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Abstract

Objectives

Positron emission tomography (PET) is susceptible to patient movement during a scan.

Head motion is a continuing problem for brain PET imaging and diagnostic assessments.

Physical head restraints and external motion tracking systems are most commonly used to

address to this issue. Data-driven methods offer substantial advantages, such as retroactive

processing but typically require manual interaction for robustness. In this work, we introduce

a time-of-flight (TOF) weighted positron emission particle tracking (PEPT) algorithm that

facilitates fully automated, data-driven head motion detection and subsequent automated

correction of the raw listmode data.

Materials methods

We used our previously published TOF-PEPT algorithm Dustin Osborne et al. (2017), Tas-

mia Rahman Tumpa et al., Tasmia Rahman Tumpa et al. (2021) to automatically identify

frames where the patient was near-motionless. The first such static frame was used as a ref-

erence to which subsequent static frames were registered. The underlying rigid transforma-

tions were estimated using weak radioactive point sources placed on radiolucent glasses

worn by the patient. Correction of raw event data were achieved by tracking the point

sources in the listmode data which was then repositioned to allow reconstruction of a single

image. To create a “gold standard” for comparison purposes, frame-by-frame image regis-

tration based correction was implemented. The original listmode data was used to recon-

struct an image for each static frame detected by our algorithm and then applying manual

landmark registration and external software to merge these into a single image.

Results

We report on five patient studies. The TOF-PEPT algorithm was configured to detect motion

using a 500 ms window. Our event-based correction produced images that were visually
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free of motion artifacts. Comparison of our algorithm to a frame-based image registration

approach produced results that were nearly indistinguishable. Quantitatively, Jaccard simi-

larity indices were found to be in the range of 85-98% for the former and 84-98% for the latter

when comparing the static frame images with the reference frame counterparts.

Discussion

We have presented a fully automated data-driven method for motion detection and correc-

tion of raw listmode data. Easy to implement, the approach achieved high temporal resolu-

tion and reliable performance for head motion correction. Our methodology provides a

mechanism by which patient motion incurred during imaging can be assessed and corrected

post hoc.

1 Introduction

Positron emission tomography (PET) is a diagnostic nuclear medicine imaging procedure that

allows metabolic activity to be studied. Quantitative and qualitative PET assessment is affected

by patient movement resulting from respiratory, cardiac, head, and full-body motion. Artifacts

from motion include blurred images as well as inaccurate standardized uptake values that

propagate into standard clinical analysis and time activity curves used in more complex kinetic

modeling analysis. Head motion correction is of critical concern in brain PET imaging where

even restricted movement can negatively affect both visual image quality and quantitative diag-

nostic assessments of the small structures of the brain. A recent paper by Kyme et al. [1] out-

lined problems with motion and reviewed motion estimation and correction methods for

different modalities. Physical head restraints, such as thermoplastic masks [2], head holders,

and vacuum-lock bags [3], can be used to minimize the effects of motion artifacts but are not

capable of fully eliminating them, and some are uncomfortable or intolerable for patients. For

dementia patients, they can also have a negative psychological impact and should be avoided

[4]. The World Health Organization predicts that the number of dementia patients will

increase to 139 million from 55 million by 2050 [5]. With the rising number of dementia cases

and growing need for beta amyloid imaging, other methods are needed to ensure high quality

diagnostic images.

Several external motion tracking systems have been introduced to date based on a variety of

technologies including position sensitive detectors [6], optical imaging [7–9], stereo vision

[10] and the Microsoft Kinect [11]. The motion information is used to perform either frame

based image registration [12] or event based correction [9, 12–25]. Frame based image regis-

tration divides the listmode data into a sequence of motion-free frames based on the tracked

motion. Images are reconstructed for each frame of data, aligned with a reference image

frame, and then summed together to create the final image volume. Event based correction, on

the other hand, reposition the individual lines of response (LOR) thereby allowing a single

image to be reconstructed from all the raw data. Although external motion tracking systems

are effective and can process several frames per seconds, they do not allow retrospective cor-

rections, and widespread use is limited due to the costs associated with initial setup, training,

regular maintenance, etc.

Fully data-driven methods do not depend on external hardware or electronics and can cor-

rect data from any imaging system post hoc. Typically, these methods have used frame-based

PLOS ONE PET head motion correction using PEPT

PLOS ONE | https://doi.org/10.1371/journal.pone.0272768 August 31, 2022 2 / 15

restrictions, however, data may be accessed by

contacting the University of Tennessee Graduate

School of Medicine Institutional Review Board for

researchers that meet the criteria for access to

HIPAA protected and confidential data. The UTGSM

IRB does not have a non-individual email address,

however, their physical contact information is

provided below: The Institutional Review Board

(IRB) UTHSC Graduate School of Medicine 3rd

Floor, U76 1924 Alcoa Highway Knoxville, TN

37920 Phone: 865-305-6892.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

no competing interests exist.

https://doi.org/10.1371/journal.pone.0272768


image registration where data is sorted into a sequence of arbitrary, short duration frames.

Image registration has been achieved by optimizing a similarity criterion, e.g., mutual informa-

tion [16–18], cross-correlation [16, 17, 19], sum of absolute differences [19, 20], or standard

deviation of the ratio of two image volumes [19, 20]. There is a trade-off between the perfor-

mance and choice of frame duration. To reduce image noise and improve registration accu-

racy, longer duration frames are favorable but may lead to intra-frame motion going

undetected. Conversely, shorter duration frames are computationally more expensive to han-

dle due to more images having to be reconstructed and processed, and the images will suffer

from increased noise. Prior motion information can help determine frame durations.

Recent papers have proposed data-driven approaches that detect motion directly from list-

mode or sinogram data and thus prior to image reconstruction. Feng et al. [21] proposed a

center-of-mass (COM) method for extracting motion information from rebinned sinogram

data. Thielemans et al. [22] applied principal component analysis to dynamic sinogram frames.

Schleyer et al. [23] used both principal component and spatial displacement analysis. Motion

correction for these methods was in all cases still limited to frame-based reconstructed image

registration. Lu et al. [24, 25] recently presented a multi-step COM-based approach that used

frame-based reconstructed image registration to obtain a transformation matrix that was then

applied to perform event-based correction. In previous work on respiratory motion correction

[26–28], we introduced a time-of-flight (TOF) weighted positron emission particle tracking

(PEPT) algorithm for motion tracking which we compared against the state-of-the-art from

the literature [24, 25]. In this paper, we present a novel, fully automated methodology based on

this algorithm for head motion detection and subsequent event-based correction using exter-

nal markers. Use of markers has previously been studied for similar applications [29, 30].

2 Materials and methods

2.1 Overview

The proposed method has two steps, namely, motion detection and correction. For motion

detection, listmode data is sorted into short, fixed duration time frames of 500ms. The TOF--

PEPT algorithm is then applied to determine when global motion occurred during the data

acquisition. Subsection 2.2 shows the use of TOF-PEPT to extract global head movement

information. Based on the global head position, it is possible to define transitional segments

where the patient was in motion, and static segments represent where the patient remained

near motionless as shown in Fig 1. Subsection 2.3 describes how the motion free static frames

are identified. Subsequent motion correction can be achieved either by means of reconstructed

image registration or transformation of the LORs. This work focuses on transformation of the

LORs using weak radioactive point sources placed on radiolucent glasses worn by the patient.

Subsection 2.4 describes a counting based TOF-weighted line density algorithm for locating

the point sources based on which transformations between two static frames can be obtained.

Subsection 2.5 describes the correction of individual LOR.

2.2 Motion signal extraction: TOF-PEPT

TOF-PEPT [28] is a modified version of the PEPT algorithm originally proposed by Parker

et al. [31] The algorithm determines the location of the centroid of an LOR distribution within

a region-of-interest (ROI) by iteratively estimating the point in space pm that minimizes a
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weighted sum of LOR related distances. Mathematically,

pm ¼ argminp

P
Li2O

wid
2
ðLi; pÞ

wi ≜ 1þmaxf0; 1 �
jjpi � pmjjffiffiffi

2
p

sT

 !2

g

Here, wi is a weighting factor for each LOR, δ(Li, p) represents the perpendicular distance

from the LOR denoted by Li to some point p, O is the set of LORs considered, pi denotes the

TOF estimate of the annihilation location for Li, and σT, which represents the uncertainty asso-

ciated with the TOF estimate, depends on the coincidence timing resolution of the scanner.

At the end of each iteration, LORs for which δ(Li, pm) were greater than the mean thereof

plus one standard deviation were discarded. The remaining set of LORs were used to update

the estimate of pm during the next iteration. The iteration stopped when the number of LORs

left fell below the number of LORs whose annihilation locations were within a sphere of radius

kσT surrounding pm. Parameter k controls the number of LORs to be kept, with higher k result-

ing in a larger number of retained LORs. For the results reported below, we used k = 2.

2.3 Static frame detection

With the application of TOF-PEPT, it was possible to measure the left-right, anterior-poste-

rior, and superior-inferior movement. For ease of notation, we will henceforth refer to this

movement as changes in X, Y and Z coordinates. Let M(t) represent the estimated motion. We

then used a forward difference approximation of the gradient, i.e.,rM(t) = M(t+1)-M(t), and

its norm thereof was calculated as follows:

jjdMðtÞjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jXðt þ 1Þ � XðtÞj2þjYðt þ 1Þ � YðtÞj2 þ jZðt þ 1Þ � ZðtÞj2
q

Fig 1. Motion frame detection. Illustration of detecting static frames: (A) Estimated motion (B) Gradient

approximation of motion. The sequence of short duration time frames was divided into transitional frames and longer

duration static frames based on the data-driven threshold.

https://doi.org/10.1371/journal.pone.0272768.g001
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The resulting signal was smoothed, and a threshold was used to determine when motion

had taken place. The threshold was set to be a scalar λ times the mean absolute deviation

(MAD) of the smoothed gradient norm calculated for the full duration of the scan. Mathemati-

cally, MAD can be expressed as follows:

MAD ¼
1

n

Xn

t¼1

jSt � �Sj where St ¼ jjdM tð Þjj2

Here, n, S, and �S represent the number of sampling data points, the data values of the signal

of interest, and their average, respectively. Consecutive sequences of short duration time

frames for which the threshold was exceeded were considered transitional and ultimately dis-

carded (as the patient’s head was in motion) while those for which the threshold was not

exceeded were combined into longer duration so-called static time frames. See Fig 1 for an

illustration. For the results reported below, we used λ = 3 which we found to allow all signifi-

cant patient movement to be detected. The mean absolute deviation between two consecutive

time points was ~0:5 mm for the experimental data studied resulting in a threshold of ~1:5 mm.

2.4 Point source detection: TOF-weighted line density method

Three or more point sources were used to guarantee unique transformations be obtained. Sev-

eral techniques have been proposed for locating multiple particles in listmode data [32–34].

Here we propose an approach centered on a TOF-weighted line density method.

An accumulation array was created that covered the field-of-view with a spatial resolution

corresponding to that of the scanner. In principle, all voxel values could be initialized to 0 and

then incremented based on the LOR intersections. In practice, each LOR was backprojected

using Bresenham’s algorithm [35] using a TOF centered Gaussian distribution with a FWHM

matching the timing resolution of the scanner. The resultant grid count approximated the dis-

tribution of the LORs within the field-of-view.

The point sources were distinguishable in the accumulation array as regions with more

dense LOR distributions compared with the brain uptake regions. Assuming that N point

sources produce N local maxima, an iterative search was carried out locating them one at a

time. First, the voxel with the highest count was identified. That provided a location estimation

of the corresponding point source. To further refine the estimation, a weighted average of the

voxel coordinates within a neighborhood of k × k × k was taken with the voxel values as

weights. If xmax, ymax, zmax denotes the coordinates of the voxel with highest count, and O

denotes the neighborhood region centered on it, then the estimation of true location was made

by:

xest ¼
P

i2ovixiP
i2ovi

yest ¼
P

i2oviyiP
i2ovi

zest ¼
P

i2oviziP
i2ovi

Here, (xi, yi, zi) denotes the voxel coordinates in the neighborhood and vi denotes their cor-

responding values. The neighborhood counts were reset to 0 before continuing the search for

the next point source. The value of k was chosen to be large enough to cover the point sources
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uptake regions, yet small enough to not exceed the minimum distance between two point

sources. Empirically, we found k = 9 to produce good results for our data.

2.5 Rigid transformation: Calculation and application

The rigid transformations needed to register the static frames to the reference frame were

obtained using SVD-based Procrustes analysis [36]. For a rigid body motion, transformation

from position (x, y, z) to position (x’, y’, z’) can be realized by a rotation followed by translation

as follows:

x0

y0

z0

2
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5
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where, Rxx, Rxy, Rxz, Ryx, Ryy, Ryz, Rzx, Rzy, Rzz are rotational parameters, and tx, ty, tz are

translational parameters. The spatial coordinates of an LOR can be re-positioned to a reference

position by applying the above transformation. In this work, the first static frame of the PET

data served as the reference to which subsequent frames were registered, however, the algo-

rithm allows for any user-defined frame of reference to be chosen. The static frame LORs were

repositioned and the TOF information updated accordingly. Repositioned LORs that did not

match up with physical detector crystals were discarded. The remaining LORs were merged

into a new listmode data set from which a final motion-free image was reconstructed.

2.6 Data and validation

Five patients were recruited and and written consent obtained for all participants at our outpa-

tient PET/CT facility under the auspices of the University of Tennessee, Knoxville Institutional

Review Board approved protocol (IRB #3941). Imaging was performed on a 64-slice Biograph

mCT Flow PET/CT using full 64-bit listmode data acquisition. The patients were asked to rest

their head in random positions and orientations at different time points during a 3-minute

scan. Each study thus exhibited a different range of movements and therefore produced a dif-

ferent number of static frames. The whole field-of-view (FOV) was selected as ROI for motion

detection by TOF-PEPT. The full patient imaging workflow proceeded as follows: 1) standard

of care PET/CT imaging was performed and finalized; 2) point sources were positioned onto

the patient;3) listmode acquisition of the head motion sequence was performed. As mentioned

above, point sources were used to obtain the motion correction transformation parameters.

Three or four point sources were placed on a pair of radiolucent plastic lab goggles worn by

the patient with each source positioned to be off axis from one another. Typically, one source

was placed on each side of the goggles, and one placed on the front near the forehead of the

patient. Fig 2 shows the apparatus used. We used 74-185 kBq (2-5 μCi) point sources in the

form of zeolite beads 2 mm in diameter. Motion corrected listmode data were rebinned into

sinograms from which attenuation and scatter corrected images were reconstructed using the

OSEM+TOF algorithm available on the Biograph mCT Flow PET/CT scanner. For reconstruc-

tion we used our institution standard clinical protocol with 3 iterations, 24 subsets and 5 × 5

Gaussian post-smoothing. All data processing and reconstruction was performed using the

Siemens e7 processing tools or the built-in scanner histogramming and reconstruction algo-

rithms (Siemens Healthineers, Knoxville).

To comparatively evaluate the performance of our automated LOR motion correction, we

implemented a more conventional image-based method centered on manual landmark-based
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registration of volumetric images reconstructed for each static frame detected by our motion

tracking algorithm. More specifically, manually drawn regions-of-interest covering each

source were subjected to thresholding (15% of maximum value) to create a voxelized mask

where the centroid of the ROI could be found and used as the series of landmarks for each

frame. The attenuation corrected frame images were aligned and summed to produce a single

motion corrected image.

In addition to our quantitative comparisons, a qualitative review was performed by two

board certified radiologists, both with more than ten years of clinical PET diagnostic assess-

ment experience. Each reviewed the case studies and visually compared the manually land-

mark corrected images to the automated algorithm proposed in this work. Their visual

assessments were used to determine if any significant artifacts had been introduced into the

automatically processed images and whether the resulting corrected images were diagnosti-

cally useful.

3 Results

3.1 Estimated motion and static frames

Fig 3 shows the head displacement as a function of time for the five patient studies. They are

shown along the principal direction of motion, i.e., the direction with the largest range of

movement. The dominant movement was observed in the XY (axial) and ZX (coronal) planes

for all the studies since the patient head movement was mostly around Z and Y axes. Patient 1

moved twice, and the head was thus at rest at three different positions with three static frames

produced correspondingly. Patient 2 moved three times leading to four static frames. Patients

3, 4 and 5 produced three, four, and four static frames, respectively. The shaded grey regions

in Fig 3 represent transitional frames. The head movements ranged from less than 5 mm to as

much as 50 mm.

3.2 Evaluation of transformation parameters

Fig 4A and 4C plot the axial and coronal plane locations of the three point sources used for

one patient study. Fig 4B and 4D show the effect of having applied the transformation parame-

ters. Visually, the point sources in frames 2 and 3 are seen to have been registered well to the

point sources in frame 1 which served as the reference. We calculated the mean Euclidean

Fig 2. Goggles apparatus. Radiolucent plastic lab goggles worn by the patient with point sources attached to it. Two

sources were placed on two sides of the goggles, and one placed on the front near the forehead of the patient. In the

figure, two point sources can be seen to be indicated by two red arrows.

https://doi.org/10.1371/journal.pone.0272768.g002
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distance between the reference and transformed location coordinates for all five patient stud-

ies. Table 1 shows the results which indicate that the registration was within a mean distance

of 1.2±0.09 mm.

3.3 Comparison of motion corrected images

Fig 5 shows the comparison of the motion corrected images in the axial plan for Patient Study

3 (Top row) and Patient Study 5 (bottom row). The left column shows a slice of the original

scan with full patient motion showing the impact on image quality. The head can be seen to be

positioned in three different orientations resulting in significant blurring and obscuring of

detail. The initial head position was chosen as the first static reference frame. The middle

Fig 3. Motion segment extraction. Plots of motion in principal direction along with the estimated transitional and

static frames: (A) Patient Study 1: Three static frames; (B) Patient Study 2: Four static frames; (C) Patient Study 3:

Three static frames; (D) Patient Study 4: Four static frames; and (E) Patient Study 5: Four static frames.

https://doi.org/10.1371/journal.pone.0272768.g003
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column shows a slice from the manually corrected image volume using the comparison stan-

dard based on image-based landmark registration. The right column shows our automated

data-driven correction result where the static frames of motion were detected, transformation

matrices were calculated and applied to the individual LORs, and then histogrammed and

reconstructed. Fig 6 shows the sagittal and coronal view respectively for Patient Study 3 and

Patient Study 5. The motion corrected images show that the shifted head positions were cor-

rectly repositioned to the reference position.

To quantitatively measure the alignment, we used the Jaccard similarity index given by

JðA;BÞ ¼
jA \ Bj
jA [ Bj

Fig 4. Comparison of original point source positions with transformed locations. Point source locations in each

different frame in the axial plane (top row) (A) before and (B) after application of the transformation, and in the

coronal plane (bottom row) (C) before and (D) after application of the transformation.

https://doi.org/10.1371/journal.pone.0272768.g004

Table 1. Mean Euclidean distance between reference and transformed point source coordinates.

Study Mean Euclidean Distance (mm)

Frame 2 Frame 3 Frame 4

Patient Study 1 1.48 1.36 —

Patient Study 2 2.31 2.51 0.78

Patient Study 3 0.52 0.77 0.73

Patient Study 4 0.38 0.77 —

Patient Study 5 1.24 0.78 1.68

Mean 1.17 1.23 1.06

https://doi.org/10.1371/journal.pone.0272768.t001
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where A and B respectively denote a reference image and a registered image. By design, 0�J

(A,B)�1 with a large value indicating a high degree of similarity. We drew a region-of-interest

covering the brain, then subjected it to 15% and 25% thresholding to create two sets of masks

to compare. Table 2 lists the resulting Jaccard similarity indices for all five patient studies. It

can be seen that the frame-by-frame image registration-based gold standard created for this

study and our automated LOR based correction achieved similar results with number in the

range of 92.5±4.8% for the former and 93.2±4.5% for the latter.

Fig 5. Reconstructed axial comparisons of uncorrected data, frame-based corrected data, and event-based

corrected data. Reconstruction example for Patient Study 3 (Top row) and Patient Study 5 (Bottom row) in the axial

plane: (A, D) original motion impacted data; (B, E) frame-based correction; (C, F) event-based correction. Both

datasets were set to a window of 4% of the maximum value.

https://doi.org/10.1371/journal.pone.0272768.g005

Fig 6. Reconstructed saggital comparisons of uncorrected data, frame-based corrected data, and event-based

corrected data. Reconstruction example for Patient Study 3 (Top row) in sagittal plane and Patient Study 5 (Bottom

row) in the coronal plane: (A, D) original motion impacted data; (B, E) frame-based correction; (C, F) event-based

correction.

https://doi.org/10.1371/journal.pone.0272768.g006
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Qualitative diagnostic review of the images indicated that the manufactured “gold-stan-

dard” manually registered images had slightly better, but comparable, image quality to that of

the automated algorithm. The difference that the radiologists noted between images from two

methodologies was localized regional changes in the reconstructed activity concentration

between the two methodologies. The research PET studies for this work were acquired after

the patient’s standard of care diagnostic PET/CT studies.

4 Discussion

We have described a data-driven methodology that can extract motion information from list-

mode data and perform event-based correction without the need for reconstructing and align-

ing multiple image frames. Post data acquisition, the proposed approach can be applied to raw

listmode data in a fully automated way without the need for manual intervention. The current

implementation corrects for types of motion that occur during routine patient imaging, such

as coughing, sneezing, falling asleep, etc. These are typically rather abrupt with short phases of

motion followed by periods where the patient is in a static state. The static frame detection

could be extended to take slow motion into account by analyzing the data at a different time

scale.

The proposed method consists of two steps. First, motion detection is achieved using our

previously published TOF-PEPT algorithm which is capable of detecting head movement

directly from the LOR data independent of any markers. Second, motion correction is carried

out in one of two ways. As shown in this paper, external point sources in the form of radioac-

tive beads attached to glasses worn by the patient facilitate correction of the listmode data

which in turn allows subsequent reconstruction of a single volume image from the trans-

formed LORs. Alternatively, frame-based reconstructed image registration can be carried out

using the static frames detected by the TOF-PEPT algorithm followed by summation of manu-

ally registered images. This provides good flexibility of the algorithm to operate within a num-

ber of different clinical imaging scenarios and offers the ability for retrospective analysis and

correction so long as the point sources are on the patient during the scan.

The proximity of the point sources warranted some concern for possible exposure to the

sensitive lens of the eye even though the point sources used in this work were very weak. As

part of our initial IRB review and approval, we estimated lens doses to the eye under worst-

case conditions using a 5 microCurie source positioned 1 cm directly in front of the eye

Table 2. Quantitative evaluation of corrected image.

Study Threshold Jacard Index (%)

Event Based Frame Based

Patient Study 1 15% 94.2 95.0

25% 85.2 88.4

Patient Study 2 15% 97.9 96.9

25% 91.3 90.3

Patient Study 3 15% 98.6 98.9

25% 96.1 97.1

Patient Study 4 15% 94.4 93.7

25% 87.1 84.8

Patient Study 5 15% 94.7 96.1

25% 86.0 91.2

Mean 92.5 93.2

https://doi.org/10.1371/journal.pone.0272768.t002
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without accounting for beta shielding from the plastic goggles. Our total dose rate estimated

under these worst case conditions was 14.3 mGy/hr which even for 30 minutes of total expo-

sure would be 70x less than even the updated 0.5 Gy deterministic limit set by the International

Commission on Radiation Protection in 2018. Our more realistic, yet still conservative, esti-

mates assuming a 5 microCurie source, goggle beta shielding, 1 cm distance, and 15 minutes

of exposure resulted in a total estimated dose of 0.07 mGy to the lens of the eye. Our TOF--

PEPT based motion detection algorithm was configured to use a sufficiently high time resolu-

tion (500ms frames) to minimize intra-frame motion. We showed that the algorithm detected

all notable patient movements for all patient studies. For our proposed event-based motion

correction, external point sources were used as unique data points to find three-dimensional

rotation and translation information. We achieved reliable transformation parameters with

sufficient accuracy such as mean Euclidean distance between reference and transformed loca-

tion that allowed repositioning of shifted LORs to the reference position.

All data were corrected for attenuation and scatter using standard manufacturer correction

methods. This was possible because the corrected LORs were rotated to the CT orientation

enabling use of built-in processes. A comparison of scatter, randoms, and normalization cor-

rections on the rotated LOR positioning versus original orientation was outside the scope of

this work, but none of the reconstructed images showed significant signs of degradation due to

such artifacts. We hypothesize that limited artifacts were observed in our results due to fairly

uniform and symmetric attenuation, scatter, and uptake in the brain and head; analogous to

the assumptions when performing Chang’s attenuation correction for SPECT imaging [37].

Future work is planned to assess the impact of rotating LORs with and without rotating the

associated correction factors for the specific head imaging case.

To estimate location of the multiple point sources, we proposed a variation of the PEPT

technique, following a line density-based algorithm and utilizing TOF information. In our pre-

vious implementation of TOF-PEPT for respiratory motion correction, we tracked multiple

particles by drawing individual ROI for each particle and limiting the tracking only to the cor-

responding ROI. However, for large motion such as head/whole body motion, having an ROI

that will capture the entire range of movement is not straightforward unless each particle is

labelled at different levels of radioactivity uptake. Hence for the purpose of motion correction,

we adopted this variation of back-projection. It will be our future endeavor to extend the appli-

cation of TOF-PEPT method to track multiple particles alleviating the constraints on radioac-

tivity uptake.

As part of this work, we studied the impact of the kernel size for tracking multiple sources.

It was observed that the smaller the kernel size, the higher the error while using it for resetting

the neighboring voxel values. It was speculated that with smaller kernel size, all the voxels cor-

responding to one particular point source were not properly taken into account and thus reset

to continue the search for next point source. Thus, a desirable kernel size should be large

enough to cover the region of the point source and smaller than half the minimum distance

between two point sources. To note, the size of kernel in calculation of weighted average of

voxel coordinates did not result in much difference and we used same kernel for both pur-

poses. When dealing with external point sources, they are expected to have sufficient activity

concentration compared to the brain area so that higher valued voxels in the accumulation

array correspond to the point sources. This was easily achieved with reasonably low radioactive

point sources of small sizes which had higher activity concentrations and did not interfere

with diagnostic image quality. We tested different surfaces on which the point sources can be

placed including a head band and directly on the skin but found lab goggles to be more com-

fortable for the patient while also providing a secure fit. Using a structure to separate the

source from the patient skin is desirable as it enables an air gap between the activity naturally
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being taken up by the patient tissue and the sources being tracked. For this study, the patients

were told when to move so we knew when to visually observe for any possible glasses move-

ment. Additionally, the ranges of motion assessed also did not result in head positioning that

caused contact with the goggles that would have caused unwanted movement and would have

resulted in an additional PET acquisition. Only visual assessment of motion was performed

but we did not observe movement of the glasses relative to the head for any of the patients,

however, one limitation of using external sources that are not attached to the skin would be

the potential risk for the glasses to shift during imaging in such way as to no longer be aligned

with the patient head movement.

To qualitatively and quantitatively evaluate the performance of our proposed approach in

motion correction, we created motion corrected images both from our automatically corrected

listmode data and by applying the frame-by-frame reconstructed image registration technique.

The frame-based landmark registration technique was used as a gold standard with which to

test our automated motion detection and correction accuracy. Our Jaccard similarity index

results show our automated technique to be nearly identical to the manual landmark registra-

tion method. Furthermore, this manual landmark registration technique can only be used if

precise knowledge of when the motion occurred during acquisition is known. That precise

information was derived from our automated motion detection methodology and knowledge

of when the motion occurred during imaging would typically not be available in routine clini-

cal practice without some other form of patient monitoring.

Additional qualitative review of the radiologists found the performance of our proposed

approach comparable to the manually registered approach. Both methods showing similar per-

formance, the results favor the automated approach as it eliminates the need to reconstruct

multiple image volumes and perform manual data correction with the added benefit of being

able to automatically determine whether significant motion occurred during imaging and then

correct the data accordingly.

5 Conclusion

In previous work, we studied respiratory motion correction and proposed a TOF weighted

PEPT algorithm. In this paper, we applied the algorithm to detect head motion and showed

that the algorithm can detect such motion reliably from the raw listmode data. We performed

event-based correction of the raw data by deriving transformation parameters with the appli-

cation of external markers and a line density method. The motion corrected data showed sig-

nificant improvement over the originally motion impacted data, validated by the images

reconstructed from the corrected data. Our motion corrected data also was able to create

nearly equivalent qualitative results compared to labor intensive, but accurate, manual land-

mark registration techniques.
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