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Although the human genome has been sequenced, progress in understanding gene regulation
in humans has been particularly slow. Many computational approaches developed for lower
eukaryotes to identify cis-regulatory elements and their associated target genes often do not
generalize to mammals, largely due to the degenerate and interactive nature of such elements.
Motivated by the switch-like behavior of transcriptional responses, we present a systematic
approach that allows adaptive determination of active transcriptional subnetworks (cis-motif
combinations, the direct target genes and physiological processes regulated by the corresponding
transcription factors) from microarray data in mammals, with accuracy similar to that achieved
in lower eukaryotes. Our analysis uncovered several new subnetworks active in human liver and
in cell-cycle regulation, with similar functional characteristics as the known ones. We present
biochemical evidence for our predictions, and show that the recently discovered G2/M-specific E2F
pathway is wider than previously thought; in particular, E2F directly activates certain mitotic genes
involved in hepatocellular carcinomas. Additionally, we demonstrate that this method can predict
subnetworks in a condition-specific manner, as well as regulatory crosstalk across multiple tissues.
Our approach allows systematic understanding of how phenotypic complexity is regulated at the
transcription level in mammals and offers marked advantage in systems where little or no prior
knowledge of transcriptional regulation is available.
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Introduction

The importance of achieving an accurate quantitative
understanding of gene regulation in humans can hardly be
overstated. Deregulation of gene expression is a recurring
theme in development and progression of several diseases
including cancer. The emergence of new experimental plat-
forms that probe transcription globally promises a compre-
hensive view of these fundamental biological processes in
a large number of mammalian systems, in which very little is
currently known about their transcriptional regulation. This is,
however, possible if such technologies are supplemented with
appropriate computational methodologies. A large number of
computational approaches have been developed for decipher-
ing cis-regulatory elements in lower eukaryotes by integrating
the genome sequence data with global expression profiles
(Tompa et al, 2005). Recent evaluation shows that such
methods do not generalize to mammals, however (see, for e.g.,
Figure 1B in Tompa et al, 2005). Multiple factors contribute to
this inadequacy. Firstly, the mammalian transcription factor
(TF) binding sites are significantly degenerate (Pennacchio

and Rubin, 2001; Kel et al, 2003; Wasserman and Sandelin,
2004). Secondly, the role of interactions between TFs in
promoter recognition is much more critical (Locker, 2001;
Levine and Tjian, 2003). Finally, the multicellular architecture
of mammals makes their underlying regulatory networks even
more complex (Niehrs and Pollet, 1999).

In this article, we present a computational approach that
circumvents the aforementioned limitations and systemati-
cally infers active human transcriptional subnetworks an-
chored on the proximal promoter DNA from genome-wide
mRNA profiles. By transcriptional subnetwork, we mean the
following triplet: the cis-regulatory motif combination, the
direct target genes and the physiological processes regulated
by the corresponding TFs. Such subnetworks correspond to
segments of global transcriptional networks (Basso et al,
2005). Our algorithm proceeds by correlating the binding
strengths of motifs with the expression levels using linear
spline functions. Linear splines mimic the switch-like behavior
intrinsic to transcriptional regulation and provide a natural
framework to model gene regulation mediated by strongly
degenerate and interacting cis-control motifs. Active motifs
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exhibit statistically significant correlation, whereas inactive
motifs do not (Bussemaker et al, 2001; Das et al, 2004). Starting
from the expression data and DNA sequence, we first identify
the potentially active motif combinations by examining
their correlation with expression. We next use the inferred
mathematical model to determine the putative targets of the
TFs binding to such motifs, and perform a functional enrich-
ment analysis on these targets to predict the physiological
processes regulated by the TFs. We applied our technique to
diverse expression data sets spanning human liver and cell
cycle and identified several subnetworks, known and novel, as
potentially active, including ones controlled by the canonical
regulators like HNF-1 and E2F. Additionally, we demonstrate
that the subnetworks are learnt in a condition-specific
manner, and thus adaptively. We have presented supportive
experimental evidence for some of our novel predictions. Our
analysis reveals that this technique has accuracy comparable
to that achieved by computational approaches in lower
eukaryotes.

Results

Inferring transcriptional subnetworks

Classical approaches to model mammalian transcription
are based on clustering genes by similarity in their expression
profiles across a large number of conditions (Whitfield

et al, 2002; Elkon et al, 2003). Over-represented cis-regulatory
motifs are then identified in the promoters of genes in a given
cluster. Scores for each position weight matrix (PWM)
(Kel et al, 2003), which is a probabilistic representation
of TF binding sites, are next enumerated for the corresponding
motif. If the PWM score exceeds a certain cutoff, then that gene
is inferred as the target of the TF binding to this motif. Such
approaches, although useful, have limited applicability how-
ever (Bussemaker et al, 2001; Kirmizis and Farnham, 2004).
Many genes do not cluster tightly enough that their regulatory
motifs can be discovered reliably. Synergy among TFs, critical
to mammalian regulatory control, is also difficult to model.
Moreover, cutoff scores are often based on predetermined
thresholds and background sequences, for which there is
not always a clearcut optimal choice (Elkon et al, 2003; Kel
et al, 2003). Consequently, such an approach may be biased.

Here we present an approach that does not require
clustering. It is based on the fact that gene expression results
from integration of various signals onto the promoter DNA,
mediated by binding of multiple TFs to the cis-regulatory
elements. Thus, the mRNA level of any gene can be construed
as a weighted sum of contributions from the active motif
combinations. The impact of any motif depends on the binding
affinity for its corresponding TF, which in turn, is related to its
PWM score (Berg and von Hippel, 1987). Hence, for active
motifs, the mRNA levels must be significantly correlated with
the PWM scores across genes and vice versa (Conlon et al,
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Figure 1 Modeling mammalian transcription with linear splines. (A) Sigmoidal transcriptional response (Carey, 1998). The response is flat below a binding affinity
threshold, namely, the gene activation threshold, and varies exponentially above it. It saturates at high binding energies. (B) Example of a linear spline. A linear spline is
a piecewise linear function: it is zero below (above) a threshold, termed knot (x), and changes linearly above (below) it. Eg refers to the observed mRNA level of gene g,
whereas EgC is its mRNA level in the reference sample. Knots are related to gene activation thresholds. All genes with PWM scores Sg4x are predicted targets of the
motif contributing to this spline, shaded in blue. (C) A schematic view of the key steps in identification of significant motifs and motif pairs using linear splines.
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2003). Furthermore, if transcriptional response is sigmoidal
(Figure 1A) (Carey, 1998; Veitia, 2003), then the dependence of
logarithm of mRNA level on binding affinity has the shape
of a linear spline approximately (Das et al, 2004) (Figure 1B),
where the transition from constant to linear variation takes
place at the gene activation threshold. We fit the PWM scores
to the logarithm of expression ratios using linear splines to
select the potentially active motifs from a large set of input
motifs. The ratio is taken between the observed mRNA
level and that in a reference condition. The interacting motif
partners, their PWM cutoff scores and weights of their
contributions are learnt from the response data. The accuracy
of the fitted model is measured by Dw2, the percent reduction
in variance (%RIV) of log ratios. It provides an estimate
of how much variation in expression data is explained by the
model. Similar approaches have proven very powerful in lower
eukaryotes (Bussemaker et al, 2001; Keles et al, 2002; Das et al,
2004; Wang et al, 2005), but could not be applied to mammals
owing to strongly degenerate motifs and interactions between
motifs. Here we present an algorithm based on correlation
with expression that overcomes these difficulties. We first
examined a few degenerate mammalian motifs to check if their
PWM scores correlate with expression using splines. We
indeed found statistically significant correlation (Table I),
comparable to the Mcm1 motif in yeast, which has degeneracy
similar to that in mammals. The correlation is even more
pronounced for cell lines and ChIP-chip data. This prompted
us to build a comprehensive approach based on multivariate
linear splines to infer the active regulatory subnetworks
anchored on the proximal promoter DNA.

Subnetworks from tissue-specific data

Significant motif combinations
We consider the microarray data obtained from an adult
human liver sample (Su et al, 2004) under a normal condi-
tion as an example. As these data were recorded for only
a single condition, it is not possible to use clustering approach
to obtain liver-specific coexpression clusters for regulatory
element determination. We obtained the top 1000 genes by
variance in expression across tissues (79 total), which were
used to build the linear spline model (Supplementary note
and Supplementary information). A select set of genes was
used to increase the computational speed and reduce noise.
Expression ratio of a gene was calculated as the ratio of

observed mRNA level in liver to the mean mRNA level across
all 79 tissues sampled. We searched all known vertebrate
PWMs (521 total: 446 in TRANSFAC, 75 in JASPAR) (Schones
et al, 2005) to discover the active motif combinations.
Efficient modeling with linear splines requires prioritization
of input motifs (Das et al, 2004). However, the scheme used in
lower eukaryotes (Das et al, 2004) requires prior knowledge of
whether a given motif is present in the promoter of a gene,
which is often not known in mammals. Both word counts
and PWM scores with default thresholds were used for this
purpose in yeast (Das et al, 2004). Such approaches cannot be
applied directly to mammals because the binding sites are
much more degenerate. The situation is even more acute when
many motif matrices are unknown and have to be predicted
de novo. To overcome this limitation, we prioritized the input
matrices using a single linear spline.

We fitted a single linear spline separately for each PWM that
best explains the variation in log expression ratios. Only non-
redundant PWMs were retained, sorted by decreasing Dw2. We
find that the distribution of Dw2 is discontinuous: a few top
matrices are well separated from the rest (Supplementary
Figure 1). Namely, for liver data, this gap in Dw2 occurs
between HNF-1 and ETF (Supplementary Table I). We used the
gap to prepare multiple prioritized matrix sets. For each set, a
model was built by additively combining spline contributions
from multiple PWMs and their products using the multivariate
adaptive regression splines (MARS) algorithm (Friedman,
1991). Product terms represent interactions between distinct
motifs, whereas non-product terms are contributions from
individual motifs. Interactions among the same motif are
represented as a sum of multiple splines in that motif (Das
et al, 2004). MARS is an adaptive and non-parametric method,
using a greedy search strategy. The fit coefficient and the knots
(Figure 1B) for each term in the model, which correspond to
the weight of contribution and binding thresholds for a motif
combination, are obtained by a least squares fit (see Materials
and methods). Overfitting is restricted by minimizing
the generalized crossvalidation (GCV) score, which assigns a
penalty for the number of parameters used in the model (see
Materials and methods). We have previously demonstrated
in extensive simulation studies that minimization of GCV is
indeed an effective means to control overfitting in spline
models of gene regulation (Das et al, 2004). We also removed
all motifs and motif pairs with P40.01 to provide additional
control on overfitting. We varied the maximum degree of

Table I Correlation between PWM scores and expression

Organism Experiment Biological process/tissue Motif Average information content %RIV P-value

Yeast Microarray Cell cycle (G2) Mcm1 0.59 4.9 3.4�10�9

Human Microarray Liver HNF-1 0.62 2.2 1.6�10�6

Human Microarray Pancreas C/EBP beta 0.76 2.5 2.5�10�7

Human Microarray Cell cycle (G1/S) E2F 1.74 5.9 1.7�10�12

Mouse Microarray Liver HNF-1 0.62 2.1 2.1�10�6

Mouse Microarray Liver HNF-4 0.60 2.0 4.1�10�6

Human ChIP-chip Liver/HNF-1 HNF-1 0.62 14.7 8.7�10�37

Comparison of percent reduction in variances (%RIVs) between yeast and mammals is shown. Single linear splines were used to obtain the %RIV. Yeast cell-cycle data
were obtained from Spellman et al (1998), liver and pancreas microarray data from Su et al (2004), liver ChIP-chip data for HNF-1 from Odom et al (2004) and human
cell-cycle data from Whitfield et al (2002). Mcm1 matrix was obtained from Bussemaker et al (2001); all other matrices were obtained from TRANSFAC and JASPAR
databases. P-values were calculated using an F-test (see Materials and methods). Average information content refers to the information content of the position weight
matrix, averaged over all the positions (columns). It is 2.0 for non-degenerate words and 0 if all positions were N’s (see Materials and methods).
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interactions allowed in the model, and among all the
prioritized matrix sets and interactions that were explored,
we considered the model with maximum Dw2 as optimal. The
significance of each motif and pair was evaluated from its
relative contribution to the optimal model, using an F-test (see
Materials and methods). The reader may note that this is
slightly different from the conventional definition of signifi-
cance. The key steps in identifying significant motifs and motif
pairs are summarized in Figure 1C.

The optimal model for liver had three individual motifs and
five synergistic motif pairs and led to Dw2¼11.2% (Table II).
Tissue-specific transcription is often achieved by cooperative
action of ubiquitous and tissue-enriched factors (Locker,
2001). Our findings support this hypothesis: four out of five
pairs are of this type. HNF-1 is a key regulator of hepatic
transcription (Tronche et al, 1994). We find it significant and
synergizing with two ubiquitous TFs, Oct-1 and HFH-3.
Functional interactions of Oct-1 with HNF-1 and PPAR-DR1
have been experimentally characterized (Zhou and Yen, 1991;

Kakizawa et al, 1999). In particular, Oct-1*HNF-1 pair has
been shown to be liver-specific (Zhou and Yen, 1991).
Cooperativity between HFH-3 and HNF-1 has also been
implicated (Overdier et al, 1997). Other pairs, HFH-3*MTF-1
and Oct-1*HFH-3, are novel predictions.

As very limited number of mammalian TF binding sites
are represented in TF databases, we next included PWMs
generated by the ab initio motif finder, MDscan (Liu et al, 2002;
Conlon et al, 2003), along with the known matrices. The
choice of MDscan was dictated by speed. Any other de novo
motif finder or even a large set of candidate matrices that
contains PWMs for active motifs (Smith et al, 2005) could also
be used. We scanned a wide range of parameters to avoid
potential bias, and obtained 1440 PWMs. We repeated the
analysis as above. The reduction in variance is now further
improved by B50% to Dw2¼16.1%, indicating improved
discovery. The fitted model contains one individual motif
and eight motif pairs involving nine distinct motifs (Table III),
of which only HNF-1 and ARP-1 are from databases of known
matrices and the rest are predicted. Among the predicted
motifs, three were found to be similar to known PWMs: USF-2,
FXR-IR1 and LEF-1. Matrix similarity was assessed using
MatCompare (Schones et al, 2005). In all these cases, the
predicted motif can explain the gene expression better than its
known analog (Supplementary Table II). Clearly, the predicted
motif provides a better definition of the binding site model.
Although these three motifs ranked low by the original
MDscan scores, we are able to detect these using adaptive
splines. The other four matrices are completely novel. All eight
significant pairs involve at least one such novel motif and thus
are novel combinations, suggesting incompleteness of current
understanding of transcriptional regulation even in well-
studied mammalian systems such as liver.

Target genes
Are these novel motifs and combinations tissue-specific? What
are their functional roles? To address these questions, we

Table III Significant motifs and motif pairs for analysis with known and predicted matrices

Pair
ID

Significant motifs and motif pairs P-value Fit
coefficients

Target gene count Tissue with maximum
expression

Specificity
in liver

Model Genome-wide

No. of
target
genes

Percentage
count

No. of
target
genes

Percentage
count

— HNF-1 3.0�10�15 182.8 10 1.0 94 0.6 Liver 2.4�10�15

P1 TGACCTTTG*HNF-1 0.0023 521.9 10 1.0 154 1.0 Liver 3.8�10�13

P2 TGACCTTTG*ACCCTAGACC 0.0002 �348.2 54 5.4 812 5.3 Monocytes —
P3 ARP-1*ATGGAAAGA 0.0006 299.2 17 1.7 154 1.0 Liver 6.7�10�6

P4 TTAACATGCA(BFXR
IR-1)*ATGGAAAGA

0.0004 �70.2 222 22.2 3416 22.3 B cells —

P5 AATTGAAT(BLEF-1)*ATGGAAAGA 3.5�10�7 �66.0 331 33.1 4939 32.3 Monocytes —
P6 ATGGAAAGA*ACCCTAGACC 0.0005 25.8 499 49.9 7244 47.3 Monocytes —
P7 TGACCTTTG*ATGCCTGTC(BUSF-2) 6.1�10�10 21.0 561 56.1 8481 55.4 Monocytes —
P8 TGAATGAAT*HNF-1 3.0�10�15 �18.6 989 98.9 15 212 99.4 B cells —

Predicted matrices are represented by their consensus sequences. Matches to known PWMs are indicated in parentheses. For example, the PWM ATGCCTGTC matches
USF-2. Similarity was determined using MatCompare (Schones et al, 2005). USF-2 is a ubiquitous factor, FXR is a bile acid receptor and LEF-1 is a nuclear mediator in
Wnt signaling pathway. ARP-1 is involved in multiple processes including lipid metabolism. Under target gene count, model refers to the genes used to fit the spline
model to microarray data (total¼1000), whereas genome-wide indicates all the genes on the array whose promoters were available (total¼15 309). Final spline model
and the significant predicted matrices for this analysis are reported in Supplementary note.

Table II Significant motifs and motif pairs for analysis with known vertebrate
motifs as input

Significant motifs and motif pairs P-value Fit coefficients

HNF-1 2.2�10–15 187.5
HFH-3 1.3�10–14 �9.8
ETF 0.002 �2.9
OCT-1*HNF-1 1.5�10–14 156.7
OCT-1*PPAR-DR1 2.1�10–10 56.2
HFH-3*HNF-1 0.001 �120.1
HFH-3*MTF-1 0.003 86.2
OCT-1*HFH-3 2.2�10–15 30.0

HNF-1, PPAR-DR1 and MTF are liver-specific motifs, whereas Oct-1 and HFH-3
are ubiquitous motifs. HNF-1 is a well-established liver-specific motif. PPAR-DR1
binds several nuclear factors involved in metabolism, for example, PPAR, RXR,
etc. MTF-1 is active in heavy metal metabolism and is essential for liver
development. Fit coefficients are coefficients of optimal fit in the final spline
model, which is reported in Supplementary note. More details on significant
motif combinations are given in Supplementary Table V.
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obtained the target genes of the TFs for a given motif or pair. As
making the motif2TF association is beyond the scope of our
algorithm in general, we will often refer to the targets of TFs as
targets of the motifs that the respective TFs bind to. As PWM
scores are related to binding affinities (Berg and von Hippel,
1987), knots correspond to the activation thresholds, that is,
the PWM cutoff scores (Figure 1A and B). Thus, targets are
genes with PWM scores above the knot of the spline in the
predicted model (Figure 1B). These constitute a set of
experimentally testable hypotheses. We consider the HNF-1
motif as an example. According to the optimal model, there are
10 predicted HNF-1 targets out of 1000 genes analyzed
(Table IV). We searched for corroborative evidence a poster-
iori. Strong HNF-1 binding was detected for four genes in the
ChIP-chip assay (Odom et al, 2004). Seven targets have been
experimentally validated otherwise (Table IV). Taken together,
we found evidence for eight out of 10 as being direct HNF-1
targets. This is quite remarkable given that we started with a
large set of matrices and microarray data from liver and made
no a priori assumption in our approach apart from optimizing
certain mathematical functions related to splines. Previous
approaches to identifying TF targets in mammals, in contrast,
are quite resource intensive, and require a combination of
microarray and binding assays (Kirmizis and Farnham, 2004).

We used the optimal model to predict HNF-1 targets in two
extra gene sets: top 2000 genes (ranked by variance across
tissues) and genes upregulated by at least two-fold, genome-
wide. We found previously reported experimental evidence
of HNF-1 binding for 12 out of 17 predictions in the first set
and 17 out of 21 in the second (Supplementary note and
Supplementary Table VI). Thus, depending on which set we
look at, we find existing evidence for 70–80% predictions as
being direct HNF-1 targets under the experimental condition.
The nine novel HNF-1 targets display strong HNF-1 binding
characteristics, as follows. Their PWM scores are in the same
range as the known ones. HNF-1 binds DNA as a dimer, and
hence, its binding motif often contains two half-sites forming a
palindrome (Locker, 2001). All novel targets have at least one
half-site; seven have both. HNF-1 can, in fact, bind DNA with

just one half-site available (Chung and Bresnick, 1995).
Cluster Buster (Frith et al, 2003) and MATCH (Kel et al,
2003), the two popular programs that identify TF binding
motifs based on sequence information only, can also find HNF-
1 binding site in the promoters of some of these genes
(Supplementary note and Supplementary Table VI). Hence, we
think these new HNF-1 targets are biologically significant and
suggest that the subnetwork defined by HNF-1 is wider than
previously known (Tronche et al, 1994).

The targets for a motif combination are obtained similarly as
that for a single motif. For example, for two significant motifs
m1 and m2 contributing a term y(S1�x1, 0) y(S2�x2, 0) to the
spline model, where y’s denote splines, S the PWM scores and
x the knots (see Materials and methods), the target genes for
the combination m1–m2 are those with scores S14x1 and
S24x2 for motifs m1 and m2 respectively.

Assessment of tissue-specific roles
We next sought to determine if any of the significant motif
combinations has a liver-specific role. To assess this, we
obtained the targets for each active motif combination and
determined the tissue where they achieve maximum transcrip-
tional response. If this was liver, we performed tests of
significance to characterize their specificity to liver (see
Materials and methods). Three motif combinations, including
HNF-1, were found to be significantly liver-specific (Table III
and Supplementary note). We separately validated the liver-
specific roles of these three combinations by examining the
functional enrichment of their target genes. We searched 9133
Gene Ontology (GO) biological process terms and found 18
over-represented processes (Table V), all of which except one
are known to occur in liver.

Thus, starting from expression data, we have sequentially
obtained the functional motif combinations, their targets and
the processes they regulate, representing the active transcrip-
tional subnetworks (Figure 2). HNF-1 is selectively expressed
in liver and is a pleiotropic regulator of liver-specific genes
(Tronche et al, 1994). The statistical tests and enrichment

Table IV Target genes of HNF-1 in liver

Gene
name

Annotation PWM score Expression log
ratio

Evidence for direct targets

Adult
liver

Fetal
liver

HNF-1 binding
P-value

Experimental evidence
(PubMed ID)

ALB Albumin 0.4873 5.07 4.27 2.3�10�7 2693890
FGB Fibrinogen, B beta polypeptide 0.4849 4.37 4.89 — 8218230
AFP Alpha-fetoprotein 0.4630 �1.09 5.81 0.7 2479822
CYP2E1 Cytochrome P450, family 2, subfamily E, polypeptide 1 0.4622 5.93 �1.89 8.1�10�9 7710685
GC Group-specific component (vitamin D binding protein) 0.4592 4.86 4.49 0.8 9774468
FGA Fibrinogen, A alpha polypeptide 0.4582 4.25 4.32 — 7499335
GARS Glycyl-tRNA synthetase 0.4569 �2.16 �0.95 4.1�10�5 —
APOH Apolipoprotein H 0.4533 5.32 4.77 5.0�10�8 14984368
TXNIP Thioredoxin interacting protein 0.4523 �0.96 �2.17 0.1 —
RPL34 Ribosomal protein L34, transcript variant 1 0.4521 �2.70 �1.33 0.7 —

Characteristics of the predicted targets of HNF-1 among 1000 modeled genes under the given experimental condition. Expression data are log2(Eg/EgC), where Eg is the
observed expression level of gene g and EgC is that of the average across all the tissues. In all cases, the mRNA levels change by at least two-fold in adult liver, and also in
fetal liver, suggesting liver-specific activity. HNF-1 binding P-values were obtained from Odom et al (2004): Pp0.001 indicates strong binding. We find evidence for
eight of the 10 predicted targets as being direct HNF-1 targets: ALB, FGB, AFP, CYP2E1, GC, FGA, GARS and APOH. The detailed references for reported experimental
evidence in the last column are given in Supplementary Table VI.
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analysis reconfirm this fact. HNF-1 is known to regulate all the
processes found significant by our analysis (Table V). The two
new pairs that we identified, P1 and P3, display remarkably
similar liver-specific characteristics. Their targets are strongly

regulated in adult liver or fetal liver or both, like the HNF-1
targets above (Supplementary Table III). Several of these
genes, such as CES1, PTPRS and C4A, have been shown to
have distinct pharmacological roles but their cis-regulatory

Table V Enrichment of the biological process categories from Gene Ontology (GO)

Pair ID Motif or motif pair GO biological process Total no. of genes
with the term

Total no. of target
genes with the term

Enrichment P-value

— HNF-1 Regulation of blood pressure 28 3 15.2 0.001
Regulation of body fluids 79 4 7.2 0.002
Response to pathogenic bacteria 13 2 21.8 0.004
Cytolysis 14 2 20.2 0.004
Blood coagulation 64 3 6.6 0.01
Hemostasis 69 3 6.2 0.01

P1 TGACCTTTG*HNF-1 Hexose metabolism 98 5 4.7 0.004
Monosaccharide metabolism 101 5 4.6 0.005
Muscle development 105 5 4.4 0.006
Inflammatory response 153 6 3.6 0.006
Fructose metabolism 13 2 14.1 0.008
Energy derivation by oxidation of
organic compounds

118 5 3.9 0.009

Main pathways of carbohydrate
metabolism

76 4 4.8 0.009

P3 ARP-1*ATGGAAAGA Lipid transport 57 4 6.7 0.003
Lipoprotein metabolism 31 3 9.2 0.004
Inflammatory response 153 6 3.7 0.005
Glycosphingolipid metabolism 15 2 12.6 0.01
Response to wounding 235 7 2.8 0.01

P2 TGACCTTTG*ACCCTAGACC Response to external stimulus 556 48 1.7 0.0003
Response to pest, pathogen or parasite 385 35 1.8 0.0008
Response to wounding 235 24 2.0 0.001

Significant GO terms with Pp0.01 (qp0.15; Storey and Tibshirani, 2003) are reported here. Enrichment (column 6) quantifies how enriched a given category is with the
target genes (Zeeberg et al, 2003). P-value was calculated using a hypergeometric distribution (see Materials and methods). Parent terms with higher P-values than their
child terms are not reported in this table. Terms with exactly one gene in the total and target gene sets are also not reported. Some of the P-values are close to the cutoff
possibly because the terms are quite broad.
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Figure 2 Schematic representation of our analysis. A snapshot of the tissue-specific transcriptional subnetworks discovered from microarray data on adult human liver
under a normal condition.
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mechanisms are not yet elucidated (Supplementary note)
(Norris et al, 1997; Marsh et al, 2004). Our findings provide
the initial hypotheses for their cis-regulation. Statistical
tests demonstrate that these novel motif pairs play a strong
liver-specific role. This is further supported by the func-
tional enrichment analysis: pair P1 regulates sugar metabo-
lism pathways, and pair P3 regulates lipid transport
and metabolism (Supplementary note). Both of them are
active in inflammatory response as well. Thus, these
define new subnetworks active in liver that are uncovered by
our approach.

We also found six motif pairs active in B cells and
monocytes. Some of these are biologically significant. For
example, the pair P2 that is identified as active in monocytes is
also found to be involved in host defense (Table V). The mRNA
sample was taken from whole liver, which receives 30% of the
cardiac output and has strong hematopoietic potential (Gold-
en-Mason and O’Farrelly, 2002). The resulting mixing effects
in such mRNA samples have not been carefully considered by
the existing motif analyses. To our knowledge, we are able to
isolate these computationally for the first time. Furthermore,
we notice that several targets achieve their maximum
expression in a tissue different from the one in which the
motif combination has its maximal regulatory effect (Supple-
mentary Figure 2). This suggests that genes are coregulated
across multiple tissues, as one would expect in a synexpres-
sion group (Niehrs and Pollet, 1999). An advantage of our
method is that mRNA profiles from only a few conditions are
necessary to reach such a conclusion.

Functional motif combinations from temporal
expression profiles

We next applied our algorithm to gene expression profiles for
the human cell cycle (Whitfield et al, 2002). In this set of
experiments, HeLa cells were synchronized by a thymidine–
nocadazole block and mRNA levels were measured at 19 time
points spanning 36 h. We applied the above algorithm to each
time point separately using mRNA levels from asynchronous
cell cultures as reference (Whitfield et al, 2002). Our analysis
revealed several responsive motifs and motif pairs across all
phases of the cell cycle. We consider the 10 h time point, which
is near the G1/S phase, as an example. The optimal spline
model for this time point contains two individual motifs and
six motif pairs arising from a total of seven distinct motifs.
Among these, three are known E2F motifs from TRANSFAC,
two are predicted but have strong similarity to binding motifs
for AML1 and POU3F2, and the rest two are novel (Supple-
mentary note). Combinations of E2F motifs and E2F–E2F/DP-
2 are represented among the significant motif pairs. E2Fand its
combinations with DP proteins play a pivotal role in cell-cycle
progression and regulation of G1/S-specific genes (Locker,
2001). Our findings support this fact. AML1 is a master
regulator of hematopoietic cell development and is a target of
chromosomal translocations responsible for aberrations in
acute leukemia. It has been shown to exert strong effect on the
length of G1 phase (Strom et al, 2000). We find AML1
functional at 10 h and acting synergistically with E2F. Although
we did not find any direct report for this interaction, such a

possibility has been indicated previously (Meyers and Hiebert,
1995). The fitted model has Dw2¼23.1%.

Our analysis confirms the activity of several important
motifs at appropriate stages of cell cycle. For example, the cis-
regulatory motifs for Irf, Jun, Myb, AhR:Arnt, AP-2 alpha A
and Mef-2 are found to be functional at or near G1/S transition,
the motif for c-Ets-1 near G2/M phase and that for ROR alpha 2
near G0/G1 phase, in accordance with previous findings
(Table VI). Most of these factors have been linked to multiple
types of cancer, cellular proliferation and differentiation. Lef-1
and Tcf-4, the two mediators in Wnt signaling pathway
(Eastman and Grosschedl, 1999), emerge as significant at
14 h (late S phase), indicating that this pathway was
potentially active at this time point. Several developmental
regulators are also found to be functional at multiple time
points: GATA-1 and GATA-6 at early mitotic stage, and POU3F2
and POU6F1 at G1/S and G2/M phases.

Among the significant motif pairs (Table VII), the pairs
AhR–E2F, Oct1–NF-Y, Areb6–TBP and E2F–E2F/DP-1 have
been previously characterized. For instance, when exposed to
external toxins, Aryl hydrocarbon receptor (AhR) synergizes
with retinoblastoma protein, a key regulator of E2F, to induce
cell-cycle arrest (Puga et al, 2000). We detect this combination
to be active at 0 h, that is, when cells were released following
drug treatment. Oct-1 and NF-Y, which are significant at
6 h, coordinately regulate transcription of Gadd45 and other
genes (Hirose et al, 2003; Kam et al, 2005). The cooperativity
of E2F-1/DP-1–Oct1 and E2F–MEF2 has been implicated in
wet-lab studies (Table VII). Functional interactions of Ik-3 with
E2F and E2F-1/DP-1 are novel predictions that emerged from
our study.

Among the above combinations, Oct1–NF-Y pair was deter-
mined in the computational approach based on expression

Table VI Individual motifs identified as significant at various phases (time
points) of cell cycle

Significant motifs P-value Time (h) Phase Experimental
evidence

(PubMed ID)

ROR alpha 2 4.4�10�5 22 G0/G1 11241556
ATF6 0.004 8 G1/S 10564271
MEF-2 o0.005 6, 14, 24, 28 G1/S 10322110
IRF-2 o0.01 22, 28, 30 G1/S 9417064
NF-Y 6.1�10�15 8 G1/S 9281303
v-Myb 0.004 24 G1/S 9111313
AhR:Arnt o0.0005 12, 26 G1/S, S 8628281
AP-2 alpha 4.6�10�12 28 S 9776742
IRF-1 0.0004 28 S 1491701
LEF-1 4.2�10�8 14 S 15736165
Oct-1 5.4�10�16 28 S 12887926
S8 0.009 28 S —
TCF-4 1.6�10�6 14 S 12408868
USF2 0.0007 28 S —
v-Jun 0.0007 28 S 12717415
c-Ets-1 1.7�10�15 32 G2/M 8437861
GATA-6 1.7�10�15 32 G2/M —
GATA-1 2.0�10�12 34 M 10216081
MAZ 3.7�10�6 2 M 11395515
POU3F2 o0.01 10, 32 — 14708619
POU6F1 o0.0001 8, 34 — 8900043

The experimental evidence for activity of a given motif, as reported in the
literature, is included in the last column.
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coherence (EC) scores (Zhu et al, 2005b). The E2F–NF-Y pair
identified in this and another computational study (Elkon et al,
2003) is marginally suboptimal in our analysis (data not
shown). We also find a functional combination at 16 h, that is,
near G2/M, that involves NF-Y and a motif with consensus
ATTCAAA. The latter matches the reverse complement of
the previously predicted CHR motif (Zhu et al, 2005b), and
their PWMs are very similar (P¼3.6�10�4) (Schones et al,
2005). Moreover, CDC25C is one of their predicted targets.
Thus, this TF module is almost identical to the NF-Y–CHR
module reported recently (Zhu et al, 2005b). We also
detect interactions between the same regulatory motifs. YY1,
GATA-6, USF and TFs with POU domain are some examples
of this type (Supplementary Table VII). Of these, the last
two have been identified in the EC score approach. The
other active combinations uncovered by our approach involve
novel motifs. Several more experimentally characterized
pairs emerge as significant when only motifs from existing
TF databases are used to obtain the spline fits (Supplementary
Table VIII).

Some of the functional motif combinations reported here
have been identified in the previous computational studies
(Elkon et al, 2003; Zhu et al, 2005b), as indicated above. One
of the major advantages of our approach over these methods,
however, is that we can identify the appropriate time point
where a given motif combination is active and enumerate its
impact on gene expression levels. In addition, our computa-
tional approach has enabled identification of many more
synergistic motif combinations than was achieved in the above
studies. The complete list of significant motif combinations
identified in our analysis is summarized in Supplementary
Results.

Condition-specific gene induction by transcription
factors

TFs regulate genes in a condition-specific manner, and
consequently, a particular TF can activate different sets of
genes under different conditions (Zhu et al, 2005a). This is
brought about by changes in gene activation thresholds and
accompanied by distinct cooperative partnering with other
TFs. One such example is E2F, which induces separate sets
of genes in G1/S and G2/M phases (Ishida et al, 2001). As the

location of knots (Figure 1B), and hence the target genes, in
a linear spline model is determined by the input expression
profile, condition-specific gene induction can be suitably
modeled in our approach. We illustrate this by focusing on
targets of motif combinations E2F(TRANSFAC id: M00516)–
E2F(M00050) and E2F(M00516–E2F-1/DP-1(M00736)–Ik3,
which are significant at 10 h (G1/S) and 18 h (G2/M),
respectively (Supplementary note). This G2/M-specific motif
combination is a novel prediction of our method. Both
combinations involve a common E2F motif (M00516), which
partners with different motifs in the two phases. We observe
that the activation threshold for this motif, as adaptively
determined by the spline models, is significantly different at
the two time points: the thresholds are 0.4486 and 3.4�10�8,
leading to 98 and 21 E2F targets at 10 and 18 h, respectively
(Supplementary note and Supplementary Tables IX and X).
The target sets are mostly non-overlapping: 88 out of 98 G1/S
targets and 11 out of 21 G2/M targets are distinct from each
other. Comparison with TRED (Zhao et al, 2005), a database of
manually curated E2F targets, shows that 21 G1/S and 8 G2/M
targets have been validated in previous experimental studies.
Many newly predicted targets are supported by other motif
finding methods (Frith et al, 2003; Kel et al, 2003). Among the
77 novel G1/S targets, MATCH finds an E2F binding site for 43
(56%) genes, Cluster-Buster for 29 (38%) genes and 13 (17%)
genes have a conserved E2F binding site in the mouse genome.
For 13 novel G2/M targets, the respective numbers are eight
(62%), one (8%) and two (15%). Of the 10 targets that are
common to both phases, three are downregulated in G1/S and
upregulated in G2/M phase and the other seven have exactly
opposite profile. E2Fs are known to activate and repress the
same gene in different phases (Locker, 2001). We suspect
analogous regulatory control in these cases. In this vein, we
note that all G1/S targets and 19 out of 21 G2/M targets have
their maximum contribution to expression coming from an
E2F motif combination (Supplementary note).

Biochemical validation of novel E2F targets

E2F is a canonical regulator of genes involved in cell-cycle
progression, S-phase entry and apoptosis (Locker, 2001; Nahle
et al, 2002). Additionally, it has recently become clear that it
plays a key role in the G2/M phase as well (Ishida et al, 2001;

Table VII Significant motif pairs from different phases (time points) of cell cycle

Significant pair P-value Time (h) Phase Experimental evidence (PubMed ID)

Oct-1*NF-Y 8.0�10�9 6 G1 14586402
MEF-2*E2F-1 5.6�10�15 24 G1 11027611
TBP*AREB6 1.2�10�3 8 G1/S 14761964
E2F*E2F-4/DP-2 1.3�10�15 10 G1/S 9372931
E2F(M00050)*E2F(M00516) 1.3�10�15 10 G1/S 15014447
AML1*E2F-4/DP-2 1.0�10�10 10 G1/S —
AML1*E2F 2.6�10�5 10 G1/S 8834231
AhR*E2F 7.3�10�5 0 G2/M 10644764
E2F*E2F-1/DP-1 9.7�10�9 18 G2/M 7917337
E2F-1/DP-1*Ik-3 9.7�10�9 18 G2/M —
E2F-1/DP-1*Oct-1 2.8�10�7 18 G2/M 10662552
E2F*Ik-3 5.1�10�7 18 G2/M —

The experimental evidence reported in the literature for activity of a given motif pair during cell cycle is included in the last column. Italicized Pubmed IDs indicate
indirect evidence.
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Hernando et al, 2004). Indeed, Rb inactivation and deregula-
tion of E2Fs was shown to promote genomic instability by
uncoupling cell cycle progression from mitotic control
(Hernando et al, 2004). Our in silico observations reaffirm a
key role of E2F in the G2/M phase and expand the currently
known transcriptional subnetwork controlled by E2F. CDC16
and DLG7 (also known as HURP) are among the important
novel targets that we find specific to G2/M. CDC16 plays an
essential role in metaphase to anaphase transition, whereas
DLG7 is a recently identified cell-cycle regulator that localizes
to spindle poles during mitosis. Both have been shown to play
a measurable role in hepatocellular carcinomas (Yasui et al,
2002; Tsou et al, 2003), but their regulatory mechanisms are
not quite understood. E2F binding sites could be detected in
their promoter sequences using MATCH, but not by the other
sequence-based motif finding tools (Supplementary Table X).
However, as a program like MATCH does not directly use
expression data, G2/M-specific activation of these targets
cannot be predicted using such a method.

To determine physiologically whether E2F regulates DLG7
and CDC16, we examined their mRNA expression in NIH3T3
cells expressing a well-characterized inducible E2F-1/estro-
gen-receptor fusion construct (ERE2F1) (Vigo et al, 1999;
Nahle et al, 2002). In this system, E2F activity can be
programmatically induced simply by supplementing growth
media with tamoxifen (TX), an estrogen-receptor ligand. TX
triggers nuclear localization of the ERE2F1 construct where it
can initiate transcription. Importantly, such inducible system
allowed us to circumvent the complications encountered using
constitutive E2F expression systems as unrestrained E2F-1
expression triggers apoptosis in many cell systems in a manner
that prevents collection of representative experimental sam-
ples. Here, cells were infected with high-titer retroviruses
harboring the E2F-1 fusion construct or a mutant lacking
the transactivation domain of E2F (MERE2F1). Purely infected
cell populations were selected in the appropriate antibiotic
medium. Then, a time-course analysis of DLG7 or CDC16
expression was performed by QPCR using RNA extracted from
ERE2F1- or MERE2F1-infected cells in the presence of TX. As
shown in Figure 3A, DLG7 expression was induced approxi-
mately 4 fold upon E2F-1 activation within 8 h, whereas
activation of the E2F-1 mutant fails to induce DLG7 transcrip-
tion, as expected. A similar pattern of induction, albeit more
modest, was obtained for CDC16 expression (Figure 3B). Of
note, the fusion construct of E2F-1, ERE2F1, has been reported
to transactivate at one-third the capacity of non-fusion E2F-1
constructs, presumably owing to hindrance by the ER fusion
domain (Nahle et al, 2002). Therefore, we estimate a yet higher
induction by endogenous E2F-1.

Thus far, our analysis shows that DLG7 and CDC16 are
induced by E2F. Such induction required an intact E2F trans-
criptional function (Figure 3A and B, MERE2F1), suggesting
direct regulation of these genes by E2F. To investigate this, we
induced E2F in the presence of cyclohexamide (CHX). CHX is
an inhibitor of protein biosynthesis and blocks translational
elongation. Hence, in the presence of CHX, de novo protein
synthesis is abolished. Thus, in the event that an induction
of DLG7 or CDC16 transcripts upon ERE2F activation
(relocalization of pre-existing ERE2F protein) is observed,
then E2F is directly regulating these genes. Consistent with this

hypothesis, mRNA levels of DLG7 and CDC16 were indeed
induced in the presence of both TX and CHX similar to the
treatment with TX alone (Figure 3C and D, compare to A and
B). Apparently, the regulation of these targets is independent
of de novo protein synthesis and is the result of a direct
transcriptional activation by E2F, in accordance with our
computational predictions.
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Figure 3 Biochemical validation of target genes. Results of RT–PCR analysis
in NIH3T3 fibroblasts expressing an inducible ERE2F1 or a transactivation-
deficient mutant, MERE2F1. At time zero, medium containing 500 nM of
4-hydroxytamoxifen (OHT) was added and transcript levels of (A) DLG7 and
(B) CDC16 were determined using gene-specific primers at the indicated times
by RT–PCR. The respective transcript levels with 10 mg/ml of cyclohexamide
(CTX) added are shown in (C) DLG7 and (D) CDC16. GAPDH was used as
a standardization control. Plotted data reflect results after normalization with
GAPDH.
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Discussion

In summary, we have presented an unsupervised method for
learning human transcriptional subnetworks from expression
data that directly accounts for the strong degeneracy of and
interactions between cis-regulatory elements. The predictions
are widely concordant with the experimental findings,
suggesting the biological significance of this approach. We
find that the linear splines provide a convenient framework to
model mammalian gene regulation in the face of continuous
PWM scores arising from highly degenerate TF binding sites.
The average information content of the PWMs reported as
significant in this paper lies in the range 0.34–1.88 (see Table I
for examples). In particular, fitting single linear splines is a
powerful means of prioritizing a large number of degenerate
input motifs. In certain cases, one can stop at this step to
identify the target genes of the active TF. The HNF-1 example
discussed here is one such case. The periodic activity of the
degenerate Mcm1 motif in yeast cell cycle, which was
previously demonstrated using multiple spline model (Das
et al, 2004), can be easily modeled by fitting a single linear
spline (Supplementary Figure 3), indicating its effectiveness.

Our algorithm leads to discrete testable hypotheses for
transcriptional end points of biochemical pathways active
under a specific condition. As the TF binding thresholds are
learnt from the expression profile, condition dependence of
these end points can be naturally modeled in this framework,
in contrast to clustering-based approaches. One of the
difficulties in TF target determination is discriminating direct
targets from indirect targets (Kirmizis and Farnham, 2004).
The results here suggest that correlation with expression is a
promising way to identify direct targets from expression data.
In addition, they indicate significantly broader regulatory roles
of master TFs like HNF-1 and E2F. A strong correlation
between mitotic control and tumor progression in liver has
been previously noted (Tsou et al, 2003). Intriguingly, our
study suggests that part of this control may be exerted by E2F.

Our approach to target identification does not depend on
arbitrary fold cutoffs, as are invoked by many comparable
methods (Kirmizis and Farnham, 2004). Consequently, we can
detect bona fide targets that undergo very subtle changes in
expression. For example, the G1/S-specific E2F target, MCM5
(Ohtani et al, 1999), which is upregulated by only 6% at 10 h, is
among the predicted targets at this time point (Supplementary
Table IX). Furthermore, this technique identifies autoregula-
tory loops prevalent in biological networks. One of the
predicted targets of the E2F motif combination at 10 h, for
instance, is E2F-1 itself (Supplementary Table IX), which is a
well-established example of autoregulatory loop (Chen, 1997).
Such loops are difficult to infer using existing network
modeling techniques (Basso et al, 2005).

Techniques based on correlation with expression have been
previously proposed for yeast, but no analogous method
exists, to our knowledge, for mammals. Our algorithm
represents a first step in this direction. The optimal spline
models for temporal expression profiles yield a Dw2 of 21.7%,
on an average. For tissue-specific data, the average is 24.4%
(Supplementary Table IV). This is comparable to the percent
reduction in variances achieved in lower eukaryotes (Das et al,
2004). There are several mechanisms that contribute to the

mammalian gene expression, but are not captured in our
models, and hence, in the above estimates ofDw2. For instance,
many genes are subject to regulation by distal long-range
enhancers (Levine and Tjian, 2003). An added complexity is
that the same transcriptional unit may use alternate transcrip-
tion start sites (TSS) in a tissue- or developmental-specific
fashion. Moreover, transcription is often coupled to other
nuclear processes (Maniatis and Reed, 2002), like RNA
splicing and degradation, which can potentially affect the
measured mRNA levels. Finally, there are more complex
modes of gene regulation, including effects of chromatin
remodeling, which are not accounted for here. All of these
factors need to be incorporated before we can obtain a
comprehensive view of mammalian gene regulation.

Nevertheless, as this study clearly demonstrates, our
approach provides a stepping stone to generate an accurate
primary hypothesis of cis-regulation mediated by proximal
promoters and does not require any prior system-specific
knowledge. It is equally effective on expression and ChIP-
chip data (Smith et al, 2005), tissue-restricted and temporal
profiles. In the light of the above findings, we think this
approach will help accelerate systematic understanding
of regulatory network architectures in a wide range of
mammalian systems and make scope for novel therapeutic
interventions.

Materials and methods

Percent reduction in variance

Percent reduction in variance, Dw2, is defined as (Bussemaker et al,
2001; Das et al, 2004)

Dw2 ¼ 1 �
X

g

ðrg � �rÞ2

,X
g

ðyg � �yÞ2

" #
�100

where yg¼log(Eg/EgC), rg¼yg�yg
p is the residual (p indicates the

predicted value of y) and �y and �r are their respective means. Eg is the
expression level of gene g and C refers to the control set.

Average information content of a position weight
matrix

The average information content of a PWM is a measure of degeneracy
of the binding sites for the corresponding TF. If we consider each PWM
as a matrix of dimensions 4�L, where rows represent the bases and
columns the positions of cis-regulatory motifs, then the information
content for each column (position) i is enumerated as

Ii ¼ 2 þ
X

bi

piðbiÞ log2 ðpiðbiÞÞ

where pi(bi) is the probability of observing the base bi at the position
i and the summation is over all possible bases at position i: A, C, G and
T. The average information content of a PWM is the average of Ii taken
across all the columns of the matrix. For a non-degenerate word, the
average is 2, and for an exactly degenerate motif, that is, pi(bi)¼0.25
for all bi’s, the average is 0. For any typical mammalian PWM, the
average information content interpolates between these two extremes.

Data preparation

Promoter sequences
We obtained promoter DNA sequences from CSHLmpd database
(Xuan et al, 2005) (�700 and þ 300 nt from the TSS). For each PWM m
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of width L, each L-mer in a promoter sequence was assigned a
probability score S:

S ¼ ½p1ðb1Þp2ðb2Þ � � � pLðbLÞ	1=L

where pi(bi) is the probability of observing the base bi at the position i.
Thus, the score S always assumes a value between 0 and 1. For a given
gene g, the maximum of all S’s in its promoter, Sg

max, was used as the
representative score. Henceforth, we will refer to the maximum score
as Sg. We used the program PATSER (Hertz and Stormo, 1999) to speed
up the scoring process. log(pi(bi)) was entered as the weight for the
base bi at the position i (a large negative number was used for
pi(bi)¼0). The scores reported by PATSER were exponentiated to
obtain the scores Sg (large negative numbers converted to zero).

Expression data
Expression profile (Su et al, 2004) across 79 human tissues for a single
condition each was reported for 33 689 probes representing a total
of 17 543 publicly available human genes. We could obtain promoter
sequences for 15 309 such genes (87% of the total) from CSHLmpd
(Xuan et al, 2005). Among these, top 1000 genes by variance across all
tissues were used to build the spline models. For modeling cell-cycle
expression data (Whitfield et al, 2002), we used the cell-cycle-
regulated genes (805 out of 874, for which promoters were available).
The probability scores {Sg}, discussed above, were fitted to the
logarithm of expression ratios in computing these models.

Prioritized matrix sets
We used the gap in %RIV (Supplementary Figure 1) to prepare
three prioritized sets of matrices for MARS runs as follows. We first
recorded the P-value of the 10th matrix below the gap, where P-value
was assigned using an F-test (Das et al, 2004). This P-value was one
of the cutoffs used. The other two were determined by multiplying
this P-value by a factor of 10 and 0.1, respectively. For a given
cutoff, all matrices with P-value lower than this cutoff were taken
in the set.

MDscan
We scanned 48 parameter settings, by varying the motif width
(5–10 nt) and the number of top promoter sequences, to look for
candidate motifs (10, 25, 50 and 100), once each for the gene list sorted
in ascending and descending order by log expression ratio, and
obtained 30 PWMs for each setting using MDscan (Conlon et al, 2003),
resulting in 1440 predicted PWMs. These parameter settings are very
similar to those suggested by Conlon et al (2003).

Fitting a single linear spline

PWM scores across genes {Sg
m} for a given motif m were fitted to the

expression ratios {log(Eg/EgC} using the following model:

logðEg=EgCÞ ¼ am þ bmyðSmg � xm; 0Þ

where y(x, 0) is a linear spline: it is x, when xX0, and zero, otherwise.
The coefficients am and bm and the location of the knot xm were
determined so as to maximize Dw2. It is important to note that Dw2

depends on the location of xm. Maximization of Dw2 leads to an
unbiased and adaptive determination of this threshold for any given
PWM. We also attempted to fit the other type of linear spline,
y(xm�Sg

m, 0), and the spline with maximum Dw2 was considered as the
optimal choice. The latter type of spline is related to the saturation part
of sigmoidal transcriptional response. The significance of the fit was
enumerated using an F-test, as discussed in the context of the MARS
algorithm below.

Multivariate adaptive regression splines

MARS is a non-parametric and adaptive fitting method (Friedman,
1991; Steinberg and Colla, 1999; Das et al, 2004). It builds the model

using stepwise forward addition of linear splines and their products.
For pairwise interactions, the fitted model has the form

logðEp
g=EgCÞ ¼a þ

X
m;i

bm;iyðŜmi
g ; 0Þ

þ
X
m;n;i;j

cm;n;i;jyðŜmi
g ; 0ÞyðŜnj

g ; 0Þ

where Ŝg
mi¼Sg

m�xi
m or xi

m�Sg
m, Sg

m is the PWM score for motif m on the
promoter of gene g, xi

m is the ith knot of the motif m and y(x, 0) are linear
splines. Eg

p indicates the predicted expression level of gene g. Terms
and knots in the above model are selected adaptively by minimizing
the residual sum of squares (RSS),

P
g(yg�yg

p)2, where yg¼log(Eg/EgC).
This is equivalent to maximizing Dw2 used above. We allowed up to
third-order interactions in the model. The model grows until a preset
maximum number of terms is reached. Terms are then deleted
sequentially to obtain a set of models of various sizes. MARS controls
overfitting by selecting a model that minimizes the GCV score. GCV is
RSS times a factor that penalizes for model complexity:

GCV ¼
XN

g¼1

½logðEg=EgCÞ � logðEp
g=EgCÞ	2 =½1 � M=N	2

where M is the effective number of parameters, N is the total number
of genes and the predicted expression level, Eg

p, is obtained from the
fitted model above. M was obtained by 10-fold cross-validation
(Friedman, 1991). The GCV-based optimization restricts the final
model to a very small number of terms (Das et al, 2004). We provide
additional control on overfitting by deleting motifs and motif pairs
with adjusted P-values 40.01, where P-values were calculated using
an F-test (Hastie et al, 2001):

F ¼ ðRSS0 � RSS1Þ=ðp1 � p0Þ
RSS1=ðN � p1 � 1Þ

where RSS1 is the RSS of the final MARS model with p1þ 1 terms and
RSS0 is the RSS of the model without a specific motif (or pair), which
has p0þ 1 terms. N is the number of genes. This statistic has an F
distribution with p1�p0 numerator degrees of freedom and N�p1�1
denominator degrees of freedom. The P-values were adjusted for
multiple testing using the false discovery rate method as explained in
an earlier work (Das et al, 2004).

As the number of input motifs and motif pairs can be very large, one
needs to develop a suitable scheme to run MARS for its optimal use.
When no interactions are allowed between distinct motifs (int¼1), the
previously developed implementation (Das et al, 2004) can be used with
the prioritized set of motifs. The situation is, however, different when
interactions are allowed (int41). The previous scheme requires a
prioritized set of pairs of motifs as input to MARS (Das et al, 2004).
However, the pair prioritization scheme used there requires prior
knowledge of whether a motif is present or absent in a given promoter,
which is often not available in mammals. To address this, we used the
MARS program directly to prioritize the motif pairs. A key impediment
here is that when all possible interactions are allowed with a large set
of motifs as input, suboptimal and typically biologically insignificant
models are predicted by MARS, leading to detection of incorrect motif
pairs (Das et al, 2004). To avoid this, we partitioned the prioritized set of
motifs into small sets of at most k motifs (k¼15 for this implementation).
MARS is run on all possible pairs of such motif sets with a given
interaction setting to identify prioritized set of interactions. All possible
interactions are allowed for a given pair of motif sets. This process is then
iterated, keeping only significant motifs and pairs from the previous
iteration, until the number of significant motifs falls below 2k. The final
MARS run is executed with the significant motifs identified in the above
runs plus the motifs identified as significant with the int¼1 setting. We
used the MARS program from Salford Systems and the parameter settings
for each MARS run were as described before (Das et al, 2004). More
details are presented in Supplementary Methods.

Tests of significance for tissue-specific roles

We first examined if the given set of target genes has tissue-specific
variation. This is identical to the question: whether a given set of
subjects respond to the treatments they receive. Repeated-measures
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ANOVA (Glantz, 2001) is a standard way to test the significance of this
hypothesis, with genes corresponding to subjects and tissues to
treatments. The null hypothesis is that there is no dependence of
mRNA levels on tissues for a given gene set. Because we selected genes
by maximum variance across tissues, this P-value was always low
(Po1.0�10–6).

We next obtained the tissue Tmax where the given target gene set has
maximum average expression. We tested the difference in expression
levels of target genes between tissue Tmax and each of the other tissues
using a t-test (Glantz, 2001). A geometric mean of the calculated
P-values is reported as an estimate of specificity to the tissue Tmax. We
used a geometric mean of the P-values instead of the P-value of t-test to
the next best tissue, because quite often regulatory TFs are selectively
expressed in a few tissues instead of just one tissue.

Determination of statistical significance of GO
terms

The statistical significance of a GO term was calculated using the
hypergeometric distribution as follows. Consider that there are N genes
on the microarray in total and m target genes for a given motif or motif
combination, calculated genome-wide. Genome-wide targets were ob-
tained using the optimal spline model discussed in the text. We performed
genome-wide analysis to ensure that the test has sufficient power. If there
are n genes on the array associated with a GO term and k target genes
associated with the same term, then the P-value is calculated as the
probability of having at least k target genes associated with this term:

P ¼ 1 �
Xk�1

i¼0

n
i

� �
N � n
m � i

� �
N
m

� �

The enrichment (EN) is defined as (Zeeberg et al, 2003)

EN ¼ k=n

m=N

The P-values were then corrected for multiple testing using the false
discovery rate method (Storey and Tibshirani, 2003). It is quantified in
terms of a q-value, which provides an estimate of the fraction of false
discoveries among the significant terms. For the results reported here,
we used qp0.15.

Enumeration of characteristics of TF binding sites

We used two motif finding programs to examine the sequence-based
characteristics of the predicted binding sites: MATCH (Kel et al, 2003)
and Cluster-Buster (Frith et al, 2003). MATCH was run to minimize the
false positive rate and Cluster-Buster was run with default settings. To
determine the conservation of predicted E2F binding sites in mouse,
we obtained the corresponding orthologous promoter from CSHLmpd
database (Xuan et al, 2005), and examined if the relative distances of
the maximum scoring E2F sites from the TSS in the two species are
within 10 nt of each other. We also included the conserved E2F binding
sites reported by Zhu et al (2005b).

Cells and gene transfer

NIH3T3 cells were obtained from the American Type Culture
Collection (ATCC) and infected with high-titer recombinant retro-
viruses expressing the wild type E2F-1 (ERE2F-1), a transactivation-
defective mutant of E2F-1 (pBabeHAERE2F-1(1–374)) or an empty
vector control pBabeHA as described (Nahle et al, 2002). For ER
constructs, E2F-1 activity was induced by the addition of 500 nM OHT
(Sigma, St Louis, MO). De novo protein synthesis was inhibited by
adding 10mg/ml CHX.

Cell preparation and RNA isolation

NIH3T3 fibroblasts were harvested and total RNA was extracted using
a standard Trizol (Invitrogen) procedure. Briefly, pelleted cells were

resuspended in 2.0 ml Trizol and lysed by pipetting up and down. Cell
suspensions were then incubated for 5 min at room temperature.
Samples were centrifuged at 12 000 g for 10 min at 41C to pellet cell
debris and supernatants were transferred to fresh tubes. Chloroform
(0.20 ml/ml suspension) and molecular biology grade glycogen (final
concentration of 0.40 mg/ml) were added to each tube. Samples were
vigorously shaken by hand for 15 s and then incubated at room
temperature for 5 min. After centrifuging at 12 000 g for 15 min at 41C,
the upper aqueous phase of each tube was transferred to fresh
eppendorf tubes. Isopropanol (0.50 ml/ml suspension) was added to
each aqueous supernatant and incubated for 10 min. Samples were
centrifuged at 12 000 g for 10 min at 41C followed by supernatant
removal. Ethanol (75%) was added to each pellet and each tube was
shaken well by hand. The samples were centrifuged again at 16100 g
for 5 min at room temperature and then the supernatant was discarded.
Pellets were air-dried for approximately 10 min and then rehydrated
with UltraPure distilled water (GIBCO).

Real-time RT–PCR procedure

Real-time RT–PCR was performed on the SmartCycler II instrument
(Cepheid) using the Superscript III Platinum SYBR Green One-Step
qRT-PCR kit (Invitrogen). Each assay consisted of an RT–PCR master
mix containing 12.5 ml of 2� SYBR Green Reaction Mix, 0.5ml of SYBR
Green One-Step Enzyme Mix, 0.5 ml of each primer (final 200 nM each)
and UltraPure distilled water (GIBCO) for a final volume of 25 ml and
2ml of RNA (50 ng per assay). Negative controls contained only the
RT–PCR master mix (25 ml) and 2ml of UltraPure distilled water
(GIBCO). The forward primer for DLG7 used was 50-GTACAGCAAGG
ATTGGAGTCG-30 and the reverse primer used was 50-CTCCTTTCACAG
AAGCGTGA-30. The forward primer for CDC16 used was 50-GACGTGG
TAGTGTCTTTAGCTGAG-30 and the reverse primer used was 50-CTCC
ACAAGAGTTCCTATGTGC-30. cDNA synthesis was performed at 501C
for 15 min followed by a 2 min incubation at 951C to inactivate the
reverse transcriptase and activate the Taq DNA polymerase. PCR
amplification was performed following the 951C incubation for 50
cycles of denaturation (15 s at 951C), annealing (601C for 30 s) and
extension (30 s at 721C).

Supplementary information

Supplementary information is available at Molecular Systems Biology
website (www.nature.com/msb).
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