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Retinal vessel segmentation is essential for the detection and diagnosis of eye diseases. However, it is difficult to accurately identify
the vessel boundary due to the large variations of scale in the retinal vessels and the low contrast between the vessel and the
background. Deep learning has a good effect on retinal vessel segmentation since it can capture representative and distinguishing
features for retinal vessels. An improved U-Net algorithm for retinal vessel segmentation is proposed in this paper. To better
identify vessel boundaries, the traditional convolutional operation CNN is replaced by a global convolutional network and
boundary refinement in the coding part. To better divide the blood vessel and background, the improved position attention
module and channel attention module are introduced in the jumping connection part. Multiscale input and multiscale dense
feature pyramid cascade modules are used to better obtain feature information. In the decoding part, convolutional long and short
memory networks and deep dilated convolution are used to extract features. In public datasets, DRIVE and CHASE_DB1, the
accuracy reached 96.99% and 97.51%. +e average performance of the proposed algorithm is better than that of
existing algorithms.

1. Introduction

Many eye-related diseases can lead to structural charac-
teristics changes of the retinal vessel in fundus images.
+erefore, fundus retinal vessel segmentation plays a sig-
nificant role in the detection and diagnosis of these eye
diseases, such as diabetic retinopathy, hypertension, and
arteriosclerosis [1]. However, the manually visual vessel
segmentation method requires professional doctors to label
blood vessels manually, which not only is time-consuming
but also can be easily affected by subjective factors. +ere-
fore, in recent years, a variety of methods have been pro-
posed for retinal vessel segmentation tasks, including
unsupervised methods and supervised methods [2].

Unsupervised learning methods do no’t use any anno-
tation as a reference and aim to extract blood vessels based
on one or more characteristics of the blood vessel. For
example, Xiao et al. [3] used an improved level set method to
minimize the proposed energy function to identify blood

vessels in retinal images. Azzopardi et al. [4] designed the
B-COSFIRE filter, which can accurately detect the trunk and
end of blood vessels in different directions. Unsupervised
algorithms do no’t need to rely on annotated vascular im-
ages, but they are less robust and have no learning ability. In
recent years, with the development of deep neural networks,
good results have been achieved in the field of medical image
processing [5–7]. +erefore, more and more algorithms
based on deep learning are used for retinal vessel
segmentation.

Existing deep learning-based retinal vessel segmentation
models can be classified into four groups according to
network structure [8]. +e first group is to use only a few
layers of CNN to segment blood vessels. +ese models can
only segment the basic structure of vessels and canno’t
segment the boundary and thin vessels. For example, +e
CNN model with multiple convolutional layers was pro-
posed by Uysal et al. [9]. +e proposed model can do pixel-
level recognition but canno’t detect vessels very well. +e
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second group is the network model based on FCN. For
example, Li et al. [10] constructed FCN with jumping
connection part and introduced active learning into retinal
vessel segmentation. +e network model based on FCN can
obtain higher-level features, but the spatial consistency of
pixels is ignored in pixel segmentation. +e third group is
the network model based on U-Net [11]. For example, Li
et al. [12] proposed IterNet, using standard U-Net as in-
frastructure and then discovering more details of blood
vessels through iterative simplified U-Net to connect broken
blood vessels. +e network model based on U-Net can
capture local and global information through a connection
feature graph to make better decisions, so it can obtain better
segmentation results. +e fourth group is network archi-
tecture based on multiple models. For example, Zhang et al.
[13] used M-Net [14] as the main framework to extract the
structural information of vessel images and used a simple
network to extract the texture information of vessel images.
+e multimodel network can improve performance, but it
has the disadvantages of difficult training and large
computation.

In recent years, more and more algorithms in the field
of medical image processing focus on acquiring multiscale
feature information. For example, Mu et al. [15] segmented
COVID-19 lung infections by using a multiscale multilayer
feature recursive aggregation (mmFRA) network. Xiao
et al. [16] proposed a multiview hierarchical segmentation
network for brain tumor segmentation. In this paper, we
propose an improved U-Net-based fundus vessel seg-
mentation algorithm. +e main contributions of this paper
are summarized as follows. (1) +e improved position
attention module (PA) and channel attention module (CA)
were added in the jump connection part to improve the
effect of vessel segmentation under low contrast. In this
paper, an improved attention mechanism is added in both
the encoding part and the upsampling part to improve the
semantic information contained in the feature graph and
improve the segmentation performance of the algorithm.
(2) GCN+BR [17] was used to replace the traditional CNN
to improve the ability of the algorithm to segment vascular
boundaries. ConvLSTM [18] was added in the decoding
part to solve the problems of gradient explosion and
gradient disappearance, and depth separable convolution
was used to reduce model parameters. (3) Multiscale input
is used to effectively combine spatial information and se-
mantic information of images of different sizes to solve the
problem of vessel discontinuity. (4) A multiscale dense
feature pyramid cascade module (MDASPP) is proposed to
expand the acceptance domain. MDASPP can effectively
combine feature information of feature maps with different
resolutions to improve the performance of vessel seg-
mentation through dense dilated convolution operations of
different sizes.

+e rest of this article is organized as follows. Section 2
introduces the implementation principles of ConvLSTM,
DenseNet, and GCN+BR in detail. Section 3 presents the
details of the proposed method. Section 4 shows the results
and performance analysis of this algorithm. Finally, the
paper is summarized in Section 5.

2. Related Works

2.1. Convolution Long Short-TermMemory. Hochreiter et al.
[19] proposed that LSTM is used to solve the problem that
ordinary RNN cannot solve long-term dependence and may
bring gradient disappearance or gradient explosion. It has
been proved that LSTM can effectively solve the problem of
long sequence dependency [20–22].

Traditional LSTM has a strong data processing capa-
bility. However, the traditional LSTM cannot obtain the
spatial information of the image effectively because of the
full connection operation in the conversion process from
input to output. Shi et al. [18] proposed the ConvLSTM
model to solve this problem. +is model uses convolution
operation instead of full connection operation to achieve
input-to-end and end-to-end conversion.

2.2. Dense Convolution Network. In traditional U-Net, there
are a series of convolution operations to learn different types
of features. However, some redundant features are learned in
this continuous convolution operation. Huang [23] et al.
proposed DenseNet structure to alleviate this problem.

DenseNet was inspired by the residual network ResNet
[24]. +ey are similar in that each layer’s input is related to
the previous layer.+emain difference is that ResNet’s input
for each layer is only relevant to a limited number of layers
ahead, whereas DenseNet’s input for each layer is relevant to
all layers ahead.

2.3. Global Convolution Network and Boundary Refinement.
Global convolution network (GCN): we introduced the
GCN module to simultaneously improve the localization
and classification capabilities of the network in retinal vessel
segmentation. +e structure of GCN is shown on the left of
Figure 1. Convolution with the convolution kernel k × k is
replaced by the combination of convolution operations of
1 × k with k × 1 and k × 1 with 1 × k. GCN is reduced to
O(2/k) parameters compared to k × k convolution. In this
experiment, the value of k is 3 and the activation function is
ReLU.

Boundary refinement (BR): it is difficult to identify the
vessel boundary because the nonvessel pixels of the vessel
boundary contain some vessel pixels. We introduce the BR
module to improve the segmentation ability of the network
at the vessel boundary. +e structure of BR is shown on the
right of Figure 1. We define S∗ as the obtained feature map:
S∗ � S + R(S), where S is the input feature map and R(·) is
the convolution operation whose convolution kernel is k × k

and whose activation function is ReLU. Add the feature map
obtained by R(·) and the input feature map to obtain the
final feature map.

3. Method

3.1. Overview. +e network model proposed in this paper is
based on U-Net. Figure 2 shows the structure of the pro-
posed algorithm. In this paper, low-resolution feature maps
are obtained through average pooling of the input feature
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maps so that the network model can combine the feature
information of feature maps with different resolutions.

GCN+BR was used to replace the traditional CNN in each
layer of the coding part to improve the ability of the algorithm to
separate blood vessels from the background under the condition
of low contrast.+e proposedMDASPP is introduced in the last
layer of the coding section to further improve the connectivity
of the whole segmented vessel tree. An improved attention
mechanism is introduced in the jump link part to combine the
feature maps of the encoding layer containing more spatial
information with those of the decoding layer containing more
semantic information. At the decoding layer, ConvLSTM was
used to extract feature information better to alleviate the

problem of gradient explosion and gradient disappearance, and
deep dilated convolution was used instead of traditional con-
volution to expand the acceptance domain.

3.2. Spatial Attention Module. PA (position attention)
module is added after deconvolution operation to make
the feature graph, obtained by upsampling, contain more
semantic information.+e structure of PA is shown on (a) of
Figure 3. Compared with PA [25], the convolution operation
in PA is canceled. PB ∈ R(H×W)×C and PC ∈ RC×

(H×W) are the characteristic graph P ∈ RH×W×C obtained by
reshaping operation. PB and PC get characteristic graph PS ∈
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Figure 1: Global convolution network (a) and boundary refinement (b).
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Figure 2: Network mechanism.
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R(H×W)×(H×W) containing rich semantic information by
matrix multiplication. PF ∈ RH×W×C is obtained by matrix
multiplication and shaping of PS and PB. +e obtained PF
and P are directly operated by Add and BN to obtain the final
characteristic graph PE ∈ RH×W×C.

CA (channel attention) module is added before jump
connection to make the feature graph, of the corre-
sponding encoder, contain more spatial information. +e
structure of CA is shown on (b) of Figure 3. Compared
with CA [25], the convolution operation in CA is can-
celed. CB ∈ R(H×W)×C and CC ∈ RC× (H×W) are charac-
teristic graph C ∈ RH×W×C obtained by reshaping
operation. CB and CC get characteristic graph CS ∈
RC×C containing rich spatial information by matrix
multiplication. CF ∈ RH×W×C is obtained by
matrix multiplication and shaping of CS and CB. +e
obtained CF and C are directly operated by Add and BN
to get the final characteristic graph CE ∈ RH×W×C.

3.3. Multiscale Dense Feature Pyramid Module. Due to the
blurring of vessel boundary and the reflection of vessel cen-
terline in fundus image, the characteristic information of

different scales can help to better extract vessels. Yang et al. [26]
proposed DenseASPP by combining DenseNet and ASPP,
which can generate feature information of a larger range and
scale by combining the advantages of parallel and cascading
convolutional layers. +is paper further expands the range of
features obtained through multiscale input to help elevate
blood vessels. Our method is referred to as MDASPP for short.
Next, we will describe the proposed MDASPP in detail.

Figure 4 shows the structure of the MDASPP.
Xin∈RH×W×C is an input feature graph, which is a high-level
feature graph obtained from the previous coding layer. First
of all, we get X1in∈RH×W×C by convolution and
X2in∈RH/2×W/2×C by average pooling and convolution.+en,
DenseASPP operations with gaps of 6, 7, and 8 are per-
formed on the high-resolution X1in to obtain
X1out∈RH×W×C. We performed DenseASPP operation with
gaps of 2, 3, and 4 on low-resolution X2in and performed
upsample operation to obtain X2out∈RH/2×W/2×C. Finally, we
connect X1out and X2out to obtain multiscale feature in-
formation and then through convolution operation, BN, and
dropout operation to obtain the feature graph Xout∈RH×W×C

containing multiscale feature information.
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Figure 3: Attention module. (a) Position attention module (b) Channel attention module.
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4. Results and Discussion

4.1. Experimental Datasets. +e proposed method is tested
on two common datasets of retinal fundus vessels, DRIVE
[27] and CHASE_DB1 [28]. +e DRIVE dataset includes 40
color fundus images of the retina, each with a size of
584× 565. In this paper, the first 20 images of 40 images are
used for training, and the other 20 images are used for
testing.+ere are 28 retinal color images in the CHASE_DB1
dataset, each with a size of 999× 960. In this paper, the first
14 images are used for training, and the other 14 images are
used for testing.

Since increasing the amount of data in deep learning
can improve the generalization ability of the model [29],
this paper implements data enhancement through rota-
tion and mirror operation on the training set. For the
training set of DRIVE and CHASE_DB1, after expansion,
the whole training set has 1200 images and 1680 images,
respectively. +en, the data-enhanced images are sliced,
and each image is cut into 64 × 64 patch blocks. Finally,
the DRIVE training set is expanded into 120000 patch
blocks of 64 × 64 size. +e CHASE_DB1 training set is
expanded into 168000 patch blocks of 64 × 64 size. In this
article, 80% of it is used for training and the remaining
20% is used for verification. +e test set images are only
preprocessed and sliced, and no data enhancement is
carried out. +e patch blocks of 64 × 64 sizes obtained by
the algorithm are then merged into the corresponding
images.

4.2. Experimental Environment and Evaluation Indexes.
+e experiment in this paper is carried out under Keras 2.3.1.
Using the binary cross-entropy loss function, the learning
rate is initialized to 0.1. If the loss of the verification set
remains unchanged after each epoch, the learning rate will
be reduced by 10 times. +e Adam optimizer is used to
update the parameters; the optimal model saved in this paper
takes the model with the least loss of the verification set. For
DRIVE and CHASE_DB1 datasets, the Batchsize for training
and testing is 8 and 16, respectively.

In this paper, sensitivity Se, accuracy Ac, F1-score,
and AUC (area under the curve) are selected to evaluate
the performance of the algorithm. +ey are defined as
follows:

Se �
TP

(TP + FN)
,

Ac �
(TP + TN)

(TP + FN + FP + TN)
,

F1 − Score �
2∗Se
∗
(TP/(TP + FP))

Se +(TP/(TP + FP))
,

(1)

where the True-Positive, TP, indicates the number of pixels
that correctly classify the blood vessels and the True-Neg-
ative, TN, indicates the number of pixels that correctly
classify the background.+e False-Positive, FP, indicates the
number of pixels that misclassify the background and the
False-Negative, FN, indicates the number of pixels that
misclassify blood vessels.

+is paper is also evaluated by the Receiver-Operating-
Characteristic (ROC) curve of the subjects’ working char-
acteristics. +e ROC curve takes the TP as the ordinate and
the FP as the Abscissa. Area-under-ROC-curve (AUC) is the
area between the ROC curve and the horizontal axis, and the
closer the value of AUC is to 1, the better the segmentation
ability of the model.

4.3. Experimental Results

4.3.1. Image Preprocessing. In this paper, the fundus retina
image is preprocessed to improve the contrast between
blood vessels and the background. +e specific steps are as
follows:

(i) +e fundus retinal vascular image in the form of RGB
was converted into the corresponding grayscale image.

(ii) +e grayscale image is equalized by an adaptive
histogram. In this paper, the threshold of color
contrast is set to 10.0, and the grid size for pixel
equalization is set to (8, 8).

(iii) +e retina image is corrected by local adaptive
gamma correction. In this article, the gamma factor
is set to 1.0.

+e preprocessing results are shown in Figure 5. It can be
seen that, after preprocessing, the contrast between the
blood vessel and the background is increased, and the
problem of vascular centerline reflex is also suppressed.

AVGPOOL Conv

Conv
rate=6 rate=7 rate=8

rate=2 rate=3 rate=4
UPSAMPLE

Conv BN + Drop
256

256

512

Xin
X1in

X2in

XoutX2outX1out

Figure 4: Multiscale DenseASPP. AVGPOOL is an average pooling operation. +e rate represents the dilated rate. UPSAMPLE stands for
upsampling. BN+Drop stands for batch normalization and dropout operations.
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+e results of preprocessing on the dataset are shown in
Table 1. It can be seen that the accuracy after pretreatment is
higher than that without pretreatment, especially the sen-
sitivity. It can be shown that through preprocessing to
improve the contrast between blood vessels and background,
the network can more easily learn the difference between
blood vessels and background, thus reducing the number of
pixels in which the background is mistakenly divided into
blood vessels.

4.3.2. Ablation Experiment. To verify that the improved
strategy proposed in this paper can effectively improve the
segmentation performance of the algorithm on retinal
vessels, three groups of comparative experiments are done to
show that the addition of GCN+BR, CA+PA, and
MDASPP can improve the segmentation performance of the
algorithm to an extent.

+e results of various improvement strategies are
shown in Table 2, where A1 is the result of U-Net, A2 is the
result of ConvLSTM_Mnet, A3 is the result of
GCN+BR+A2, A4 is the result of CA+ PA+A3, and A5 is
the result of MDASPP +A4. As can be seen from Table 2,
the segmentation performance is improved by adding
multiscale input and ConvSLTM to the traditional U-Net
[10] and by adding GCN+BR, SA + PA, and MDASPP
algorithms. Finally, the algorithm proposed in this paper
increases the evaluation index Se, Ac, AUC, and F1-score
by 7.79%, 1.68%, 1.21%, and 1.49% on the DRIVE dataset
and 1.8%, 1.3%, and 7.34% on the CHASE_DB1 dataset by
the evaluation index Ac, AUC, and F1-score, respectively. It
is worth mentioning that the MDASPP added in this article
reduces the model parameters, reduces the number of
parameters by 37%, and improves the performance. +e
results are shown in Table 3.

4.3.3. Comparison of the Results of Different Algorithms.
In this paper, the proposed segmentation algorithms are
compared with some most advanced algorithms on the
DRIVE dataset and CHASE_DB1 dataset. +e compari-
son results of different segmentation algorithms on the
DRIVE dataset and CHASE_DB1 dataset are shown in
Tables 4 and 5, respectively. +e performance of the al-
gorithm in the table is the performance in the corre-
sponding article.

As can be seen from Table 4, the evaluation results of
Se, Ac, AUC, and F1-score on the DRIVE dataset are
83.16%, 96.99%, 98.76%, and 82.91%, respectively, which
are better than other algorithms. Compared with the
benchmark U-Net, all indicators have achieved better
performance, and there is a large gap. As can be seen from
Table 5, the evaluation results of Ac, AUC, and F1-score
on the CHASE_DB1 dataset are 97.51%, 99.01%, and
83.55%, respectively, which are better than other algo-
rithms. Compared with the benchmark U-Net, three of
the four metrics have achieved better performance, ex-
cept that Se is lower than U-Net. To better illustrate the
effectiveness of the proposed algorithm, Figure 6 shows
the visual segmentation results of the proposed method
on two datasets. Among them, the first list is the original
RGB fundus retina image, the second column is the GT
image, the third column is the segmentation result of
U-Net, and the fourth column is the result of this al-
gorithm. +e first two lines show the predicted results on
the DRIVE dataset, and the last two lines show the
predicted results on the CHASE_DB1 dataset. It can be
found that this algorithm can identify the main parts of
blood vessels, and more vascular endings can be found
compared with U-Net. +e above results show the
powerful capability of the proposed algorithm in vascular
segmentation.

Table 1: Comparison of preprocessing results.

Dataset Method Se (%) Ac (%) AUC (%) F1-score (%)

DRIVE Unpreprocessing 81.78 96.99 98.74 82.67
Preprocessing 83.24 96.99 98.77 82.91

CHASE_DB1 Unpreprocessing 80.12 97.48 99.00 83.48
Preprocessing 81.49 97.51 99.01 83.55

+e best values of Se, Ac, AUC, and F1-score are shown in bold.

Input image Image a�er processing

Preprocessing

Figure 5: Preprocessing result.
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Table 4: +e results of different algorithms in the DRIVE dataset.

Dataset Methods Year Se (%) Ac (%) AUC (%) F1-score (%)

DRIVE

R2U-Net [30] 2018 77.92 95.56 97.84 81.71
U-Net [30] 2018 75.37 95.31 97.55 81.42

LadderNet [31] 2018 78.56 95.61 97.93 82.02
DUNet [32] 2019 78.94 96.97 98.56 N/A
DEU-Net [33] 2019 79.40 95.67 97.72 82.70
AG-Net [34] 2019 81.00 96.92 98.56 N/A
IterNet [12] 2019 77.35 95.73 98.16 82.05

BCDU-Net [35] 2019 80.07 95.60 97.89 82.24
Tang et al. [36] 2020 81.60 95.54 97.99 N/A
Lü et al. [37] 2020 80.62 95.47 97.39 N/A
SA-UNet [38] 2020 82.12 96.98 98.64 82.63

Zhang et al. [13] 2020 81.51 96.95 98.63 N/A
RVSeg-Net [39] 2020 81.07 96.81 98.17 N/A
Proposed method 2021 83.16 96.99 98.76 82.91

Table 5: +e results of different algorithms in the CHASE_DB1 dataset.

Dataset Methods Year Se (%) Ac (%) AUC (%) F1-score (%)

CHASE_DB1

R2U-Net [30] 2018 77.92 95.56 97.84 81.71
U-Net [30] 2018 82.88 95.78 97.72 77.83

LadderNet [31] 2018 79.78 96.56 98.39 80.31
DEU-Net [33] 2019 80.74 96.61 98.12 80.37
IterNet [12] 2019 80.73 96.55 98.51 80.73
AG-Net [34] 2019 81.86 97.43 98.63 N/A
Lü et al. [37] 2020 81.35 96.17 97.82 N/A

RVSeg-Net [39] 2020 80.69 97.26 98.33 N/A
Proposed method 2021 81.49 97.51 99.01 83.55

+e best values of Se, Ac, AUC, and F1-score are shown in bold.

Table 2: Comparison of segmentation algorithms of several improved strategies.

Method
DRIVE CHASE_DB1

Se (%) Ac (%) AUC (%) F1-score (%) Se (%) Ac (%) AUC F1-score (%)
A1 [22] 75.37 95.31 97.55 81.42 82.88 95.78 97.72% 77.83
A2 82.96 96.94 98.69 82.61 81.13 97.48 98.95% 82.97
A3 83.08 96.96 98.73 82.77 81.25 97.49 98.97% 83.50
A4 83.11 96.97 98.75 82.82 81.37 97.50 98.99 83.52
A5 83.16 96.99 98.76 82.91 81.49 97.51 99.01% 83.55

Table 3: Comparison of parameters before and after the addition of MDASPP.

Method Number of parameters
GCN+BR_SA+PA_ConvLSTM_Mnet 14,223,095
Proposed method 9,029,111
+e less number of parameters is shown in bold.

Journal of Healthcare Engineering 7



5. Conclusion

+emain purpose of this paper is to improve the algorithm for
fundus retinal vascular segmentation. In this paper, multiscale
input and MDASPP are introduced to obtain vascular feature
information of different sizes to better learn the features around
vessels and improve the segmentation effect. By adding the
attentionmechanism to the decoding layer and the coding layer
at the same time in the jump connection part, the vascular
morphological information contained in the coding layer fea-
ture map and the semantic information contained in the
decoding layer feature map are enhanced. In the coding part,
GCN+BR is added to replace the traditional convolution to
improve the ability to segment vascular boundaries. In the
decoding part, ConvLSTM was added to prevent gradient
disappearance and gradient explosion, and depth dilated
convolutionwas used to enlarge the receiver domain and reduce
the number of parameters. Compared with the existing ad-
vanced methods, this paper has achieved better performance.

Data Availability
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+ese two common datasets of retinal fundus vessels,
DRIVE and CHASE_DB1, can be downloaded from the
following references [27, 28].
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