from DENV-3 infected mice revealed IFN-c staining in

about 12% of total cells on 7th day after inoculation (Figure 3A).

There was an increase in expression of IFN-c in CD4+ T cells,

CD8+ T cells, CD32NK1.1+ NK cells, and CD3+NK1.1+ NKT

cells. Significantly, over 46% of CD4+ T cells, 36% of CD8+ T

cells and 36% of CD32NK1.1+ NK cells and 35% of

CD3+NK1.1+ NKT cells were IFN-c+ at this period in comparison

with cells of non-infected mice (Figure 3A).

To investigate in vivo the role played by IFN-c during DENV-3

infection, wild type (WT) and IFN-c deficient (IFN-c2/2) mice

were inoculated with 1LD50 of adapted DENV-3 and mortality

rate and disease parameters were evaluated. After infection, 100%

of IFN-c2/2 mice were dead before day 9 of infection, while less

than 30% of WT mice had succumbed to infection after 14 days of

inoculation of DENV-3 (Figure 3B). In fact, approximately 75% of

IFN-c2/2 mice were already dead at day 6 after infection

(Figure 3B), which led us to perform the subsequent analysis on

day 5 after infection. The early lethality of IFN-c2/2 mice was

associated with increased DENV-3 replication. As early as the 3rd

day of DENV-3 inoculation, viremia in IFN-c2/2 mice was

detectable (WT: not detectable; IFN-c2/2: 2.96103 PFU/mL of

blood, n = 4, p = 0,03). Viremia was almost 2log higher in IFN-c2/

2 mice in comparison to WT mice at 5 days after infection

(Figure 3C). Indeed, at this time point, there was marked increase

of viral load in spleen (Figure 3D, left panel) and liver (Figure 3D,

right panel) of infected IFN-c2/2 mice. Moreover, NS3+ staining

in liver was strikingly higher in infected IFN-c2/2 mice when

compared with their WT littermates (Figures 3E). Again, the

hepatocytes were the predominant cell stained for NS3 protein,

representing almost 90% of positive cells. Of interest, the virus

could not be detected in the brain of WT and IFN-c2/2 infected

mice (data not shown).

In addition to greater lethality rates and to enhanced viral

replication, IFN-c2/2 mice presented more severe manifestation

of disease after infection (Figure 3F–J). Hypernociception initiated

earlier and remained increased at all time points evaluated

(Figure 3F). IFN-c2/2 mice also had more marked thrombocy-

topenia (Figure 3G, right panel), significant greater increase in

hematocrit values (Figure 3G, left panel), and more drastic

reduction in systolic blood pressure (Figure 3H) than infected WT

mice.

IFN-c2/2 mice showed greater liver injury after DENV-3

infection, as demonstrated by increased AST activity in plasma

(Figure 3I). There were marked histopathological alterations in

liver of IFN-c2/2 mice which were more intense than those of

WT mice (Figure 3J) but similar to those described in WT mice

infected with a higher inoculum (10LD50) (Figure 2F). It is

noteworthy that the inoculum used (1LD50) was capable of causing

only mild disease in WT mice. Therefore, the data shown here

demonstrate that IFN-c is produced early during infection and

plays an important role in mediating host resistance to DENV-3

infection.

IFN-c-mediated protection to adapted-DENV-3 infection
depends on enhanced NOS2-expression and nitric oxide
production

One of the well known effector mechanisms induced by IFN-c
after viral infections is enhancement of NOS2 expression in

phagocytes. To assess the participation of this pathway in host

response to dengue infection, we evaluated the kinetics of NOS2

expression and NO production after DENV-3 infection. As shown

in Figure 4A, there was an increase in NOS2 mRNA expression in

spleen starting on day 3 after DENV-3 inoculation and rising

rapidly on days 5 and 7 post infection. In accordance with these

data, WT infected mice showed increased NOS2-positive staining

in liver from day 5 after infection, peaking at day 7 after infection

(Figure 4B), virtually only in infiltrating leukocytes. In addition,

there was elevation in DAF staining of esplenocytes isolated from

DENV-3-infected mice, showing increased production of NO in

spleen on day 7 post-inoculation (Figure 4C).

Consistently with the ability of IFN-c to induce NOS2 mediated

NO production, NOS2 mRNA expression in spleen was markedly

decreased in IFN-c2/2 mice (Figure 4D). Similarly, immunohis-

tochemistry analysis revealed that NOS2 positive-cells were almost

absent in liver on day 5 post-infection (Figure 4E). Furthermore,

there was no production of NO by dendritic cells infected with

DENV-3 in vitro (Figure S7). However, treatment of WT bone

marrow derived dendritic cells with IFN-c prior to DENV-3

infection resulted in production of significant amounts of NO, an

effect that was absent in IFNGRI2/2 cells (Figure S7). These data

suggest that NOS2-mediated NO production during DENV-3

infection is controlled by IFN-c.

To assess the role played by NOS2-induced NO during DENV

infection, NOS22/2 mice and their WT littermates were

inoculated with 1LD50 of adapted DENV-3 and lethality rate

and disease parameters were evaluated. As shown in Figure 5A,

NOS22/2 mice were markedly susceptible to DENV infection.

While all knockout animals were dead by the 10th day of infection,

only 20% of WT mice had succumbed to infection after 14 days of

inoculation of DENV-3. High viremia has been detected on day 5
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after DENV-3 infection in NOS22/2 mice (WT:7.86103 PFU/

mL; NOS-22/2: 86105 PFU/mL of blood, n = 6, p = 0.01).

Viremia in NOS-22/2 was also higher in comparison to WT

littermates at day 7 post-DENV-3 inoculation (Figure 5B). Viral

load in spleen (Figure 5C), and liver (Figure 5D) were also

significantly higher in NOS22/2 than in WT mice at day 7 post-

DENV-3-inoculation. In addition, there was also increase in

number of NS3-positive cells in liver in comparison with WT

Figure 3. IFN-c production is required for host resistance to adapted-DENV-3 primary infection. (A) WT mice (n = 4 mice per group) were
inoculated with 10LD50 (1000 PFU) of DENV-3 (i.p) and seven days later, mice were culled, and splenic cells isolated for assaying IFN-c production by
cellular staining with labeled antibodies and FACS analysis. Results are expressed as % of IFN-c-positive cells in each population. (B) WT and IFN-c2/2

mice (n = 8 per group) were inoculated with 1LD50 (100 PFU) of DENV-3 (i.p) and lethality was evaluated every 12 hours during 14 days. Results are
expressed as % of survival. In (C–J), WT and IFN-c2/2 mice (n = 6 per group) were inoculated with 1LD50 (100 PFU) of DENV-3 (i.p) and in the fifth day
of infection mice were culled and blood and tissues were collected for the following analysis: (C–D) Viral loads were recovered from the blood (C),
spleen and liver (D, left and right panels), respectively. Results are shown as the log of PFU per mL of blood or per g of tissue. (E) Serial sections from
each liver were stained with anti-DV NS3 antibody E1D8 (NS3) or an isotype control mouse IgG2a (IgG2a data not shown), and multiple sections of
each tissue type were thoroughly examined for staining. Positive staining for NS3 is brown while hematoxylin counterstain is blue. Results are
expressed as number of NS3-positive hepatocytes. (F) Mechanical hypernociception was assessed daily. Results are shown as the difference between
the force (g) necessary to induce dorsal flexion of tibio-tarsal joint, followed by paw withdraw, before and after DENV-3 inoculation. In (G), hematocrit
was shown as % volume occupied by red blood cells (left panel) and the number of platelets was shown as platelets 6103/ml of blood (right panel).
(H) Changes in Systolic blood pressure from baseline until day 5 after infection expressed as D of blood pressure in mmHg. In (I), AST activity
determination in plasma, shown as U/dL of plasma. (J) shows semi-quantitative analysis of hepatic damage (histopathological analysis performed as
modified from Paes et al, 2009) and Hematoxylin & Eosin staining of liver sections of control and WT and IFN-c2/2 DENV-3-infected mice, five days
after infection. Scale bars - 400 mm. The images presented are representative of an animal on the fifth day of infection. All results are expressed as
mean 6 SEM (except for C–D, expressed as median) and are representative of at least two experiments. * for P,0.05 when compared to control
uninfected mice. # fo P,0.05 when compared to WT infected mice. 10 LD50 corresponds to 1000 PFU of adapted-DENV-3. 1LD50 corresponds to 100
PFU of adapted-DENV-3. ND – not detectable. NI- Not-infected. dpi – days post-infection. HS – hepatocyte swelling. N – necrosis. D – degeneration. H
– hemorrhage. OS – Overall Score.
doi:10.1371/journal.pntd.0001663.g003
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infected controls (Figures 5E). Importantly, NOS22/2 mice

showed significant mechanical hypernociception (Figure 5F), on

days 6 and 7 after DENV-3 inoculation, in comparison with WT

infected mice. NOS22/2 also showed greater thrombocytopenia,

intense hemoconcentration (Figure 5G right and left panels,

respectively) and marked reduction in systolic blood pressure

(Figure 5H) in comparison with WT infected mice. Finally, AST

activity in serum was more intense in knockout mice in

comparison to DENV-3 infected WT controls (Figure 5I).

Similarly to the situation found in infected IFN-c2/2 mice,

important histopathological alterations were found in liver of

NOS22/2 mice after DENV-3 inoculation (Figure 5J). Histopath-

ological analysis revealed greater disease scores in the NOS22/2

group than in WT mice (Figure 5J). Of note, all alterations seen in

NOS22/2-infected mice were not due to a reduction in IFN-c
production after DENV-3 infection (for example, at day 7 in

serum: NI = not-detectable; WT = 35306317 pg/mL of serum;

NOS22/2 = 29686619 pg/mL of serum, n = 6, p = 0,44).

After DENV-3 inoculation, there were detectable levels of both

IL-12/23p40 and IL-18 cytokines in the spleen of WT mice

already on day 5 of infection (Figure 1L). The early production of

these cytokine is consistent with their possible role in the induction

of IFN-c during DENV-3 infection. As seen in the DENV-2

mouse model [30], there was drastic reduction in production of

IFN-c after DENV-3 infection in IL-12p402/2 mice, which are

deficient for both IL-12 and IL-23 cytokine production, and also in

IL-18 binding protein (IL-18 bp) treated-WT mice (Figure S8A) or

IL-182/2 mice (NI = not-detectable; WT = 44356562 pg/

100 mg of spleen; IL-182/2 = 23736552 pg/100 mg of spleen,

n = 6, p = 0,029). Interestingly, combined depletion of both

cytokines resulted in total abrogation of IFN-c staining in spleen

cells after DENV-3 infection (Figure S8A). In accordance with

these data, IL-12p402/2 mice, IL-182/2 mice or IL-12p402/2

mice treated with IL-18 bp (IL12p402/2+IL18 bp) were more

susceptible to DENV-3 infection (Figure S8B). While only 20% of

WT mice were dead at the end of 14 days after infection, all

knockout mice had succumbed to infection until day 9 of DENV-3

inoculation. Significantly, earlier deaths were accompanied by

elevation in viral loads in blood of IL-12p402/2, IL-182/2 or IL-

12p402/2 treated with IL18 bp mice (Figure S8C). Moreover,

combined cytokine depletion resulted in intense hemoconcentra-

tion (Figure S8D, left panel), which was greater than in the other

infected groups. Thrombocytopenia was also increased but there

was no difference between the infected groups (Figure S8D, right

panel).

Discussion

Several important questions in dengue immunopathogenesis are

difficult to address without adequate animal models of infection

and disease. In the present study, we described a novel model of

DENV-3 infection in adult immunocompetent mice which mimics

the major manifestations of severe dengue infection in humans.

We demonstrated that the inoculation of the mouse-adapted

DENV-3 strain by a peripheral route induced an inoculum-

dependent lethality preceded by severe disease development in

adult immunocompetent mice. The major alterations found

during disease development were: 1) Lethality preceded by

development of hemoconcentration, thrombocytopenia, elevated

transaminase levels associated with important liver injury, marked

Figure 4. IFN-c controls NOS2-mediated NO production during adapted-DENV-3 infection. (A–C) WT mice (n = 6 mice per group) were
inoculated with 10LD50 (1000 PFU) of adapted-DENV-3 (i.p) and 3, 5 or 7 days after infection, mice were culled and tissue were collected for the
following analysis: (A) Determination of NOS2 RNA expression by qPCR in spleen of control and DENV-3 infected mice. Results are shown as fold
increase over basal expression in naive mice. (B) Determination of NOS2 staining by immunohistochemistry in liver sections of control and DENV-3
infected mice. Results are expressed as number of positive cells per mm2 of liver. (C) Esplenocytes were incubated with DAF-2DA and fluorescence
determined. Results are expressed as fold increase in fluorescence over stained cells of naive mice. (D–E), WT and IFN-c2/2 mice (n = 6 per group)
were inoculated with 1LD50 (100 PFU) of DENV-3 (i.p) and in the fifth day of infection mice were culled and tissues were collected for the following
analysis: (D) Determination of NOS2 RNA expression by qPCR in spleen of WT and IFN-c2/2 DENV-3 infected mice. Results are shown as fold increase
over basal expression in naive mice. (E) Determination of NOS2 staining by immunohistochemistry in liver sections of WT and IFN-c2/2 DENV-3
infected mice. Results are expressed as number of positive cells per mm2 of liver. Results are expressed as mean 6 SEM and are representative of at
least two experiments. * for P,0.05 when compared to control naive mice. # for P,0.05 when compared to WT infected mice. 10LD50 corresponds
to 1000 PFU of DENV-3. 1LD50 corresponds to 100 PFU of DENV-3. dpi – days post-infection. NI – Not-infected.
doi:10.1371/journal.pntd.0001663.g004
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body weight loss and reduction in systolic blood pressure; 2)

Increased levels of cytokines, including IFN-c, IL-6, TNF-a, Il-12/

23p40 and IL-18; 3) Increased viral load in spleen, liver and blood,

virus NS1 antigen serum levels and NS3-staining in hepatocytes of

infected mice. All these findings indicate that the mouse model

described here will add to existing models [7,16,45–46] and

together they may aid in the study of the immunopathogenesis of

dengue disease.

The difficulty in developing a mouse model for DENV is largely

the result of the inability of human clinical isolates to replicate well

in mice [7,16,45,47,48]. Previously, our group has developed an

experimental model of infection with an adapted DENV-2 strain

that mimics several clinical parameters seen in human disease.

This model has allowed the study of some mechanisms mediating

protection or those associated with the development of severe

disease [22,24–28,30]. One important key point facing dengue

researchers is how a viral strain or serotype variation and infection

sequence affects the conditions for immune protection and

enhancement [48]. In this context, it becomes extremely necessary

the establishment of primary and secondary mouse models with all

DENV serotypes to verify if this mechanisms of protection and

disease share similarities or differences in the face of different

context of infections, and also to test the efficacy of possible

vaccine candidates and antiviral compounds. Accordingly, using

Figure 5. NOS22/2 mice are more susceptible to adapted-DENV-3 infection. (A) WT and NOS22/2 mice (n = 8 per group) were inoculated
with 1LD50 (100 PFU) of DENV-3 (i.p) and lethality was evaluated every 12 hours during 14 days. Results are expressed as % of survival. In (B–J), WT
and NOS22/2 mice (n = 6 per group) were inoculated with 1LD50 (100 PFU) of DENV-3 (i.p) and in the seventy day of infection mice were culled and
blood and tissues were collected for the following analysis: (B–D) Viral loads were recovered from the blood (B), spleen (C) and liver (D), respectively.
Results are shown as the log of PFU per per mL of blood or g of tissue. (E) Serial sections from liver of WT and NOS22/2 mice were stained with anti-
DV NS3 antibody E1D8 (NS3) or an isotype control mouse IgG2a (IgG2a data not shown), and multiple sections of each tissue type were thoroughly
examined for staining. Positive staining for NS3 is brown while hematoxylin counterstain is blue. Results are expressed as number of NS3-positive
hepatocytes. (F) Mechanical hypernociception was assessed daily. Results are shown as the difference between the force (g) necessary to induce
dorsal flexion of tibio-tarsal joint, followed by paw withdraw, before and after DENV-3 inoculation. In (G), hematocrit was shown as % volume
occupied by red blood cells (left panel) and the number of platelets was shown as platelets 6103/ml of blood (right panel). (H) Changes in Systolic
blood pressure from baseline until day 5 after infection expressed as D of blood pressure in mmHg. In (I), AST activity determination in plasma was
shown as U/dL of plasma. (J) shows semi-quantitative analysis of hepatic damage (histopathological analysis performed as modified from Paes et al,
2009) and Hematoxylin & Eosin staining of liver sections of control and WT and NOS22/2 DENV-3-infected mice, seven days after infection. Scale Bar -
400 mm. The images presented are representative of an animal on the seventh day of infection. All results are expressed as mean 6 SEM and are
representative of at least two experiments. * for P,0.05 when compared to control uninfected mice. # for P,0.05 when compared to WT infected
mice.1LD50 corresponds to 100 PFU of adapted-DENV-3. NI- Not-infected. dpi – days post-infection. HS – hepatocyte swelling. N – necrosis. D –
degeneration. H – hemorrhage. OS – Overall Score.
doi:10.1371/journal.pntd.0001663.g005
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the same strategy described for the DENV-2 model [22] we

generated an adapted strain of DENV-3 by several intracerebral

(ICR) passages of a non-adapted human DENV-3 (genotype I)

into weaning and progressively older BALB/c mice. Interestingly,

this same non-adapted human strain was able to induce

meningoencephalitis and behavioral changes that preceded

lethality in adult C57BL/6 mice when inoculated by i.c route,

however without causing any systemic clinical manifestation in

these mice [49]. Importantly, the infection of immunocompetent

mice with this new adapted-DENV-3 strain showed many

similarities with the disease found in the DENV-2 infection model

described before [22,24] and also with the disease seen in humans.

We believe that the characterization of these two DENV strains

and the establishment of primary and secondary mouse models

with all DENV serotypes will aid in evaluation of mechanisms of

protection and of disease during distinct context of infections, as

well as to test the efficacy of possible vaccine candidates and

antiviral compounds.

Meanwhile, our studies demonstrated that after adaptation

process, the adapted DENV-3 strain acquired the ability to induce

systemic severe disease in adult immunocompentent mice (BALB/

c or C57BL/6 strains) when inoculated by a peripheral route,

without affecting the CNS, resembling the major manifestations

seen in infected humans. It is important to note that the virus kept

its ability to replicate in the CNS when given directly in the brain.

Previous studies have also shown that the adaptation process is

necessary for an efficient infection and occurrence of disease

symptoms. Tesh and colls (2001) [50] showed that sequential series

of liver-to-liver passages of YFVs in hamsters are necessary to lead

the generation of more virulent strains. In addition, Shresta and

colleagues (2004) [51] have generated a novel virulent DENV-2

strain, D2S10, by alternately passages between mosquito cells and

non-neuronal tissues of mice. Using AG129 mice (that lack IFN

type I and II receptors), they have demonstrated that D2S10 strain

was more virulent than the parental strain, PL046, causing a lethal

but nonparalytic disease. Sequence comparisons between D2S10

and the parental strain (PL046) revealed amino acid change

difference in a conserved region of E gene, suggesting a role for

these particular residues in determining viral virulence and

pathogenesis in vivo [51]. Besides this, a full molecular analysis is

necessary to identify the viral determinants responsible for this

strong phenotype of dengue disease in the present model, but this

is beyond the scope of the present study.

Hallmark features of human DHF/DSS are vascular leakage,

higher viral burden, elevated levels of serum cytokines, hypoten-

sion and occurrence of thrombocytopenia [52–53]. Hence, all

these features were observed in the present study, demonstrating

that the present mouse model mimics severe dengue disease in

humans. We, therefore, suggest that this model of dengue infection

may be useful for the study of the pathophysiology of severe

dengue disease. Epidemiological observations demonstrated that

only a very small percentage of infections results in severe disease

(DHF/DSS), represented as a tip of the pyramid and that this

incidence varies significantly between primary and secondary

DENV infections. It has been documented that a secondary

DENV infection is the single and the most important risk factor for

severe dengue disease manifestation, although, severe disease

during primary infections is also reported [54,55–59]. It has been

hypothesized that subneutralizing levels of antibodies facilitate the

entry of viral particles in permissive cells, enhancing viral loads,

and exacerbating disease manifestation during secondary infection

[60]. Experimental DENV models support this hypothesis and

suggest that disease severity is directly associated with enhanced

viral replication during infection [45–46]. In the present exper-

imental model, lethality hematological and other pathological

alterations in infected mice was dependent on the size of the

inoculum and were observed in mice presenting elevated viral

loads. Of note, infected IFN-c-deficient and NOS2-deficient mice

presented heightened viral replication, in parallel with elevated

hematocrits, thrombocytopenia, and liver injury. Thus, although

our studies do not mimic the human situation of 2 sequential

infections with distinct viral serotypes, these results mimic up to

the extent in which we demonstrated that disease in this model is

inoculum-dependent, what bears relevance to human disease.

In addition to the features above, both clinical and experimental

observations suggest that there is important liver involvement

during dengue infection [61–63]. For example, elevated serum

transaminase levels during dengue infection is common and is

usually correlated with disease severity [8,27,43,64–66]. In

accordance, AST and ALT transaminase levels were elevated in

the present study mainly on day 7 of infection, correlating with the

peak of disease and hepatic damage in the present model. Further,

intense necro-hemorrhagic hepatitis, hepatocellular swelling and

steatosis associated with vascular damage, which is characteristic

of dengue-induced hepatitis in human liver [64] were observed in

liver of mice inoculated with a lethal inoculum of adapted-DENV3

on day 7 post-infection. Intravital confocal microscopy of the liver

microvasculature revealed a significant increase in hepatocyte

diameter and severe reduction in sinusoidal perfusion. In this

sense, liver failure may be caused by reduction of sinusoidal

perfusion (directly promoting tissue isquemia) and also by diffuse

hepatocyte necrosis caused by DENV infection and replication

and/or by products derived from inflammatory leukocytes. Our

data on the liver injury showed many similarities to those

demonstrated by Paes et al (2005, 2009) [43,65], using a non-

adapted DENV-2 in BALB/c mice and even to histopathological

findings from DF and DHF postmortem tissue specimens [66–68].

Of note, we showed the presence of virus (or NS3 protein) in liver,

mainly in hepatocytes. All these findings indicate the liver as an

important target organ of DENV infection and replication,

suggesting an important association between virus replication

and hepatic damage as demonstrated by other studies [43,45–

46,65,67].

Its well knows that the IFN system is essential in the context of

DENV infection [69–70]. Recently, we have demonstrated that

optimal IFN-c production during DENV-2 infection is controlled

by the cytokines IL-12 and IL-18. Moreover, we showed that one

of the mechanisms triggered by IFN-c during host response to

DENV-2 infection is the production of nitric oxide, an important

virustatic metabolite. In this sense, to validate this novel mouse

model of DENV-3 infection and to verify whether this pathway is

also involved in response against different serotypes, we investi-

gates the role of IFN-c in the context of infection with the adapted-

DENV-3 strain. In the present experimental model, IFN-c is

produced early (day five of infection) in infected-WT mice and the

absence of IFN-c action was associated with earlier lethality, more

severe disease and higher viral loads even during infection with

sublethal inoculums. These findings are in agreement with Shresta

and coworkers (2004) [51] that demonstrated the importance of

IFN-c and type I IFNs in restricting viral replication and

eliminating virus after primary DENV-2 infection. The correlation

between increased IFN-c production and higher survival rates in

DHF patients also supports this idea [70]. Importantly, Gunther

and colleagues (2011) [64] have demonstrated in a human

challenge model of DENV infection that only sustained IFN-c
production was associated with protection against fever and

viremia during the acute phase of illness [71]. In our studies,

enhanced viral replication in IFN-c-deficient mice was associated
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with more severe disease manifestation, as shown by enhanced

hematological alterations and hepatic damage. These data

strongly suggest that in the absence of IFN-c, there are intense

and uncontrolled viral replication, that lead to severe disease

manifestation and lethality, already in early times of infection.

Accordingly, previous studies have shown that IFN-c likely

contributes to viral clearance through several mechanisms,

including direct inhibition of viral replication [72]. Of note, quite

similar to that seen in the DENV-2 model [30], the combined

action of IL-12 and IL-18 is also necessary for optimal IFN-c
production and control of DENV-3 infection.

Production of reactive nitrogen intermediates via increase in

NOS2 expression is among the main IFN-c-induced pathways

involved in control of infections [73]. In fact, it has been shown

that NOS2 expression is increased after DENV infection and that

its expression in PBMCs of DF patients. This increase in NOS2

expression was found to correlate with the late acute phase of

disease and preceded the clearance of DENV from monocytes

[74]. NO production was also associated with less severe disease

manifestation disease in humans [75]. Finally, NO is able to

inhibit DENV replication in vitro [76–77]. In the present study,

NOS2 expression is increased during adapted DENV-3 infection

in different targets organs of infection and this expression was

controlled by IFN-c. Nitric oxide production was also observed in

esplenocytes of DENV-3 infected mice (ex vivo) and in DENV-

infected DCs stimulated by IFN-c in vitro. Of note, NOS22/2 mice

had elevated lethality, more severe disease manifestation and

increased viral loads, even in the presence of high levels of IFN-c.

Thus, these data demonstrated here show that NOS2-mediated

NO production after primary DENV-3 infection also seems to be

an important pathway involved in control of DENV-3 replication

and disease evolution. These data are quite similar with the results

found in the DENV-2 infection model, suggesting that this

mechanism is conserved protective pathway in host response to

both DENV-2 and DENV-3 serotypes. These findings support

that strategies aiming to potentiate IFN-c-induced NO production

could be useful during the control of primary infection by Dengue

virus.

In summary, we report a model of DENV-3 infection in

immunocompetent mice and describe the clinical, immunopath-

ological and virological features induced by inoculation of the

virus. These features clearly resemble the manifestations of severe

dengue disease in humans. We have also demonstrated the crucial

role of IFN-c and NOS2-derived NO in host resistance to DENV

infection, a protective pathway involved in resistance to other

DENV strains. Therefore, this model represents a significant

advance in animal models of severe dengue disease and may

contribute to the elucidation of the immunopathogenesis of disease

and of protective mechanisms associated to infection. In addition,

the model may be a relevant tool for vaccine and drug

development.

Supporting Information

Figure S1 Disease parameters in BALB/c mice infected
with an adapted strain of DENV-3. (A) WT mice (n = 6 mice

per group) were inoculated with different inoculums of adapted-

DENV-3 (i.p) and lethality was evaluated every 12 hours for 14

days. Results are expressed as % of survival. In Figs (B–E) WT

mice (n = 6 per group) were inoculated with 1LD50 (100 PFU) of

DENV-3 (i.p) and in the third, fifth or in the seventh day of

infection mice were culled and blood and tissues were collected for

the following analysis: (B) Change in body weight was expressed as

percentage of initial weight loss. (C) Mechanical hypernociception

was assessed daily. Results are shown as the difference between the

force (g) necessary to induce dorsal flexion of tibio-tarsal joint,

followed by paw withdraw, before and after DENV-3 inoculation.

(D) Hematocrit was expressed as % volume occupied by red blood

cells (left panel) and the number of platelets was shown as platelets

6103/ml of blood (right panel) and. In (E) AST and ALT activity

determination in plasma of control and DENV-3-infected mice

was shown as U/dL of plasma. Results are expressed as mean 6

SEM and are representative of at least two experiments. * for

P,0.05 when compared to control uninfected mice. 1 LD50

corresponds to 100 PFU of DENV-3. NI – not-infected. dpi- days

post-infection.

(TIF)

Figure S2 Confocal microscopy in liver microvascula-
ture upon DENV-3 infection. (A-B) C57BL/6j mice (n = 5 per

group) were inoculated with 10LD50 (1000 PFU) of DENV-3 (i.p)

and in the seventh day of infection mice were anesthetized, cells

were fluorescently labeled by rhodamine 6G (A) or phycoerythrin-

anti PECAM-1 antibody (B) to assess hepatocyte size and the

percentage of perfused sinusoids, respectively. Hepatocyte size is

expressed as the length of longest cell axis and perfused sinusoids

as % of the area fraction stained by the antibody. The images

presented are representative of an animal on the seventh day of

infection.All results are expressed as mean 6 SEM and are

representative of at least two experiments. * for P,0.05 when

compared to control uninfected mice. 10 LD50 corresponds to

1000 PFU of adapted-DENV-3. dpi- days post-infection. NI: Not

infected.

(TIF)

Figure S3 Viral load and lethality rates of BALB/c mice
upon adapted-DENV-3 inoculation. (A–C) WT mice and

their controls (n = 6-7 per group) were inoculated with 1LD50 (100

PFU) of DENV-3 (i.p) and in the third, fifth or in the seventh day

of infection mice were culled and blood and tissues were collected

for the following analysis: (A–C) Viral loads were recovered from

the spleen, liver and blood, respectively. Results are shown as the

log of PFU per g of tissue or per mL of blood. In (D), plaque

purification technique was performed for isolation of DENV-3

clones (Clone 1–9) and mice were inoculated with 100 PFU of

each clone and lethality was evaluated every 12 hours for 14 days.

Results are expressed as % of survival. * for P,0.05 when

compared to control uninfected mice. 1 LD50 corresponds to 100

PFU of adapted-DENV-3. NI – not infected. ND- not detectable.

dpi- days post-infection.

(TIF)

Figure S4 Typing of adapted DENV-3. (A) Agarose gel

electrophoresis displaying amplicons of specific PCR with primers

D1 and TS3 (290 bp). Lane 1, DNA Ladder 50 bp, Lane 2,

empty. Lane 3: Non-adapted DENV-3 (positive control). Lane 4-6:

adapted DENV-3 (several passages in C6/36 cells). Lane 7: primer

mix. (B) Polyacrylamide gel electrophoresis displaying amplicons

of specific PCR with primers D1 and TS3 (290 bp). Lane 1, Clone

4 of the adapted DENV-3, Lane 2, DNA Ladder 50 bp. Lane 3:

primer mix. Lane 4: Non-adapted DENV-3 (positive control).

(TIF)

Figure S5 Inoculation of Clone 4 in C57BL/6j mice
mimics the disease and mortality seen after infection
with adapted-DENV-3. (A) C57BL/6j mice (n = 5 mice per

group) were inoculated with different inoculums of plaque purified

Clone 4 (i.p) and lethality was evaluated every 12 hours for 14

days. Results are expressed as % of survival. In Figs (B–D)

C57BL/6j mice (n = 6 per group) were inoculated with 10LD50
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(100 PFU) of Clone 4 (i.p) and in the third, fifth or in the seventh

day of infection mice were culled and blood were collected for the

following analysis: (B) Viral load was recovered from the blood.

Results are shown as the log of PFU per mL of blood. (C–D) The

number of platelets was shown as platelets 6103/ml of blood (C)

and hematocrit as % volume occupied by red blood cells (D). * for

P,0.05 when compared to control uninfected mice. 10LD50

corresponds to 100 PFU of Clone 4. NI – not infected. ND- not

detectable. dpi- days post-infection.

(TIF)

Figure S6 Virus analysis in brain and spleen of newborn
BALB/c mice upon adapted-DENV-3 i.p and i.c inocu-
lation. BALB/c newborn mice (n = 4–7 per group) were

inoculated with 20 PFU of adapted-DENV-3 by i.c or i.p route

and 5 days after infection spleen and brain were collected for the

following analysis: (A–B) Viral loads were recovered from the

brain and spleen, respectively. Results are shown as the log of PFU

per g of tissue. (C) Semiquantitative analysis of multiple sections of

brain samples from i.c or i.p DENV-3 inoculated mice on day 5

after infection. Results are shown as number of positive cells. * for

P,0.05 when compared to control uninfected mice. # for P,0.05

when compared to i.c newborn infected mice. i.c – intracerebral.

i.p – intraperitoneal. NI – not infected. ND – Not detectable.

(TIF)

Figure S7 Enhanced NO production by DCs after
adapted-DENV-3 infection is controlled by IFN-c. Bone

marrow derived dendritic cells were infected with DENV-3 (MOI

0,05 PFU/cell) in the presence or not of IFN-c. After 72 hours,

cell supernatant was collected for nitrite quantification by Griess

reaction. Results are expressed as and mM of nitrite in medium.

Results are expressed as mean 6 SEM and are representative of at

least two experiments. * for P,0.05 when compared to control

uninfected cells, and # for P,0.05 when compared to DENV-3-

infected cells.

(TIF)

Figure S8 IL-12 and IL-18 act in synergism to induce
IFN-c production and resistance to DENV-3 infection. (A)

WT and IL-12/p402/2 mice (n = 4 mice per group) treated or not

with IL-18 bp (daily i.p. injection of 1 mg/kg of protein) were

inoculated with 1LD50 (100 PFU) of DENV-3 (i.p), culled on day

seven of infection and esplenocytes isolated for assaying IFN-c
production by cellular staining with labeled antibodies and FACS

analysis. Results are expressed as % of IFN-c-positive cells in each

population. (B) WT, IL-12/p402/2 mice (n = 6 mice per group)

treated or not with IL-18 bp (daily i.p. injection of 1 mg/kg of

protein) and IL-182/2 were inoculated with 1LD50 (100 PFU) of

DENV-3 (i.p) and lethality was evaluated every 12 hours for 14

days. Results are expressed as % of survival. (C, D) WT and IL-

12/p402/2 mice (n = 4 mice per group) treated or not with IL-

18 bp (daily i.p. injection of 1 mg/kg of protein) were inoculated

with 1LD50 (100 PFU) of DENV-3 (i.p), culled on day seven of

infection and tissues collected for (C) Viral load quantification in

blood of WT, IL-12p40 treated or not with IL-18 bp (daily i.p.

injection of 1 mg/kg of protein) and IL-182/2 upon DENV-3

infection Results are shown as the log of PFU per mL of blood; (D)

Hematocrit measurement, shown as % volume occupied by red

blood cells (left panel) and number of platelets shown as platelets

6103/ml of blood (right panel). Results are expressed as mean 6

SEM (except for C, expressed as median) and are representative of

at least two experiments. * for P,0.05 when compared to control

uninfected mice. # for P,0.05 when compared to WT infected

mice. 1 LD50 corresponds to 100 PFU of DENV-3. NI – not-

infected.

(TIF)
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Serotype-specific differences in clinical manifestations of dengue. Am J Trop

Med Hyg 74(3): 449–456.

55. Clyde K, Kyle JL, Harris E (2006) Recent advances in Deciphering Viral and

Host Determinants of Dengue Virus Replication and Pathogenesis. Journal of

Virology 80: 11418–11431.

56. Halstead SB (1970) Observations related to pathogenesis of dengue hemorrhagic

fever. VI. Hypotheses and discussion. Yale J Biol Med 42: 350–62.

57. Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyaponqse S, Jatanasen S,
et al. (1984) Risk Factors in Dengue shock syndrome: a prospective

epidemiologic study in Rayong, Thailand. I. The 1980 outbreak.
Am J Epidemiol 120: 653–69.

58. Thein S, Aung MM, Shwe TN, Aye M, Zaw A, et al. (1997) Risk factors in

dengue shock syndrome. Am J Trop Med Hyg 56: 566–72.

59. Nishiura H, Halstead SB (2007) Natural history of dengue virus (DENV)-1 and

DENV-4 infections: reanalysis of classic studies. J Infect Dis 195: 1007–13.

60. Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S,
et al. (2010) Cross-reacting antibodies enhance dengue virus infection in

humans. Science 7: 745–8.

61. Rosen L, Drouet MT, Deubel V (1999) Detection of dengue virus RNA by

reverse transcription-polymerase chain reaction in the liver and lymphoid organs

but not in the brain in fatal human infection. Am J Trop Med Hyg 61: 720–724.

62. Seneviratne SL, Malavige GN, de Silva HJ (2006) Pathogenesis of liver

involvement during dengue viral infections. Trans R Soc Trop Med Hyg 100:
608–614.

63. Ling LM, Wilder-Smith A, Leo YS (2007) Fulminant hepatitis in dengue

haemorrhagic fever. J Clin Virol 38: 265–268.

64. Potts JA, Rothman AL (2008) Clinical and laboratory features that distinguish

dengue from other febrile illnesses in endemic populations. Trop Med Int Health

13: 1328–1340.

65. Paes MV, Pinhao AT, Barreto DF, Costa SM, Oliveira MP, et al. (2005) Liver

injury and viremia in mice infected with dengue-2 virus. Virology 338: 236–246.

66. Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, et al. (1999)
Report of a fatal case of dengue infection with hepatitis: demonstration of

dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 30: 1106–1110.

67. Huerre MR, Lan NT, Marianneau P, Hue NB, Khun H, et al. (2001) Liver

histopathology and biological correlates in five cases of fatal dengue fever in

Vietnamese children. Virchows Arch 438: 107–115.

68. Basilio-de-Oliveira CA, Aguiar GR, Baldanza MS, Barth OM, Eyer-Silva WA,

et al. (2005) Pathologic study of a fatal case of dengue-3 virus infection in Rio de
Janeiro, Brazil. Braz J Infect Dis 9: 341–347.

69. Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, et al. (2008)

Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as
predictive factors for severity. BMC Infect Dis 8: 86.

70. Chen LC, Lei HY, Liu CC, Shiesh SC, Chen SH, et al. (2006) Correlation of

serum levels of macrophage migration inhibitory factor with disease severity and
clinical outcome in dengue patients. Am J Trop Med Hyg 74: 142–147.

71. Gunther VJ, Putnak R, Eckels KH, Mammen MP, Scherer JM, et al. (2011) A
human challenge model for dengue infection reveals a possible protective role

for sustained interferon gamma levels during the acute phase of illness. Vaccine

29: 3895–3904.

72. Horras CJ, Lamb CL, Mitchell KA (2011) Regulation of hepatocyte fate by

interferon-gamma. Cytokine Growth Factor Rev 22: 35–43.

73. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, et al. (2011) Interleukins,
from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases.

J Allergy Clin Immunol 127: 701–721 e701–770.

74. Neves-Souza PC, Azeredo EL, Zagne SM, Valls-de-Souza R, Reis SR, et al.

(2005) Inducible nitric oxide synthase (iNOS) expression in monocytes during

acute Dengue Fever in patients and during in vitro infection. BMC Infect Dis 5:
64.

75. Valero N, Espina LM, Anez G, Torres E, Mosquera JA (2002) Short report:

increased level of serum nitric oxide in patients with dengue. Am J Trop Med
Hyg 66: 762–764.

76. Charnsilpa W, Takhampunya R, Endy TP, Mammen MP, Jr., Libraty DH,
et al. (2005) Nitric oxide radical suppresses replication of wild-type dengue 2

viruses in vitro. J Med Virol 77: 89–95.

77. Takhampunya R, Padmanabhan R, Ubol S (2006) Antiviral action of nitric
oxide on dengue virus type 2 replication. J Gen Virol 87: 3003–3011.

DENV-3 Infection and IFN-g-Mediated Protection

www.plosntds.org 15 May 2012 | Volume 6 | Issue 5 | e1663


