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Aneuploidy is a hallmark of human cancers, but the effects of aneuploidy on protein expression remain poorly understood.

To uncover how chromosome copy number changes influence the cancer proteome, we conducted an analysis of hundreds

of human cancer cell lines and tumors with matched copy number, RNA expression, and protein expression data. We found

that a majority of proteins show dosage compensation and fail to change by the degree expected based on chromosome

copy number alone. We uncovered a variety of gene groups that were recurrently buffered upon both chromosome

gain and loss, including protein complex subunits and cell cycle genes. Several genetic and biophysical factors were predic-

tive of protein buffering, highlighting complex post-translational regulatory mechanisms that maintain appropriate gene

product dosage. Finally, we established that chromosomal aneuploidy has a moderate effect on the expression of oncogenes

and tumor suppressors, showing that these key cancer drivers can be subject to dosage compensation as well. In total, our

comprehensive analysis of aneuploidy and dosage compensation across cancers will help identify the key driver genes en-

coded on altered chromosomes and will shed light on the overall consequences of aneuploidy during tumor development.

[Supplemental material is available for this article.]

Amajority of cancers have chromosome armgains or losses (Weav-
er and Cleveland 2006), a state called aneuploidy. Aneuploidy has
been shown to contribute to tumor evolution (Sansregret and
Swanton 2017; Salgueiro et al. 2020; Shukla et al. 2020), drug resis-
tance (Selmecki et al. 2009; Davoli et al. 2017; Replogle et al. 2020;
Shukla et al. 2020; Ippolito et al. 2021; Lukowet al. 2021), andmet-
astatic dissemination (Gao et al. 2016; Bakhoum et al. 2018; Vasu-
devan et al. 2020). High levels of aneuploidy are also associated
with poor patient survival (Kheir et al. 1988; Xu et al. 2016; Hier-
onymus et al. 2018; Smith and Sheltzer 2018, 2022; Stopsack et al.
2019; Shukla et al. 2020; van Dijk et al. 2021). It is hypothesized
that aneuploidy drives tumor development by increasing the dos-
age of oncogenes (OGs) and decreasing the dosage of tumor sup-
pressor genes (TSGs) (Davoli et al. 2013; Giam and Rancati 2015;
Smith and Sheltzer 2018), which may be reflected in the recurrent
aneuploid karyotypes found in certain cancer lineages (Bailey et al.
2018). Despite these findings, aneuploidy itself has also been ob-
served to induce substantial tumor-suppressive stresses (Sheltzer
et al. 2017; Vasudevan et al. 2020, 2021). Aneuploid cells have in-
creased metabolic requirements (Williams et al. 2008; Tang et al.
2011; Stingele et al. 2012; Sheltzer 2013; Dephoure et al. 2014;
Schukken et al. 2020), display high levels of senescence (Estrada
et al. 2013; Sheltzer et al. 2017; He et al. 2018; Macedo et al.
2018; Giam et al. 2020), show significant genomic instability
(Sheltzer et al. 2011; Passerini et al. 2016), and are sensitive to com-
pounds that interfere with protein folding and turnover (Torres
et al. 2010; Tang et al. 2011; Donnelly et al. 2014; Donnelly and
Storchová 2015). Aneuploidy-associated stresses may be caused
by the deregulation of gene expression, which leads to the imbal-
anced production of key cellular proteins. How cells adapt to and
compensate for these aneuploidy-induced proteome imbalances
is a key area of ongoing research.

Genome-wide studies in yeast strains engineered to harbor
single extra chromosomes have revealed that copy number gains
result in the increased expression of most genes encoded on that
chromosome (Torres et al. 2007; Dephoure et al. 2014). However,
proteomic analysis of these aneuploid yeast strains showed that
∼20% of proteins encoded on extra chromosomes are subject to
dosage compensation (Dephoure et al. 2014). Protein dosage com-
pensation is particularly strong for ribosomal subunits and genes
that encode subunits of protein complexes (Dephoure et al.
2014; Brennan et al. 2019; Taggart et al. 2020; Senger and Schaefer
2021).

We have significantly less insight into how aneuploidy
shapes the proteome of human cancers. Experiments performed
on single cancer cell lines harboring a few chromosome gains
have suggested that human cells overexpress most proteins on
gained chromosomes, with ribosomes and some protein complex
subunits showing dosage compensation (Stingele et al. 2012;
McShane et al. 2016; Viganó et al. 2018; Brennan et al. 2019;
Hwang et al. 2021). Similarly, studies of subchromosomal amplifi-
cations in cancers suggest that up to ∼30% of DNA copy number
changes do not result in corresponding changes in protein abun-
dance (Zhang et al. 2014, 2016; Mertins et al. 2016; Gonçalves
et al. 2017; Sousa et al. 2019). Although proportional synthesis
has been reported to control complex stoichiometry abundance
in lower eukaryotes, mammalian cells seem to rely on post-transla-
tional degradation for expression attenuation (Buccitelli and
Selbach 2020; Taggart et al. 2020). Additionally, although chromo-
some loss events outnumber chromosome gain events in most tu-
mors (Duijf et al. 2013; Ben-David and Amon 2020), the cellular
effects of chromosome losses in human cancers have not been
comprehensively explored (Chunduri et al. 2021).
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Currently, we lack a genome-wide understanding of the ef-
fects of arm-length aneuploidy on protein expression in cancer.
To surmount this limitation, we studied aneuploidy-associated
changes in gene expression across a cohort of 367 human cancer
cell lines and 168 ovarian tumors with known chromosome
copy numbers, RNA expression levels, and protein expression lev-
els (Nusinow et al. 2020).

Results

Mean protein expression increases upon chromosome gain

and decreases upon chromosome loss

To develop a genome-wide understanding of the effects of arm-
length aneuploidy on protein expression in cancer, we examined
data from367human cancer cell lines from theCancer Cell Line En-
cyclopedia (CCLE) with matched DNA copy number, RNA expres-
sion, and protein expression measurements (Supplemental Table
S1; Barretina et al. 2012; Ghandi et al. 2019; Broad DepMap [https
://figshare.com/articles/dataset/DepMap_20Q4_Public/13237076/2]
[accessed June 3, 2021], [https://figshare.com/articles/dataset/
DepMap_21Q2_Public/14541774/2] [accessed June 6, 2021]; Nusi-
now and Gygi 2020; Nusinow et al. 2020). We used a recently de-
scribed data set in which each chromosome arm in a cell line was
classified as “neutral,” “lost,” or “gained” relative to that cancer
cell line’s basal ploidy (Cohen-Sharir et al. 2021). We calculated
mean RNA and protein expression differences along each chromo-
some arm between cell lines with neutral ploidy for that arm and
cell lines inwhich that armwas either gainedor lost (Supplemental
Table S2). We found that average RNA and protein expression in-
creases upon chromosome arm gain and decreases upon chromo-
some arm loss (Fig. 1A,B). For instance, in cancer cell lines with
Chromosome 5q gains, the genes located on Chromosome 5q
tend to show increased expression, whereas in cell lines with 5q
losses, the genes located upon 5q tend to show decreased expres-
sion relative to cell lines in which 5q shows a neutral ploidy (Fig.
1C). Although mean gene expression differences correlated with
chromosomecopynumber,weobserved a large rangeof expression
differences within the genes located on single aneuploid chromo-
somes, with some genes changing significantly upon chromosome
gain or loss, whereas other genes showed little to no change in ex-
pression (Fig. 1C). The effects of aneuploidy on gene and protein
expression were also apparent when analyzing gene expression in
individual cancer cell lines (Fig. 1D; Supplemental Fig. S1A–E).

We found that aneuploidy-driven effects on gene expression
were more pronounced at the RNA level than at the protein level.
For chromosome gains, we found that the mean transcript encod-
ed on that chromosome increased by an average of 22%, whereas
protein expression increased by only 12%. A similar pattern was
apparent upon chromosome loss, which we found to decrease
RNA expression by 15% andprotein expression by 8.4%. These dif-
ferences suggest that both transcriptional and post-transcriptional
dosage compensation can buffer the effects of aneuploidy on gene
expression in cancer.

Ploidy gains buffer the effects of aneuploidy

Wenext investigatedwhether the difference in gene expression as-
sociated with aneuploidy was affected by a cell line’s basal ploidy.
Aneuploidy had a significant effect on RNA andprotein expression
in both near-diploid and near-triploid cell lines (Supplemental Fig.
S1F). However, the increase in protein expression upon chromo-

some gain was significantly larger in diploid relative to triploid
cell lines (14% vs. 10% increase, respectively, P<3×10−16), and
the decrease in protein expression upon chromosome loss was sig-
nificantly larger in diploid relative to triploid cell lines (−11% vs.
−10%, P=0.00315). These results show that ploidy gainhas a small
but significant buffering effect on aneuploidy-driven gene expres-
sion changes.

Extensive protein buffering occurs within single cancer types

and is detectable on other measurement platforms

As aneuploidy has been widely reported to significantly alter the
expression of genes encoded on altered chromosomes (Pollack
et al. 2002; Tsafrir et al. 2006; Grade et al. 2007; Torres et al.
2007; Gu et al. 2008; Fontanillo et al. 2012; Stingele et al. 2012;
Davoli et al. 2013), we were surprised by our discovery that chro-
mosome copy number changes affected average protein expres-
sion by only ∼10%. In light of this finding, we conducted several
control analyses to investigate alternate explanations for these
results.

1. We considered it possible that cancer-associated mutations
might cause nonsense-mediated decay or changes in protein
stability, which in turn could affect protein abundance.
Therefore, we eliminated from consideration all genes harbor-
ing point mutations in a given cell line and recalculated the ef-
fects of aneuploidy on protein abundance.

2. Cancer genomes can harbor both chromosome-length and sub-
chromosomal copy number changes. We reasoned that certain
subchromosomal changes, like focal amplifications on lost
chromosomes and deletions on gained chromosomes, could
drive apparent protein dosage compensation. We eliminated
from consideration these “flipped” genes that were located on
a gained chromosome but whose individual gene copy number
was decreased (2.4% of gained genes) and genes located on lost
chromosomes but whose individual gene copy number was in-
creased (10.4% of lost genes).

3. Low-expression genes may be difficult to detect at the protein
level. We therefore calculated average RNA expression for
each gene and removed the 20% of genes with the lowest aver-
age transcript levels.

4. A recent report identified proteins that show low reproducibil-
ity between technicalmass spectrometry replicates and suggest-
ed that these proteins could contribute to artifactual results in
proteomics experiments (Upadhya and Ryan 2021). We ac-
quired their list of protein-reproducibility scores and eliminated
the 20% of proteins with the lowest technical reproducibility.

5. We combined the previous four filters to generate a “merged-
control” data set in which all mutated genes, “flipped” genes,
low RNA expression genes, and low reproducibility proteins
were removed from consideration.

6. Finally, to control for lineage-specific differences in protein ex-
pression, we conducted a subanalysis on non-small cell lung
cancer (NSCLC) cell lines, which was the lineage with the larg-
est number of cell lines in our data set.

We calculated RNA and protein expression differences upon
chromosome gain and loss for each of these control data sets
(Supplemental Fig. S2A; Supplemental Table S3). We found that
the aneuploidy-associated expression differences for each of these
control groups were similar to the bulk analysis (Supplemental Fig.
S2B,C). For instance, in the “merged-control” data set, we observed
that average protein expression decreased by 9.0% upon
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Figure 1. Change in RNA and protein expression upon chromosome arm gain or loss. (A) Heatmaps displaying the difference in RNA expression (top) or
protein expression (bottom) between cell lines with a chromosome arm gain (left) or chromosome arm loss (right) compared with cell lines with neutral
ploidy for that arm. The mean RNA or protein expression differences per chromosome arm are displayed. (B) Heatmaps displaying the same analysis as
in A, but only for each aneuploid chromosome. (C) Volcano plots displaying the difference in RNA expression (top) and protein expression (bottom) versus
the P-value, per gene, between cells with Chromosome 5q gain (left) and cells with Chromosome 5q loss (right) comparedwith cell lines with neutral ploidy
for Chromosome 5q. Genes encoded onChromosome 5q are indicated in red (upon gain) or blue (upon loss), and all other genes are indicated in black. (D)
Heatmap of the DNA ratio, RNA expression difference, and protein expression difference, per chromosome arm, in MCF-7 cells relative to cells neutral for
each chromosome arm (top). Scatterplots showing the relationship between the DNA ratio and the RNA or protein expression differences (bottom). Linear
regression with 95% confidence intervals is plotted against the data.
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chromosome loss, comparable to the bulk analysis that showed an
8.4% decrease.

We considered the possibility that this protein buffering phe-
notype was caused by the technical limits or normalization meth-
ods of mass spectrometry. We note that the CCLE proteomics data
set was generated using triple-stage mass spectrometry (MS3),
which has been shown to almost completely eliminate ratio com-
pression compared to standard tandem mass spectrometry (Ting
et al. 2011). Nevertheless, we also assessed protein buffering in re-
verse-phase protein array (RPPA) expression data (Ghandi et al.
2019) that used antibodies to measure the abundance of 145 pro-
teins in the CCLE.We found that the effects of aneuploidy on pro-
tein expression as determined via RPPA were not significantly
different than the effects as determined by mass spectrometry
(Supplemental Fig. S2D; Supplemental Table S3). We also found
a strong and significant correlation between individual protein ex-
pression changes as measured by RPPA and mass spectrometry
upon chromosome gain or loss (Supplemental Fig. S2E).
Together, these data show that extensive protein buffering upon
aneuploidy is independent of several potentially confounding fac-
tors and is consistent across measurement platforms.

mRNA changes strongly influence, but do not fully explain,

the effects of aneuploidy on protein expression

Next, we sought to understand the effects of aneuploidy on the ex-
pression of individual genes. We compared expression levels be-
tween cell lines in which a gene of interest was present on a lost,
neutral, or gained chromosome, and we observed several different
aneuploidy-driven expression patterns. The expression levels of
some genes were significantly increased upon gain of the corre-
sponding chromosome arm and significantly decreased upon
loss of that chromosome arm, at both RNA and protein levels
(e.g., SMCHD1, 9% of genes) (Fig. 2A). Other genes significantly
changed at the RNA level but not at the protein level (e.g.,
NDUFV2, 13% of genes) (Fig. 2B). Many genes had no significant
change in expression upon chromosome arm gain or loss (e.g.,
CDKN1A, 19% of genes) (Fig. 2C). Finally, the remaining 59% of
genes showed more complex and/or variable expression patterns.
For instance, GOLGA2 protein expression significantly increased
upon chromosome gain, but expression levels of this protein
were not significantly affected by chromosome loss (Fig. 2D).

We investigated the degree to which these protein expression
changes were determined by the effects of aneuploidy on mRNA
expression. We found that RNA expression differences show a sig-
nificant but moderate genome-wide correlation with protein ex-
pression differences upon chromosome arm gain (Pearson
correlation coefficient = 0.546, P<3×10−16) and upon chromo-
some arm loss (Pearson correlation coefficient = 0.554, P<3×
10−16) (Fig. 2E). These correlations indicate that, although protein
expression differences are strongly driven by RNA expression dif-
ferences, additional factors influence the expression of proteins
encoded on aneuploid chromosomes.

Certain genes show consistent dosage compensation upon

chromosome gain or chromosome loss

We categorized genes as either “scaling,” “buffered,” or “antiscal-
ing” based on their expression changes upon chromosome gain
or loss (Fig. 2F–H). At the RNA level, a majority of genes scaled
with aneuploidy, whereas at the protein level, a majority of pro-
teins were classified as buffered (Fig. 2G). For instance, upon chro-
mosome gains, 59% of genes scaled at the RNA level, whereas 59%

of genes showed buffering at the protein level. Additionally, we
found that ∼5% of RNA and ∼10% of proteins showed an antiscal-
ing expression pattern (e.g., decreased in expression upon chromo-
some gain or increased in expression upon chromosome loss).
Similar results were observed in the merged-control data set de-
scribed above (Supplemental Fig. S3A) and in the RPPA protein ex-
pression data set (Supplemental Fig. S3B).

We observed a significant correlation between RNA and pro-
tein difference categories upon chromosome gain (chi-squared=
2447, P<3×10−16) and loss (chi-squared=2580, P<3×10−16)
(Fig. 2I). For example, upon chromosome gain, 73% of genes that
were buffered at RNA level were also buffered at the protein level.
Next, we investigated whether genes that were buffered upon loss
were more likely to be buffered upon gain. We found that there
was a small but significant correlation between gene expression cat-
egories upon chromosome gain and loss at the RNA level (chi-
squared=359, P<3×10−16) and at the protein level (chi-squared=
182, P<3×10−16) (Fig. 2J). These results suggest that certain genes
show consistent expression patterns, independent of whether the
chromosome that they are encoded on is gained or lost.

Finally, we examined how aneuploidy affected the expres-
sion of noncoding RNAs on aneuploid chromosomes. We found
that pseudogenes and microRNAs showed greater compensation
than RNAs encoding protein-coding genes (Supplemental Fig.
S4A–D; Wright and Bruford 2011; Barretina et al. 2012).
Although protein-coding gene expression can be regulated at
two levels (RNA and protein), noncoding genes can only be reg-
ulated at the RNA level, and we speculate that cells have evolved
mechanisms to more carefully constrain RNA expression for non-
coding loci.

Protein complex subunits and cell cycle genes tend to be buffered

upon both chromosome gain and chromosome loss

We investigated whether genes with shared functions displayed
similar expression patterns when encoded on aneuploid chromo-
somes. Gene Ontology enrichment analysis (GOEA) was used to
identify biological terms enriched among scaling, buffered, and
antiscaling genes (Fig. 3A; Supplemental Fig. S5A,B; Supplemental
Tables S4, S5; Raudvere et al. 2019). To visualize these expression
patterns, we generated density plots of the expression differences
of subsets of genes that were encoded on aneuploid chromosomes
(Fig. 3B; Supplemental Table S6).

Consistent with previous results (Stingele et al. 2012;
Dephoure et al. 2014; McShane et al. 2016; Brennan et al. 2019),
we observed that ribosomal genes, RNA processing genes, spliceo-
some components, and other genes that encode protein complex
subunits were enriched among genes that were buffered upon
chromosome gain. We also found that these proteins tended to
be buffered upon chromosome loss and decreased in expression
less than other proteins encoded on lost chromosomes. Similar en-
richments were observed upon GOEA analysis of the merged-con-
trol data set (Supplemental Fig. S5C; Supplemental Table S7). We
observed that, on average, protein complex subunits (CORUM
genes) increase 21% less than other genes upon chromosome
gain and decrease 13% less than other genes upon chromosome
loss. Additionally, we found that a majority of genes encoding
cell cycle components showed protein buffering upon chromo-
some gain and loss (64% and 71% of proteins, respectively).
These findings suggest that dosage compensation is not simply a
response to protein overproduction from extra chromosomes,
and cancers have the ability to rebalance proteins and protein
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Figure 2. Protein expression differences are frequently buffered upon chromosome gain or loss. (A–D) Normalized RNA and protein expression levels of
the indicated genes (SMCHD1,NDUFV2, CDKN1A, andGOLGA2) are displayed for cell lines in which the chromosome that that gene is encoded on is either
lost, neutral, or gained. Boxplots display the 25th, 50th, and 75th percentiles of the data, and the whiskers indicate a 1.5 interquartile range. P-values were
calculated using two-sided t-tests. (E) A density plot comparing the difference in RNA expression versus the difference in protein expression levels upon the
gain (left) or loss (right) of the chromosome arm the gene is located on. The Pearson correlation coefficient and P-value are displayed. Linear regressions
(red) with 95% confidence intervals are displayed. (F) Diagram displaying the categorical cutoff points for gene difference in expression. The cutoffs are
−0.1 and 0.25 for chromosome gain and −0.25 and 0.1 for chromosome loss. The categorical cutoffs are labeled with dashed lines. (G) The percentage of
RNAs and proteins that fall into each difference category upon chromosome gain and loss are displayed. (H) Volcano plots displaying the difference in RNA
expression or protein expression upon chromosome arm gain (left) or chromosome arm loss (right) versus the P-value for each gene. Genes are color-coded
based on a categorical distribution as either scaling, buffered, or antiscaling. (I) Bar graphs displaying the percentage of genes in each RNA difference cat-
egory (x-axis) whose corresponding proteins fall into each of the indicated expression categories upon chromosome gain (left) and loss (right). (J) Bar
graphs displaying the percentage of RNAs in each RNA difference category upon chromosome gain (x-axis) that fall into each of the indicated expression
categories upon chromosome loss (y-axis; left). Percentage of proteins, per protein difference category upon chromosome gain (x-axis), that fall into each
expression category upon chromosome loss (y-axis; right).
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Figure 3. Specific gene groups tend to show buffering or scaling upon chromosome gain and loss. (A) Bar graphs displaying the biological terms en-
riched in proteins buffered or scaling upon chromosome gain or loss, categorized by the major overarching pathway. The complete GO term lists are in-
cluded in Supplemental Tables S4 and S5. (B) Density graphs displaying the difference in RNA or protein expression per gene group upon chromosome gain
(red) or loss (blue). The difference in expression for all other genes is shown in black. Themean difference per gene group is indicated by the dotted lines. P-
values represent two-sided t-tests between the indicated gene groups and the background set of all other genes. The list of genes in gene groups is in
Supplemental Table S6.
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complex subunits when those genes are encoded on lost chromo-
somes as well.

Although many biological pathways were enriched among
buffered proteins, we found that few Gene Ontology (GO) terms
were enriched among buffered RNAs (Supplemental Fig. S5B;
Supplemental Tables S4, S5). Indeed, mRNAs coding for protein
complex subunits and cell cycle genes were found to be moderate-
ly enriched among RNAs that scaled with chromosome copy num-
ber, rather than among the buffered subset. This lack of dosage
compensation at the RNA level indicates that translational or
post-translational regulation, rather than transcriptional regula-
tion, drives the pervasive dosage compensation of buffered pro-
teins and protein complex subunits that we have observed in
aneuploid cancer cells.

Although a significant percentage of proteins scale with chro-
mosome gain (31%) and loss (24%), we found that few GO terms
were enriched among the “scaling” protein category (Fig. 3A).
One exceptionwasmetabolic pathways, especially small-molecule
metabolic pathways, which were found to scale in expression with
chromosome loss (Fig. 3A,B).

Only 5%–10%of genes showed an expression difference in the
opposite direction of the DNA copy number change, whichwe clas-
sified as “antiscaling.”We found that genes associated with the ex-
tracellular environment and cell adhesion were enriched among
antiscaling genes at both the RNA level and the protein level and
upon chromosome gain and chromosome loss (Supplemental Fig.
S5B–D). Thismay reflect thewide variability in the expressionwith-
in these gene sets (discussed in more detail below).

In total, we observed that specific gene groups and pathways
show similar expression patterns when present on aneuploid chro-
mosomes, including both gained and lost chromosomes. These
shared regulatory patterns may arise as a result of genetic and bio-
physical features that are shared among these genes (discussed in
more detail below).

Patterns of dosage compensation are conserved between

aneuploid cancers, trisomic primary cell lines, and disomic yeast

We hypothesized that the expression differences we observed be-
tween cell lines that have or lack certain aneuploidies represent a
consequence of that chromosome copy number change. Alterna-
tively, these expression patterns could be dictated by a cell line’s
lineage or genetic background. If these patterns of scaling and buf-
fering represent a fundamental consequence of aneuploidy, then
we would expect to observe similar expression patterns in other
aneuploid cell lines. To investigate this possibility, we examined
published transcriptome and proteome data from stably aneuploid
human cell lines (Stingele et al. 2012), Down syndrome fibroblasts
(Letourneau et al. 2014; Liu et al. 2017), and aneuploid yeast (Sup-
plemental Fig. S6; Dephoure et al. 2014).

We first assessed the difference in protein expression between
four published cell lines engineered to have a stable gain of Chro-
mosome 5, normalized to their corresponding euploid controls
(Stingele et al. 2012). We found that there was a highly significant
correlation between the expression difference of proteins encoded
on Chromosome 5 among CCLE lines with Chromosome 5 gains
and the expression of those same proteins in the engineered cell
lines (corr = 0.431, P<5×10−10) (Supplemental Fig. S6A). Next,
we examined protein differences in fibroblasts from Down syn-
drome patients (with Trisomy 21) normalized to matched euploid
fibroblasts. We observed a strong and significant correlation be-
tween protein expression differences of proteins located on Chro-

mosome 21 in Down syndrome patients and in CCLE cell lines
with gains of Chromosome 21 (corr = 0.539, P<4×10−4) (Supple-
mental Fig. S6B).

To investigate whether these patterns of protein dosage com-
pensation are evolutionarily conserved outside of humans, we ex-
amined protein expression differences in haploid yeast that had
been engineered to harbor single disomic chromosomes (Torres
et al. 2007; Dephoure et al. 2014).We identified one-to-one ortho-
logs between budding yeast and human proteins, and we found a
significant correlation between the expression of proteins encoded
on aneuploid chromosomes in human cancers and in budding
yeast (corr = 0.214, P<5 ×10−9) (Supplemental Fig. S6C; Supple-
mental Table S3). For instance, the ribosomal subunit gene
RPL38, the splicing factor gene SF3A1, and the ERmembrane com-
plex gene EMC3 showed consistent dosage compensation at the
protein level when they were encoded on a chromosome that
was gained in cancer cells and when their orthologs were encoded
on a chromosome that was gained in yeast (Supplemental Fig.
S6D–F). Proteins displaying dosage compensation in both aneu-
ploid cancers and yeast disomies were enriched for protein com-
plex, ribosomal, and RNA processing terms (Supplemental Fig.
S6L; Supplemental Table S8). In contrast, mRNA expression differ-
ences showed 1.5- to threefold lower correlations between aneu-
ploid cell types relative to the same genes at the protein level
(Supplemental Fig. S6G–K). In total, these data show that the
gene expression changes observed on aneuploid chromosomes
are conserved across aneuploid cell types and even across species,
particularly at the protein level.

Effects of cellular aneuploidy on global patterns of protein

expression

It has previously been reported that aneuploid cells show a set of
shared transcriptional changes, independent of the identity of
the extra chromosome (e.g., in trans) (Sheltzer et al. 2012; Dürr-
baum et al. 2014). To investigate whether aneuploidy is associated
with gene expression changes in trans across a large panel of cancer
cell lines and to determine where these patterns are maintained at
the protein level, we calculated a cellular aneuploidy score based
on the total number of genes encoded on aneuploid chromosomes
in each cell line, normalized to that line’s basal ploidy. We then
performed Pearson correlation analysis to identify genes whose ex-
pression was positively or negatively correlated with this cellular
aneuploidy score. Positive correlations represent genes that were
up-regulated in highly aneuploid cell lines relative to cell lines
with lower total aneuploidy, whereas negative correlations repre-
sent genes that were down-regulated in highly aneuploid cell lines
(Fig. 4A; Supplemental Fig. S7A; Supplemental Table S9).

Consistent with prior publications (Stingele et al. 2012; Bren-
nan et al. 2019), we observed that ribosomal and rRNA processing
terms were strongly negatively correlated with cellular aneuploidy
scores at both the RNA and protein level (Fig. 4B; Supplemental
Fig. S7B; Supplemental Table S10). Indeed, the two genes most sig-
nificantly negatively correlated at the protein level are the ribo-
some-associated genes RPL22L1 and RNF138 (Fig. 4C). Another
ribosomal gene, RPL3, is the most strongly negatively correlated
gene at the RNA level (Supplemental Fig. S7C). The two genes
most positively correlated with aneuploidy scores, HSPA6 and
HSPA1A, both encode heat shock proteins (Fig. 4C). HSPA1A has
previously been reported to be up-regulated in aneuploidmurine fi-
broblasts (Tang et al. 2011). Additionally, genes annotated to “heat
assimilation” and “cellular response to heat stress” were enriched

Schukken and Sheltzer

1260 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276378.121/-/DC1


among the genes whose expression positively correlated with aneu-
ploidy, which may reflect an aneuploid cell’s increased reliance on
protein folding chaperones (Fig. 4B; Supplemental Fig. S7B; Supple-
mental Table S10; Oromendia et al. 2012; Donnelly et al. 2014).
Finally, membrane-related genes were enriched among genes
positively correlatedwith cellular aneuploidy (Fig. 4B). For example,
intrinsic components of the endoplasmic reticulum (ER)membrane
genes were significantly up-regulated at the RNA (Supplemental Fig.
S7D) and protein level (Fig. 4D). Together, these data show that the
expression of certain genes and pathways is associated with the lev-
els of total cellular aneuploidy, independent of whether the genes
themselves are encoded on an aneuploid chromosome.

Both cis and trans effects contribute to dosage compensation in

aneuploid cancer cell lines

In the above analysis, we noted that certain gene groups, particu-
larly the ribosome and translation-associated processes, tended to

be down-regulated in both highly aneuploid cells and when those
genes were encoded on a gained chromosome. We therefore con-
sidered the possibility that the “dosage compensation” phenotype
that we described above was a consequence of this global response
to cellular aneuploidy, rather than a consequence of the altered
copy number of these genes in cis.

Three analyses indicate that trans effects are insufficient to
fully account for the protein buffering that we have observed.
First, we found that protein complexes and ribosome subunits
were up-regulated, rather than down-regulated, relative to the
mean protein when encoded on a lost chromosome (Fig. 3B).
This change is in the opposite direction of the trans effects of an-
euploidy, suggesting that this effect must occur in cis. Second, we
found that the patterns of protein buffering and scaling were
maintained in fibroblasts with natural single-chromosome triso-
mies and congenic cancer cell lines engineered to harbor single
extra chromosomes, indicating that cell lines with very low total
aneuploidy display dosage compensation of protein complexes

BA

C

D

Figure 4. Specific protein expression levels correlate with total cellular aneuploidy. (A) A volcano plot displaying the Pearson correlation coefficient be-
tween protein expression levels and cellular aneuploidy score versus the P-value for that comparison. Genes that are significant at a P<0.05 threshold after
Benjamini–Hochberg correction with a 5% FDR are labeled in gold. (B) A bar graph displaying the GO terms that are enriched among genes positively (top)
or negatively (bottom) correlated with total cellular aneuploidy. The complete list of GO terms is included in Supplemental Table S10. (C) Scatterplots dis-
playing the expression of the two proteins that are most significantly positively correlated with aneuploidy score (left) and the two proteins that are most
significantly negatively correlated with aneuploidy score (right). Protein expression is plotted by cellular aneuploidy score. Pearson correlation coefficients
and P-values are displayed. Linear regressions and 95% confidence intervals are plotted against the data. (D) Volcano plots displaying the correlation co-
efficient between protein expression and cellular aneuploidy score versus the corresponding P-value. The background set of all genes are plotted in black,
and genes belonging to indicated groups are labeled in red or blue. P-values correspond to two-sided t-tests between correlation coefficients of gene
groups and all other genes. The list of genes in gene groups is in Supplemental Table S6.
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(Supplemental Fig. S6). Third, we conducted an additional analy-
sis, in which we isolated and analyzed the quartile of cell lines
with the lowest cellular aneuploidy scores and the quartile of
cell lines with the highest cellular aneuploidy scores. We then
calculated the difference in gene expression upon chromosome
arm gain and loss specifically within these quartiles
(Supplemental Table S11). We found that ribosome proteins
and protein complex subunits were similarly enriched among
buffered proteins within both the lowest-aneuploidy quartile
and the highest-aneuploidy quartile (Supplemental Fig. S8A,B;
Supplemental Table S12). Thus, although the genome-wide ef-
fects of aneuploidy on protein expression can influence the ex-
pression landscapes of cancer cell lines, these analyses indicate
that dosage effects in cis significantly contribute to the buffering
phenotype that we have described, independent of total cellular
aneuploidy levels.

Post-translational modifications, protein complex formation,

and RNA expression variance contribute to protein buffering

upon aneuploidy

We next sought to identify the factors that drive protein dosage
compensation. To do this, we calculated the receiver operator char-
acteristic area under the curve (ROC AUC) to estimate a factor’s
ability to predict protein buffering. We examined 30 different fac-
tors that capture various genetic, biochemical, and biophysical fea-
tures of each gene or protein, and we assessed their correlation
with buffering upon chromosome gain and chromosome loss
(see Supplemental Methods).

The strongest predictors of buffering upon chromosome gain
were the number of ubiquitination siteswithin a protein, the num-
ber of protein–protein interactions that a protein showed, and the
number of protein complexes a protein is incorporated into (AUC
=0.56–0.57) (Fig. 5A,B). The same features were also strongly cor-
related with buffering upon chromosome loss. Several other
post-translational modifications, including protein methylation,
phosphorylation, and acetylation, were also correlated with pro-
tein buffering upon either chromosome gain or loss. This suggests
that protein complex subunits and proteins that are regulated by
post-translational modifications tend to show dosage compensa-
tion in aneuploid cells.

Several aspects of protein regulation, including aggregation
scores and 5′ UTR length, were significantly associated with buffer-
ing upon chromosome gain but not loss. Inversely, of the factors
tested, the nonexponential decay (NED) delta (McShane et al.
2016) was the strongest predictor of buffering upon chromosome
loss but did not significantly predict buffering upon chromosome
gain.

We also examined several factors that were specific to this
CCLE data set. We found that buffered proteins showed lower ex-
pression variation at both the RNA and protein levels within cell
lines in which that genewas encoded on a nonaneuploid chromo-
some (Fig. 5B–D). This indicates that proteins buffered in aneu-
ploid cells tend to be more tightly regulated even in euploid
conditions. A gene’s dependency scorewas also observed to predict
protein buffering (AUC=0.59–0.60) (Fig. 5B,C). Finally, we found
that the frequency of mutations per gene did not affect their like-
lihood to be buffered upon aneuploidy, suggesting that nonsense-
mediated decay was not a significant factor in dosage
compensation.

Next, we examined several of the predictive factors identified
above individually. We verified that buffered proteins tended to

show lower dependency scores (indicative of essential genes),
more ubiquitination sites, and more protein–protein interactions
than nonbuffered proteins (Fig. 5D). In fact, buffered proteins
tended to be significantly different from both the scaling and anti-
scaling gene groups. For instance, 31% of buffered proteins were
members of one or more protein complexes, which was signifi-
cantly more than we observed among either scaling or antiscaling
proteins. These differences suggest that the antiscaling gene group
is not simply a more extreme instance of protein buffering and is
instead driven by separate factors. Indeed, we observed that anti-
scaling genes show significantly higher expression variation
when encoded on nonaneuploid chromosomes compared to ei-
ther buffered or scaling genes. Thus, the expression changes with-
in this gene groupmay reflect inherent noise or variability in their
regulation.

Many OGs are buffered upon aneuploidy but scale

with gene amplification

It is commonly hypothesized that aneuploidy drives tumorigen-
esis by increasing the expression of OGs and decreasing the ex-
pression of TSGs (Davoli et al. 2013; Giam and Rancati 2015;
Smith and Sheltzer 2018). To investigate the relationship be-
tween aneuploidy and tumorigenesis, we examined the effects
of aneuploidy on a set of verified TSGs and OGs (Bailey et al.
2018). At the individual gene level, some OGs and TSGs signifi-
cantly scale with chromosome gain and loss (MAPK1 and
SMAD4) (Fig. 6A), whereas others showed no significant differ-
ence in protein expression upon chromosome gain or loss
(MYC and CDK12) (Fig. 6B). We discovered that the average pro-
tein expression of OGs and TSGs was not significantly different
compared to the background expression of all proteins on aneu-
ploid chromosomes (Fig. 6C). Thus, a chromosome gain event in-
creased the expression of the average OG by only 12%, and a
chromosome loss event decreased the expression of the average
tumor suppressor by only 8%. No GO terms were found to be en-
riched among scaling, buffered, or antiscaling OGs or TSGs upon
chromosome gain or loss.

Among individual OGs and TSGs, we noted that several po-
tent OGs showed buffering or antiscaling upon chromosome
gain (MYC, MTOR, ERBB4) (Fig. 6D). For instance, the MYC gene
is located on Chromosome 8q, but we did not detect a significant
increase inMYC expression in 110 cell lineswithChr8q gains com-
pared to 211 cell lines that are neutral for Chr8q (Fig. 6B).
Similarly, the expression of many tumor suppressors, including
BRCA1, CDKN1A, and CDH1, did not significantly decrease
when the chromosome that they were encoded on was lost (Fig.
6E).

If OGs are subjected to dosage compensation in aneuploid
cells, then how could increases in OG expression levels arise to
drive tumorigenesis? We observed that several OGs that were sub-
ject to dosage compensation upon single-chromosome gains were
nonetheless sensitive to gene-level focal amplifications. For exam-
ple, 11% of cancer cell lines showed focal amplifications of the
MYC locus, and this was associated with a significant 86% increase
in MYC protein expression (Fig. 6F). Similar results were obtained
for other potent OGs, including EGFR, CDK4, and ERBB2 (also
known as HER2) (Fig. 6F). Thus, OG dosage compensation is im-
perfect. Although genes like MYC can be resistant to expression
changes resulting from arm-length aneuploidies, focal amplifica-
tions overcome these compensatory mechanisms and cause an in-
crease in driver OG expression.
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Figure 5. Multiple genetic and biochemical factors predict protein buffering upon aneuploidy. (A) Bar graphs displaying ROC area under the curve values
for each independent factor upon chromosome gain or loss. Genes classified as “buffered” upon chromosome gain or loss were set as the true positive
fraction. Significance was calculated by performing 10,000 random permutations and bootstrapping P-values, where (∗) indicates < 0.05, (∗∗) < 0.005,
and (∗∗∗) < 0.0005. (B) ROC curves are displayed for certain key factors. Genes classified as “buffered” upon chromosome gain or loss were set as the
true positive fraction. (C) ROC AUC values for data set–specific factors upon chromosome gain or loss. Genes classified as “buffered” upon chromosome
gain or loss were set as the true positive fraction. (D) Boxplots displaying buffering factor scores, per difference category upon chromosome gain or loss. Six
buffering factors are displayed: nonexponential decay delta, RNA neutral ploidy variance, dependency score, number of ubiquitination sites, number of
protein–protein interactions, and number of protein complexes. P-values are from two-sided t-tests. Boxplots display the 25th, 50th, and 75th percentiles
of the data, and the whiskers indicate 1.5 interquartile ranges.
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Figure 6. OGs and TSGs can be buffered upon chromosome gain or loss, though some OGs scale with gene copy number amplifications. (A,B) Boxplots
displaying RNA and protein expression differences upon chromosome gain and loss for OGs (left) and TSGs (right). Boxplots display the 25th, 50th, and
75th percentiles of the data, and the whiskers indicate 1.5 interquartile ranges. P-values represent two-sided t-tests. (C) Density curve of OG and TSG ex-
pression at the RNA level and protein level upon chromosome gain (red) or chromosome loss (blue). Difference in expression for all other genes is displayed
in black. Mean expression differences per condition and gene group are labeled by dotted lines. P-values are from two-sided t-tests between the indicated
gene group and the background set of all other genes. The list of all OGs and TSGs used is in Supplemental Table S6. (D,E) Bar graphs displaying the mean
protein expression difference for OGs upon chromosome gain (D) and TSGs upon chromosome loss (E). Not all OGs and TSGs are displayed. Dotted lines
indicate the mean differences in expression for all genes. The complete list of OG and TSG expression differences upon chromosome gain and loss are
available in Supplemental Table S2. (F ) Scatterplots and boxplots displaying protein expression levels for four OGs, MYC, EGFR, CDK4, and ERBB2 (also
known as HER2), relative to their gene copy number. Linear regressions (red) with 95% confidence intervals (gray) are plotted against the data. P-values
in the scatterplots were calculated from the Pearson correlation coefficient, and P-values in the boxplots were calculated from two-sided t-tests.
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Ovarian tumors display extensive protein dosage compensation

We sought to determine if the extensive dosage compensation we
uncovered in cancer cell lines was maintained in vivo. To address
this, we examined data from a cohort of 168 ovarian tumors with
matched DNA copy number, RNA expression, and protein expres-
sion measurements (Edwards et al. 2015; Broad Institute TCGA
Genome Data Analysis Center [http://gdac.broadinstitute.org/
runs/stddata__2016_01_28] [accessed November 30, 2021];
Taylor et al. 2018). We calculated the average RNA and protein ex-
pression changes for all chromosome arms (Fig. 7A; Supplemental
Fig. S9A; Supplemental Table S13). On average, RNA and protein
expression changes increase 22% and 8% upon chromosome
gain and decrease 33% and 12% upon chromosome loss, respec-
tively (Fig. 7B).

RNA and protein expression differences in ovarian tumors
were significantly positively correlated with RNA and protein ex-
pression differences in the CCLE upon both chromosome gain
and loss (Fig. 7C; Supplemental Fig. S9B). Similar to the CCLE
data set, the majority of proteins in ovarian tumor samples are
buffered upon chromosome gain and loss (86% and 80%, respec-
tively) (Fig. 7D). Next, we used GOEA to identify terms enriched
in proteins buffered in ovarian tumors. The only terms enriched
in buffered proteins were protein complexes and ribosome-associ-
ated features (Fig. 7E; Supplemental Table S13), whereas extracellu-
lar genes were enriched in buffered RNA upon chromosome loss
(Supplemental Fig. S9C; Supplemental Table S13). Similar factors
were associated with protein buffering in both the CCLE and ovar-
ian tumor data sets, including the number of ubiquitination sites,
protein complex formation, and gene dependency scores (Fig. 7F;
Supplemental Fig. S9D; Supplemental Table S13).

Finally, we turned our attention to the question of OG and tu-
mor suppressor dosage compensation in vivo.We found extensive
dosage compensation among OGs and TSGs in ovarian tumors
(Fig. 7G,H). For example, the expression of KRAS and CASP8 corre-
latedwith chromosome copynumber at the RNA level butwas dos-
age compensated at the protein level (Fig. 7I). In sum, these results
show that the patterns of dosage compensation that we described
in vitro are conserved in vivo.

Discussion

Here, we conducted a genome-wide analysis of protein expression
changes in aneuploid cancer cell lines and ovarian tumors. We
show that, although protein expression tends to increase upon
chromosome gain, and protein expression tends to decrease
upon chromosome loss, amajority of proteins are subjected to dos-
age compensation. These patterns of scaling and buffering upon
aneuploidy are conserved between aneuploid yeast cells, primary
human fibroblasts, immortalized cancer cell lines, and ovarian tu-
mors. Dosage compensation in aneuploid cancers may counteract
alterations in the expression of OGs and tumor suppressors,
and therefore a comprehensive understanding of this phenome-
non will shed light on how chromosomal alterations drive
tumorigenesis.

Consistent with previous results (Geiger et al. 2010; McShane
et al. 2016;Gonçalves et al. 2017; Brennan et al. 2019; Taggart et al.
2020; Senger and Schaefer 2021), we found that protein complex
subunits showed significant buffering when they were encoded
upon a gained chromosome arm. This trend is exemplified by ribo-
somal complex proteins (Stingele et al. 2012; Dephoure et al.
2014), which showed highly significant dosage compensation. A

recent study showed that protein complex subunits located on
nonaneuploid chromosomes tend to co-regulate with their co-
complex partners on aneuploid chromosomes in human tumor
samples (Senger et al. 2022). We discovered that protein complex
subunits were also buffered upon chromosome arm loss. Protein
complex RNA levels tend to scale with chromosome copy number,
indicating that buffering occurs primarily at the post-transcrip-
tional level. We hypothesize that the stabilization and reduced
degradation that proteins experience when they are incorporated
into complexesmay contribute to expression buffering upon chro-
mosome loss, whereas the rapid degradation of unincorporated
subunits may contribute to protein buffering upon chromosome
gain. In support of this hypothesis, NED kinetics (McShane et al.
2016) aremore predictive for buffered proteins upon chromosome
loss than gain. Additionally, the NED delta is an indirect measure
of protein overproduction in euploid conditions, and protein over-
production can buffer gene down-regulation. Thus, cells may have
unique pathways that are able to maintain appropriate complex
stoichiometries in the event of both subunit overproduction and
subunit underproduction.

Our study has several limitations. Our analysis was performed
across genetically diverse human tumors and cancer cell lines.
These cancers show varying degrees of aneuploidy, which are
also capable of affecting gene expression in trans through the in-
duction of aneuploidy-associated stresses (Sheltzer et al. 2012;
Dürrbaum et al. 2014). Nonetheless, we observed striking expres-
sion similarities between our analysis of cancer cell lines, ovarian
tumors, congenic cell lines engineered to harbor single extra chro-
mosomes, primary fibroblasts naturally trisomic for Chromosome
21, and even yeast strains harboring additional yeast chromo-
somes. These findings indicate that, despite the genetic diversity
andpotential presence of tumor heterogeneity, the patterns of buf-
fering and scaling that we describe reflect protein dosage changes
that are shared in other aneuploid conditions. Moreover, the evo-
lutionary conservation of these buffering patterns may reflect
highly conserved methods for controlling the stoichiometry of
protein complex subunits. The conservation of protein expression
patterns between aneuploid cancers and Down syndrome fibro-
blasts suggests that the patterns we have described could also con-
tribute to aneuploidy-associated developmental syndromes (Goel
et al. 2019; Hwang et al. 2019; Bull 2020).

Several distinct genetic and biochemical factors were capable
of predicting protein buffering. Although this analysis gives in-
sights into commonalities among buffered proteins, these correla-
tions do not necessarily imply causality. In addition to protein–
protein interactions, these factors included a number of post-trans-
lationalmodifications, aggregation propensity, and gene essential-
ity. We also discovered that 10% of proteins encoded on an
aneuploid chromosome showed an opposite directional change
relative to the chromosome copy number alteration. Our analysis
highlights that buffered proteins and these “antiscaling” proteins
are differentially regulated by a variety of biological factors. For ex-
ample, antiscaling genes are less likely to be part of a protein com-
plex than buffered genes and show fewer total protein–protein
interactions. More research will be needed to fully elucidate the
regulation of these unusual genes and their effects on the physiol-
ogy of aneuploid cancers.

It is commonly hypothesized that one of the main drivers of
the evolution of aneuploid cancers is the copy number of OGs and
tumor suppressors (Davoli et al. 2013). Although many OGs show
increased expression upon chromosome gain, and many tumor
suppressors show decreased expression upon chromosome loss,
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Figure 7. Dosage compensation in aneuploid ovarian tumors. (A) Heatmaps displaying the difference in protein expression between ovarian tumors with
a chromosome arm gain (left) or chromosome arm loss (right) compared to tumors with neutral ploidy for that arm. The mean protein expression differ-
ences per chromosome arm are displayed. (B) Heatmaps displaying the same analysis as in A, but only for each aneuploid chromosome. (C) Density plots
comparing the difference in CCLE and ovarian tumor protein expression differences upon the gain (left) or loss (right) of the chromosome arm onwhich the
gene is located. Pearson correlation coefficient and P-value are displayed. Linear regressions (red) with 95% confidence intervals are displayed. (D) The
percentage of ovarian tumor RNAs and proteins that fall into each difference category upon chromosome gain and loss are displayed. (E) Bar graphs dis-
playing the biological terms enriched in ovarian tumor proteins buffered upon chromosome gain or loss, categorized by the major overarching pathway.
(F ) Boxplots displaying buffering factor scores, per difference category upon chromosome gain or loss using ovarian tumor data. Two buffering factors are
displayed: number of protein complexes and dependency scores. P-values are from two-sided t-tests. Boxplots display the 25th, 50th, and 75th percentiles
of the data, and the whiskers indicate 1.5 interquartile ranges. (G,H) Bar graphs displaying the mean protein expression difference for OGs upon chromo-
some gain (G) and TSGs upon chromosome loss (H), based on ovarian tumor data. Not all OGs and TSGs are displayed. Dotted lines indicate the mean
differences in expression for all genes. Complete lists of OG and TSG expression differences upon chromosome gain and loss are available in Supplemental
Table S2. (I) Boxplots displaying protein expression for KRAS and CASP8 by their chromosome copy number category. P-values in the boxplots were cal-
culated from two-sided t-tests.
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we discovered that this is not true for all OGs and tumor suppres-
sors. Indeed, many important OGs, including ERBB2 (also known
as HER2),MTOR, andMYC, do not increase in expression with the
gain of the corresponding chromosome arm, and the overall effect
of chromosome gains across all OGs was moderate in both cancer
cell lines and in vivo. Although prior studies of subchromosomal
amplifications have highlighted that these alterations are fre-
quently buffered at the protein level (Zhang et al. 2014, 2016;
Mertins et al. 2016; Gonçalves et al. 2017), we found that focal am-
plifications (but not chromosome-scale alterations) are associated
with significant increases in the expression of key OGs like MYC
and ERBB2. These results indicate that the buffering of OG expres-
sion is imperfect, and although single-copy gainsmaybe subject to
dosage compensation, high-copy amplifications result in OGover-
expression, even though this expression may not be perfectly pro-
portional to OG copy number. Finally, we suggest that the
evolutionary pressure to overcome OG buffering during tumor de-
velopment may promote selection for high-copy amplifications
that escape compensatory down-regulation, leading to the highly
complex karyotypes often found in advanced malignancies.

OG and TSG dosage compensation complicates, but does not
contradict, the aneuploidy/driver gene dosage hypothesis.
Developing a comprehensive picture of OG and tumor suppressor
buffering will improve our understanding of cancer driver genes
and their role in shaping aneuploid karyotypes in cancer. As aneu-
ploidy has been recognized to be a highly significant prognostic
factor across cancer types (Kheir et al. 1988; Xu et al. 2016;
Hieronymus et al. 2018; Smith and Sheltzer 2018; Stopsack et al.
2019; Shukla et al. 2020; van Dijk et al. 2021), and as genomic
and exomic sequencing costs have rapidly fallen (Mardis 2019),
we expect that high-resolution cancer karyotypingwill become in-
creasingly routine in a clinical setting. Knowingwhich proteins are
sensitive to chromosome gains and losses may help identify the
specific drivers in a patient’s tumor, leading to better personalized
therapies and improved patient outcomes.

Methods

Data set filtering

We generated a data set measuring gene expression difference upon
chromosome gain or loss. We only used cell lines with proteomics
data, RNA expression data, and chromosome arm copy number
data (367 cancer cell lines and 168 ovarian tumor samples). We
only included a gene in our difference analysis if we had RNA
and protein expression data for that gene from at least 10 cell lines
inwhich the chromosome arm inwhich that genewas encoded on
was gained, 10 cell lines in which the chromosome arm was lost,
and 10 cell lines in which the chromosome armhad a neutral ploi-
dy. Not all chromosome arms in the ovarian tumor data had more
than 10 samples with a loss, 10 samples with a gain, and 10 sam-
ples neutral for that chromosome arm.

For the protein expression correlation with aneuploidy score data
set used for Figure 4, all cell lines with protein expression and chro-
mosome arm copy number data were used for protein aneuploidy
score analysis. Similarly, for the RNA expression correlation with an-
euploidy score data set used in Supplemental Figure S7, all cell lines
with RNA expression measurements and chromosome arm copy
number data were used.

Analyzing the effects of aneuploidy on gene expression

Gene expression difference upon aneuploidy was calculated for each
gene, for both RNA and protein data. For each gene, the chromo-

some arm on which the gene was located was identified. Next,
cell lines in the CCLE filtered data set (see above) were grouped
as either having a chromosome arm gain, chromosome arm loss,
or having a neutral ploidy for that chromosome arm. Then, the
mean RNA and protein expression data for the gene of interest
were taken per DNA aneuploidy category (gain, loss, or neutral).
The mean gene expression in the neutral category was subtracted
from the mean gene expression in the chromosome gain category
to obtain the difference in expression upon chromosome gain.
Similarly, mean gene expression in the neutral category was sub-
tracted from the mean protein expression in the chromosome
loss category to get the difference in expression upon chromosome
loss. We found the difference in expression upon chromosome
gain and loss for both protein expression data and RNA expression
data. As protein and RNA expression data have already been log2
transformed, the difference [log2(A)− log2(B)] is equivalent to
log2 fold change [log2(A/B)]. P-values per gene were calculated by
using a two-sided t-test between gene expression in cell lines neu-
tral for the corresponding chromosome arm and cell lines with ei-
ther a chromosome gain or loss (Supplemental Tables S2, S11, S13).

Percent change in gene expressionupon aneuploidywas calculat-
ed in various data sets. The mean difference in expression upon
chromosome gain or loss was calculated and converted into per-
centages by using X=2 (mean difference)−1.

Cell line–specific difference was calculated for RNA and protein
data in Figure 1 and Supplemental Figure S1. The mean RNA and
protein expression data per chromosome arm were taken from
cell lines neutral for chromosome arm gains or losses. This mean
“neutral” gene expression was subtracted from the mean gene ex-
pression per chromosome arm in the cell line of interest.

Gene expression categories were based on the difference upon
chromosome gain or loss in RNA or protein expression data. For
chromosome gain events, genes were classified as “antiscaling” if
their mean expression difference was less than −0.1 relative to cell
lines that were neutral for that chromosome arm. Genes were clas-
sified as “buffered” if their mean expression ranged from −0.1 to
0.25 relative to cell lines that were neutral for that chromosome
arm. Genes were classified as “scaling” if their mean expression
was greater than 0.25 relative to cell lines that were neutral for
that chromosome arm. For chromosome loss events, the values
were reversed (greater than 0.1 for antiscaling, between 0.1 and
−0.25 for buffered, and less than −0.25 for scaling).

For the analysis of protein expression via RPPA, antibodies that
recognized specific post-translational modifications and antibod-
ies that recognized proteins encoded by multiple genes were ex-
cluded from analysis. This left 149 proteins that were recognized
by 151 antibodies. For each remaining antibody, we separately cal-
culated the average expression when the gene encoding the pro-
tein recognized by the antibody was present on a neutral,
gained, or lost chromosome.We then subtracted themean expres-
sion of each protein when present on a neutral chromosome from
the mean expression of the same protein when encoded on a
gained or lost chromosome. For the two proteins recognized by
two antibodies (BCL2L11 [also known as BIM] and RAF1), the
values were collapsed by averaging.

Cellular aneuploidy scores were calculated by summing the
number of genes on all aneuploid chromosome arms in a cell
line and then dividing that total by the cell’s basal ploidy. In
this way, the gain or loss of a chromosome arm contributes equally
to the aneuploidy score.

Aneuploidy score correlation was calculated per gene for both
protein expression and RNA expression data. Pearson correlations
between protein or RNA expression and a cell’s aneuploidy score
were measured for every gene. Associated P-values are Pearson cor-
relation significance measurements (Supplemental Table S9).
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GO term enrichment analysis

Biological term enrichments were identified using g:Profiler
(Raudvere et al. 2019). Significance values were calculated against
a custom background set of genes or proteins that were included in
our processed and filtered data set.

OG and tumor suppressor buffering analysis

Relative gene copy number categories were classified as “loss” with a
score less than 0.9, “neutral” at 0.9–1.1, “gain” at 1.1–1.75, and
“amplified” at 1.75+. Relative gene copy numbers are log2-trans-
formed data, with a pseudo-count of one.

Additional sources

See the Supplemental Methods for a complete list of data sources,
additional data set filtering information, yeast ortholog identifica-
tionmethods, andmethods used to identify genomic features that
correlate with protein buffering. Several sources, in addition to
those cited in the above text, were used for data analysis (Yang et
al. 2003; Robin et al. 2011; Ciryam et al. 2013; Savitski et al.
2013; Hornbeck et al. 2015; Smedley et al. 2015; Alanis-Lobato et
al. 2017; Mathieson et al. 2018; Giurgiu et al. 2019; Hausser et al.
2019; Piovesan et al. 2021).

Data access

The code and intermediate analysis data sets generated in this
study are available at GitHub (https://github.com/kschukken/
Genome_Research_Protein_Dosage) and as Supplemental Code.
All code was written in R.
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F, Paladin L, Ramasamy P, Dosztányi Z, et al. 2021. MobiDB: intrinsical-
ly disordered proteins in 2021. Nucleic Acids Res 49:D361–D367. doi:10
.1093/nar/gkaa1058

Pollack JR, Sørlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R,
Botstein D, Børresen-Dale A-L, Brown PO. 2002. Microarray analysis re-
veals amajor direct role of DNA copy number alteration in the transcrip-
tional program of human breast tumors. Proc Natl Acad Sci 99: 12963–
12968. doi:10.1073/pnas.162471999

Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, PetersonH, Vilo J. 2019. g:
Profiler: a web server for functional enrichment analysis and conver-
sions of gene lists (2019 update). Nucleic Acids Res 47: W191–W198.
doi:10.1093/nar/gkz369

Replogle JM, ZhouW, Amaro AE, McFarland JM, Villalobos-Ortiz M, Ryan J,
Letai A, Yilmaz O, Sheltzer J, Lippard SJ, et al. 2020. Aneuploidy increas-
es resistance to chemotherapeutics by antagonizing cell division. Proc
Natl Acad Sci 117: 30566–30576. doi:10.1073/pnas.2009506117

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M.
2011. pROC: an open-source package for R and S+ to analyze and com-
pare ROC curves. BMC Bioinformatics 12: 77. doi:10.1186/1471-2105-
12-77

Salgueiro L, Buccitelli C, Rowald K, Somogyi K, Kandala S, Korbel JO, Sotillo
R. 2020. Acquisition of chromosome instability is amechanism to evade
oncogene addiction. EMBO Mol Med 12: e10941. doi:10.15252/emmm
.201910941

Sansregret L, Swanton C. 2017. The role of aneuploidy in cancer evolution.
Cold Spring Harb Perspect Med 7: a028373. doi:10.1101/cshperspect
.a028373

Savitski MM, Mathieson T, Zinn N, Sweetman G, Doce C, Becher I, Pachl F,
Kuster B, Bantscheff M. 2013. Measuring and managing ratio compres-
sion for accurate iTRAQ/TMT quantification. J Proteome Res 12: 3586–
3598. doi:10.1021/pr400098r

Schukken KM, Lin Y-C, Bakker PL, Schubert M, Preuss SF, Simon JE, van den
Bos H, Storchova Z, Colomé-Tatché M, Bastians H, et al. 2020. Altering
microtubule dynamics is synergistically toxic with spindle assembly
checkpoint inhibition. Life Sci Alliance 3: e201900499. doi:10.26508/
lsa.201900499

Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 2009.
Acquisition of aneuploidy provides increased fitness during the evolu-
tion of antifungal drug resistance. PLoS Genet 5: e1000705. doi:10
.1371/journal.pgen.1000705

Senger G, Schaefer MH. 2021. Protein complex organization imposes con-
straints on proteome dysregulation in cancer. Front Bioinforma 1:
723482. doi:10.3389/fbinf.2021.723482

Senger G, Santaguida S, Schaefer MH. 2022. Regulation of protein complex
partners as a compensatory mechanism in aneuploid tumors. eLife 11:
e75526. doi:10.7554/eLife.75526

Sheltzer JM. 2013. A transcriptional and metabolic signature of primary an-
euploidy is present in chromosomally unstable cancer cells and informs
clinical prognosis. Cancer Res 73: 6401–6412. doi:10.1158/0008-5472
.CAN-13-0749

Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, Brito IL,
Hiraoka Y, Niwa O, Amon A. 2011. Aneuploidy drives genomic instabil-
ity in yeast. Science 333: 1026–1030. doi:10.1126/science.1206412

Sheltzer JM, Torres EM, DunhamMJ, Amon A. 2012. Transcriptional conse-
quences of aneuploidy. Proc Natl Acad Sci 109: 12644–12649. doi:10
.1073/pnas.1209227109

Sheltzer JM, Ko JH, Replogle JM, Habibe Burgos NC, Chung ES, Meehl CM,
SaylesNM, Passerini V, Storchova Z, AmonA. 2017. Single-chromosome
gains commonly function as tumor suppressors. Cancer Cell 31: 240–
255. doi:10.1016/j.ccell.2016.12.004

Shukla A, Nguyen THM, Moka SB, Ellis JJ, Grady JP, Oey H, Cristino AS,
Khanna KK, Kroese DP, Krause L, et al. 2020. Chromosome arm aneu-
ploidies shape tumour evolution and drug response. Nat Commun 11:
449. doi:10.1038/s41467-020-14286-0

Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O,
AwedhMH, Baldock R, Barbiera G, et al. 2015. The BioMart community

Dosage compensation in aneuploid cancers

Genome Research 1269
www.genome.org



portal: an innovative alternative to large, centralized data repositories.
Nucleic Acids Res 43: W589–W598. doi:10.1093/nar/gkv350

Smith JC, Sheltzer JM. 2018. Systematic identification of mutations and
copy number alterations associated with cancer patient prognosis.
eLife 7: e39217. doi:10.7554/eLife.39217

Smith JC, Sheltzer JM. 2022. Genome-wide identification and analysis of
prognostic features in human cancers. Cell Rep 38: 110569. doi:10
.1016/j.celrep.2022.110569

Sousa A, Gonçalves E, Mirauta B, Ochoa D, Stegle O, Beltrao P. 2019. Multi-
omics characterization of interaction-mediated control of human pro-
tein abundance levels. Mol Cell Proteomics MCP 18: S114–S125. doi:10
.1074/mcp.RA118.001280

Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z. 2012.
Global analysis of genome, transcriptome and proteome reveals the re-
sponse to aneuploidy in human cells. Mol Syst Biol 8: 608. doi:10.1038/
msb.2012.40

Stopsack KH, Whittaker CA, Gerke TA, Loda M, Kantoff PW, Mucci LA,
Amon A. 2019. Aneuploidy drives lethal progression in prostate cancer.
Proc Natl Acad Sci 116: 11390–11395. doi:10.1073/pnas.1902645116

Taggart JC, Zauber H, Selbach M, Li G-W, McShane E. 2020. Keeping the
proportions of protein complex components in check. Cell Syst 10:
125–132. doi:10.1016/j.cels.2020.01.004

Tang Y-C, Williams BR, Siegel JJ, Amon A. 2011. Identification of aneuploi-
dy-selective antiproliferation compounds. Cell 144: 499–512. doi:10
.1016/j.cell.2011.01.017

Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, Schumacher SE,
Wang C, Hu H, Liu J, et al. 2018. Genomic and functional approaches
to understanding cancer aneuploidy. Cancer Cell 33: 676–689.e3.
doi:10.1016/j.ccell.2018.03.007

Ting L, Rad R, Gygi SP, HaasW. 2011. MS3 eliminates ratio distortion in iso-
baric multiplexed quantitative proteomics. Nat Methods 8: 937–940.
doi:10.1038/nmeth.1714

Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, DunhamMJ, Amon
A. 2007. Effects of aneuploidy on cellular physiology and cell division in
haploid yeast. Science 317: 916–924. doi:10.1126/science.1142210

Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi
SP, DunhamMJ, Amon A. 2010. Identification of aneuploidy-tolerating
mutations. Cell 143: 71–83. doi:10.1016/j.cell.2010.08.038

Tsafrir D, BacolodM, SelvanayagamZ, Tsafrir I, Shia J, Zeng Z, LiuH, Krier C,
Stengel RF, Barany F, et al. 2006. Relationship of gene expression and
chromosomal abnormalities in colorectal cancer. Cancer Res 66: 2129–
2137. doi:10.1158/0008-5472.CAN-05-2569

Upadhya SR, Ryan CJ. 2021. Experimental reproducibility limits the corre-
lation between mRNA and protein abundances in tumour proteomic
profiles. bioRxiv doi:10.1101/2021.09.22.461108

van Dijk E, van den Bosch T, Lenos KJ, El Makrini K, Nijman LE, van Essen
HFB, Lansu N, Boekhout M, Hageman JH, Fitzgerald RC, et al. 2021.
Chromosomal copy number heterogeneity predicts survival rates across
cancers. Nat Commun 12: 3188. doi:10.1038/s41467-021-23384-6

Vasudevan A, Baruah PS, Smith JC, Wang Z, Sayles NM, Andrews P, Kendall
J, Leu J, Chunduri NK, Levy D, et al. 2020. Single-chromosomal gains
can function as metastasis suppressors and promoters in colon cancer.
Dev Cell 52: 413–428.e6. doi:10.1016/j.devcel.2020.01.034

Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer
JM. 2021. Aneuploidy as a promoter and suppressor of malignant
growth. Nat Rev Cancer 21: 89–103. doi:10.1038/s41568-020-00321-1

Viganó C, von Schubert C, Ahrné E, Schmidt A, Lorber T, Bubendorf L, De
Vetter JRF, Zaman GJR, Storchova Z, Nigg EA. 2018. Quantitative prote-
omic and phosphoproteomic comparison of human colon cancer DLD-
1 cells differing in ploidy and chromosome stability. Mol Biol Cell 29:
1031–1047. doi:10.1091/mbc.E17-10-0577

Weaver BAA, Cleveland DW. 2006. Does aneuploidy cause cancer? Curr
Opin Cell Biol 18: 658–667. doi:10.1016/j.ceb.2006.10.002

Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman
DE, Amon A. 2008. Aneuploidy affects proliferation and spontaneous
immortalization in mammalian cells. Science 322: 703–709. doi:10
.1126/science.1160058

WrightMW, Bruford EA. 2011. Naming “junk”: human non-protein coding
RNA (ncRNA) gene nomenclature. Hum Genomics 5: 90. doi:10.1186/
1479-7364-5-2-90

Xu J, Huang L, Li J. 2016. DNA aneuploidy and breast cancer: a meta-anal-
ysis of 141,163 cases.Oncotarget 7: 60218–60229. doi:10.18632/oncotar
get.11130

Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco
M, Darnell JE. 2003. Decay rates of human mRNAs: correlation with
functional characteristics and sequence attributes. Genome Res 13:
1863–1872. doi:10.1101/gr.1272403

Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman
LJ, Shaddox KF, Kim S, et al. 2014. Proteogenomic characterization of
human colon and rectal cancer. Nature 513: 382–387. doi:10.1038/
nature13438

Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou J-Y,
Petyuk VA, Chen L, Ray D, et al. 2016. Integrated proteogenomic char-
acterization of human high-grade serous ovarian cancer. Cell 166: 755–
765. doi:10.1016/j.cell.2016.05.069

Received December 10, 2021; accepted in revised form June 1, 2022.

Schukken and Sheltzer

1270 Genome Research
www.genome.org


