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Objective. The transport and metabolism of glucose are important during mammalian development. High glucose can mediate
the biological characteristics of mesenchymal stem cells (MSCs). However, the role of high glucose in the odonto/osteogenic
differentiation of stem cells from apical papilla (SCAPs) is unclear. Materials and Methods. SCAPs were isolated and identified
in vitro. Then, SCAPs were cultured in normal 𝛼-MEM and high glucose 𝛼-MEM separately. MTT assay was applied to observe
the proliferation of SCAPs. ALP activity, alizarin red staining, real-time RT-PCR, and western blot were used to detect the
odonto/osteogenic capacity of SCAPs as well as the participation of NF-𝜅B pathway. Results. SCAPs in 25mmol/L glucose group
expressed the maximum proteins of RUNX2 and ALP as compared with those in 5, 10, and 15 mmol/L groups. MTT assay showed
that 25mmol/L glucose suppressed the proliferation of SCAPs. ALP assay, alizarin red staining, real-time RT-PCR, andwestern blot
showed 25 mmol/L high glucose can obviously enhance the odonto/osteogenic capacity of SCAPs. Moreover, the NF-𝜅B pathway
was activated in 25mmol/L glucose-treated SCAPs and the odonto/osteogenic differentiation was inhibited following the inhibition
of NF-𝜅B signaling pathway. Conclusions. High glucose can enhance the odonto/osteogenic capacity of SCAPs via NF-𝜅B pathway.

1. Introduction

Stem cells from apical papilla (SCAPs), derived from the
developing apical complexes, are considered as the attractive
candidates for tooth and bone regeneration [1, 2]. They con-
tain the ability to modulate the dental root development and
play a key role in the regenerative endodontic procedures in
immature teeth with pulp necrosis [3]. Previous studies have
revealed that the odonto/osteogenic differentiation capacity
of SCAPs can be regulated bymany factors in vitro, including
proinflammatory cytokines [1, 4], estrogen [5], and inorganic
substance [2, 6].

Diabetes mellitus (DM) is a chronic metabolic disease
which is characterized by hyperglycemia and can result
in some complications including cardiovascular diseases,

nephropathy, osteoporosis, and oral diseases [7]. Diabetic
patients have an increased risk of suffering osteopenia and
osteoporosis, especially with the uncontrolled hyperglycemia
[8, 9]. The development of periodontitis is attributed to the
hyperglycemia, in which periodontium and alveolar bone are
targets of diabetic damage [10, 11]. Pathologic calcifications
such as diffuse calcification and pulp stones always appear in
dental pulp tissues of diabetic patients [12]. The underlying
mechanisms of bone fracture caused byDM, bone formation,
and remodeling in its healing process were still poorly
known. Thus, an understanding of the relationship between
DM-induced high glucose conditions and the osteogenic
differentiation of MSCs is urgently needed [13]. Austin et
al. have demonstrated that the function of MSCs has a
high dependence on glucose and glucose metabolism [14].
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Some studies have shown that high glucose medium is a
vital prerequisite for the differentiation of embryonic stem
cells (ESCs) into cardiac myocytes [15]. Rat bone marrow
mesenchymal stromal cells (rBMMSCs) form increased hard
tissues indicated by the osteocalcin production and calcium
deposition under a high glucose concentration (over 8.0mM)
[16]. Some studies have revealed that high glucose can reduce
proliferation of rat BMMSCs [17] but enhance the adipogenic
differentiation of mouse BMMSCs [18], human osteosarcoma
cell MG63 [19], and human muscle-derived stem cells [20].

Our previous work has revealed that some signaling
pathways participate in the odonto/osteogenic differentiation
of SCAPs, including nuclear factor kappa B (NF-𝜅B) pathway
and mitogen-activated protein kinase (MAPK) pathway [2,
5].Moreover,NF-𝜅B is an intracellular transduction signaling
pathway found nearly in all cell types, which can be triggered
by various activators, i.e., trauma, inflammatory factors, and
mineral trioxide aggregate (MTA) [21–23]. It has been proved
to take part in the regulation of some biological activities
including development, immune response, inflammation,
and wound healing [24, 25]. Furthermore, it is extensively
involved in the differentiation of osteoblast and osteoclast
lineages during the process of tooth eruption and orthodontic
tooth movement [22, 26]. To date, there is little information
regarding how high glucose exerts an effect on the prolifera-
tion and differentiation of SCAPs. In this study, SCAPs were
cultured in high glucose media and the effect of high glucose
on the odonto/osteogenic differentiation of SCAPs was sub-
sequently investigated. Meanwhile, in the involvement of NF-
𝜅B, the potential pathway was also extensively evaluated.

2. Materials and Methods

2.1. Cell Isolation, Culture, and Identification. This study was
approved by Ethical Committee of Stomatological School
of Nanjing Medical University (date of approval: 2009-1-
1, reference no. 200900128). The young third molars with
no caries and periodontic diseases were collected with
informed consents from donors (17–20 years old) at the Oral
and Maxillofacial Surgery Department of Jiangsu Provincial
Stomatological Hospital, following the approved guidelines
set by Ethical Committee of Stomatological School of Nanjing
Medical University. The apical papilla complexes were gently
obtained from the immature dental roots, disposed into 1
mm3, and handled with type I collagenase (2 mg/mL) and
dispase (4mg/mL) for 1 h at 37∘C.Next, single-cell suspension
was cultured into cell culture dishes at the density of 1 × 105
cells/mL and incubated in 𝛼-MEM supplemented with 10%
fetal bovine serum (FBS), 100U/mL penicillin, and 100U/mL
streptomycin. When reaching 80% confluence, the cells were
digested and passaged at the ratio of 1:3. Then, SCAPs were
purified according to the standard procedures for magnetic
activated cell sorting (MACS) as previously described [27,
28]. Immunocytochemical staining against STRO-1 was used
to identify and confirmed the obtained SCAPs and the cells
were routinely observed under the phase-contrast inverted
microscope. SCAPs at 3-5 passages were used in the following
experiments.

2.2. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-2,5-
Tetrazoliumbromide) Assay. To study the effects of high
glucose on the proliferation capacity of SCAPs, the cells at
passage 3 were seeded into 96-well plates (Corning, Life
Sciences) at a density of 2 × 103 cells/well for 24 h, starved in
serum-freemedia for another 24 h, and, respectively, cultured
in normal 𝛼-MEM (containing 5 mmol/L glucose) and high
glucose concentration 𝛼-MEM (containing 25mmol/L).
After 0, 1, 3, 5, and 7 days of culture, 20𝜇l fresh MTT
solution (5 mg/ml, Sigma-Aldrich) was added into the wells
of each group and incubated for 4 h at 37∘C. Culture media
were eliminated and formazan was dissolved in 150 𝜇l/well
dimethyl sulfoxide (DMSO, Sigma). The absorbance (OD
value) was measured at the wavelength of 490 nm using a
microtiter plate reader (Titertek, Helsinki, Finland).

2.3. Alkaline Phosphatase (ALP) Activity. SCAPs were seeded
into the 96-well plates (Corning, Life Sciences) at a density
of 2 × 103 cells/well and, respectively, cultured in normal
glucose concentration media (containing 5 mmol/L glucose)
or high glucose concentration media (containing 25 mmol/L
glucose). At days 3 and 7, ALP activity of each group
was measured using an ALP kit (Biosino Bio-technology
& Science Inc.) and normalized on the basis of equivalent
protein concentrations.

2.4. Alizarin Red Staining. SCAPs were separately cultured
in four different media solutions ( normal culture media
containing 5 mmol/L glucose, high glucose concentration
media containing 25 mmol/L glucose, mineralized media
(MM) containing 5 mmol/L glucose, and mineralized media
containing 25 mmol/L glucose) for 14 days. MM is the
mineralization-inducing medium containing 𝛼-MEM, 10%
FBS, 100 U/mL penicillin, 100 g/mL streptomycin, 2 mmol/L
L-glutamine (Sigma-Aldrich), 50 mg/L ascorbic acid (Sigma-
Aldrich), 10 mmol/L 𝛽-glycerophosphate (Sigma-Aldrich),
and 10 nmol/L dexamethasone (Sigma-Aldrich). Alizarin red
staining was performed as previously described [29–31]. To
quantify the calcified nodules, the alizarin red was eluted
from the stained cells with 1 ml/well 10% cetylpyridinium
chloride in 10 mM sodium phosphate (pH7.0). The calcium
concentration was calculated as previously reported [29] and
the final concentrations were normalized to total protein
contents.

2.5. Real-Time Reverse Transcriptase-Polymerase Chain
Reaction (Real-Time RT-PCR). To investigate the odonto/
osteoblast-related gene changes after the inhibition of
NF-𝜅B pathway, SCAPs were cultured in normal culture
media containing 5 mmol/L glucose or high glucose
concentration media containing 25 mmol/L glucose or
high glucose concentration media containing 25 mmol/L
glucose + BMS345541. The total cellular RNA was extracted
by adding TRIzol reagent (Invitrogen, Carlsbad, CA) into
cell samples, respectively, according to the manufacturer’s
instructions. The mRNA was reversed using a PrimeScript
RT Master Mix Kit (TaKaRaBiotech., Japan). Real-time
RT-PCR was performed by using SYBR� Premix Ex Taq�
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Table 1: Sense and antisense primers for real-time reverse transcription polymerase chain reaction.

Genes Primers Sequences (5’-3’)

ALP Forward GACCTCCTCGGAAGACACTC
Reverse TGAAGGGCTTCTTGTCTGTG

RUNX2 Forward TCTTAGAACAAATTCTGCCCTTT
Reverse TGCTTTGGTCTTGAAATCACA

DSPP Forward ATATTGAGGGCTGGAATGGGGA
Reverse TTTGTGGCTCCAGCATTGTCA

OSX Forward CCTCCTCAGCTCACCTTCTC
Reverse GTTGGGAGCCCAAATAGAAA

OCN Forward AGCAAAGGTGCAGCCTTTGT
Reverse GCGCCTGGGTCTCTTCACT

GAPDH Forward GAAGGTGAAGGTCGGAGTC
Reverse GAGATGGTGATGGGATTTC

kit (TaKaRaBiotech., Japan) and ABI 7300 real-time PCR
system. Primers used in this experiment were exhibited
in Table 1. GAPDH was used as an internal control. The
genes expression was calculated by the 2−△△CT method as
previously reported [30].

2.6. Western Blot Analysis. In order to investigate the effects
of high glucose on the odonto/osteogenic differentiation of
SCAPs, SCAPs cultured in 5 mmol/L glucose and 25 mmol/L
high glucose medium were, respectively, collected at days
3 and 7 and then lysed in RIPA lysis buffer (Beyotime,
China). To detect the expression of NF-𝜅B pathway-related
proteins, SCAPs treated by 25 mmol/L high glucose for
0 min, 15 min, 30 min, and 60 min were, respectively,
harvested to get the cytoplasmic and nuclear proteins with
a Keygen Kit (Keygen Bio-tech, Nanjing, China). The same
amount of protein was placed into a 10% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto 0.22 𝜇m polyvinylidene fluoride (PVDF,
Millipore) membranes. Then, the transferred membranes
were blocked in 5% BSA at room temperature for 2 h
and incubated with primary antibodies including DSP (sc-
33586, Santa Cruz), RUNX2 (ab76956, Abcam, UK), OSX
(ab22552, Abcam, UK), OCN (ab93876, Abcam, UK), ALP
(ab95462, Abcam, UK), P65(#8242, Cell Signaling Technol-
ogy), p-P65(#3033, Cell Signaling Technology), I𝜅B𝛼(#4814,
Cell Signaling Technology), p-I𝜅B𝛼(#2859, Cell Signaling
Technology), H3(#9728, Cell Signaling Technology), and 𝛽-
ACTIN(AP0060, Bioworld) overnight at 4∘C. 𝛽-ACTIN and
H3 served as the internal controls. Finally, the membranes
were washed with PBST three times followed by incubation
with the secondary antibodies for 1 h at 37∘C and then visu-
alized with Image Quant LAS4000 system (GE Healthcare).

2.7. Statistical Analysis. Data were calculated by Student’s t-
test. P value less than 0.05 was considered to be statisti-
cally significant. All the statistical analyses were performed
with SPSS 17.0 software (SPSS Inc., Chicago, IL). Image-Pro
Plus 5.0 (Media Cybernetics, Inc, Rockville, MD) software
was used for the grayscale analysis. All the results were

exhibited as means ± SD and experiments were repeated in
triplicate.

3. Results

3.1. Effects of High Glucose on the Proliferation of SCAPs.
SCAPs at passage3 were fibroblast-like (Figure 1(a)) and
purified SCAPs were positive against STRO-1 (Figure 1(b)).
Western blot assay showed that the expression of osteo/
odontogenic markers (RUNX2 and ALP) was gradually
upregulated accompanying with the increased glucose con-
centrations from5mmol/L to 25mmol/L, and the highest level
was in 25mmol/L group.Then 25mmol/L glucose was used in
the following experiments (Figure 1(c)). MTT assay showed
the OD values of SCAPs cultured in high glucose media were
significantly lower than those in normal media at days 3, 5,
and 7 (values were presented asmeans ± SD, n = 6, P < 0.05 or
P < 0.01, Figure 1(d)), indicating that the proliferation ability
of SCAPs was inhibited by high glucose.

3.2. Effects of High Glucose on the Odonto/Osteogenic Dif-
ferentiation of SCAPs. ALP activity of SCAPs cultured in
high glucose was significantly higher than those in 5mmol/L
glucose at days 3 and 7 (Figure 2(a), P < 0.01). Alizarin
red staining assay showed that SCAPs in MM+25 mmol/L
glucose group formed more calcified nodules than those in
MM+5mmol/L glucose group (Figure 2(b)).Meanwhile, CPC
quantitative calcium assay demonstrated the higher calcium
deposition in MM+25mmol/L glucose group than MM+5
mmol/L glucose group (Figure 2(c), P < 0.01), indicating
that high glucose can enhance the mineralization capacity
of SCAPs. Real-time RT-PCR showed that the expression
of ALP, RUNX2, OSX, OCN, and DSPP was enhanced in
high glucose-treated SCAPs at day 3 (Figure 3(a)) or day
7 (Figure 3(b)) as compared with that in control group.
Western blot results demonstrated that the expression of
odonto/osteogenic proteins (ALP, RUNX2, DSP, OSX, and
OCN) was significantly increased after the treatment of
25mmol/L glucose for 3 and 7 days as compared with that in
control group (Figures 3(c), 3(d), and 3(e)).
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Figure 1: Effects of high glucose on proliferation of SCAPs. (a) Immunocytochemical staining against PBS as negative control. (b)
Immunocytochemical staining against STRO-1. (c) Protein expression of RUNX2 and ALP was enhanced with the increased glucose
concentrations from 5 mmol/L to 25 mmol/L, in which the highest level was detected in 25 mmol/L group. ∗P < 0.05, ∗∗ P < 0.01. (d)
MTT assay showed that OD values of SCAPs in 25 mmol/L group were significantly lower than those in control group at days 3, 5, and 7.
Values were presented as means ± SD, n = 6, ∗P < 0.05; ∗∗ P < 0.01.

3.3. NF-𝜅B Pathway Involvement in High Glucose-Mediated
Odonto/Osteogenic Differentiation of SCAPs. NF-𝜅B pathway
proteins changed after the treatment of high glucose for 15,
30, and 60 min. The expression of p-I𝜅B𝛼 increased at 15min
and then decreased. Cytoplasmic p-P65 protein expression
was obviously upregulated at 15 min and slowly decreased,
while the protein expression ofnulearP65 was increased at
15 min and then gradually decreased at 30 min and 60 min
(P< 0.01, Figures 4(a) and 4(b)). To confirm the role of
NF-𝜅B pathway in high glucose-mediated odonto/osteogenic
differentiation of SCAPs, BMS345541 (IKK inhibitor) was
used to inhibit NF-𝜅B pathway prior to the high glucose
treatment. Real-time RT-PCR results showed that the expres-
sion of odonto/osteogenic genes including ALP, RUNX2,
OSX, OCN, and DSPP was significantly downregulated, as
compared with that in high glucose-treated SCAPs (P< 0.01,
Figure 4(c)).

4. Discussion

Patients with DM may suffer some skeletal disorders includ-
ing osteoporosis, periodontal diseases, and the diabetic foot
syndrome, indicating that DM is associated with specific
alterations of bone metabolism [32]. In the context of dia-
betogenesis, the key biological issues are how bone tissues
originate, proliferate, and differentiate [8]. Recruitment of an
adequate amount of MSCs to the microenvironment around
the bone injury is essential for effective bone repair [33]. It
is well known that SCAPs are the most important stem cells
for dental tissue regeneration [4]. Thus, it will make sense to
investigate the proliferation and odonto/osteogenic differen-
tiation of SCAPs under a high glucose microenvironment.

In the present study, STRO-1+ SCAPs were successfully
isolated and MTT assay showed that 25mmol/L high glucose
reduced the proliferation ability of SCAPs. Mechanistically,
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Figure 2: Effects of high glucose on mineralization of SCAPs. (a) ALP activity of SCAPs cultured in 25 mmol/L group was higher than those
in 5 mmol/L group at days 3 and 7. Values were presented as means ± SD, n = 6 ∗∗P < 0.01. (b) Alizarin red staining showed that the calcified
nodules formed in uninducedmedia (without mineralizedmedia) has no significant difference between 25mmol/L group and control group.
However, SCAPs in 25 mmol/L group produced more calcified nodules than those in 5 mmol/L group, when cultured in the mineralize-
induced media. (c) Quantitative calcium assay demonstrated the higher calcium deposition in 25 mmol/L group as compared with that in 5
mmol/L group. Data were presented as means± SD, n = 3. ∗∗P < 0.01.

high glucose environment may induce an adaptive response
to the increased oxidative stress and promote reactive oxygen
species (ROS) removal, resulting in a decreased proliferation
of stem cells [34, 35]. Some studies have demonstrated that
high glucose can inhibit the proliferation ability of BMSCs
by activating GSK3𝛽 to suppress cyclin D1 and CXCR-4
[36].

High glucose has the ability to attenuate the differen-
tiation capacity of ESCs into neurocytes [37], BMSCs, and
hPDLSCs into osteoblasts [34, 36]. In contrast, high glucose
can promote the osteogenic differentiation capacity of human
periodontal ligament fibroblasts [38]. To date, effects of high
glucose on the odonto/osteogenic differentiation of SCAPs
are still not determined. This study demonstrated for the
first time that 25 mmol/L high glucose can enhance the
odonto/osteogenic differentiation of SCAPs. Previous studies
have found the appearance of pulp stones and thickened pre-
dentin in diabetic rat [39, 40]. Moreover, positive correlation
between Type II diabetes mellitus and pulp stones has been
revealed through analyses of various clinical cases [41]. It has

been reported that advanced glycation end-products (AGE)
can stimulate the osteogenic differentiation, which is verified
by the upregulation of ALP activity, osteopontin (OPN), and
osteocalcin (OCN) in rat dental pulp cells [39].

An increase in osteogenic differentiation level after the
high glucose treatment was indicated by an upregula-
tion of several odonto/osteogenic markers including ALP/
ALP, RUNX2/RUNX2, DSPP/DSP, OSX/OSX, and OCN/
OCN[42]. ALP/ALP is mainly generated by osteoblasts and
was thought to participate in the degradation of pyrophos-
phate to provide sufficient inorganic phosphate for the
occurrence of mineralization [43]. RUNX2/RUNX2 and
OSX/OSX are both important transcription factors necessary
for the osteogenic differentiation [44], in which OSX is a
downstream gene of RUNX2 and regulated by RUNX2 [45].
OCN/OCN is highly presented in the bone extracellular
matrix and actively involved in bone formation [46]. As
the specific marker of the odontogenesis, DSPP/DSP mainly
appears in the dentin or predentin structures [47, 48].
Alkaline phosphatase (ALP) activity and alizarin red staining
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Figure 3: Effects of high glucose on the odonto/osteogenic differentiation of SCAPs. (a, b)The expression of odonto/osteogenic genes (ALP,
RUNX2,OSX,OCN, andDSPP) in 25mmol/L high glucose-treated SCAPswas significantly higher than that in 5mmol/L group at days 3 and 7.
GAPDH served as an internal control. Values were presented asmeans± SD, n = 6. ∗∗P < 0.01. (c)Western blot showed the odonto/osteogenic
proteins (e.g., ALP, RUNX2, OSX, OCN, and DSP) in 25mmol/L group were significantly higher than those in 5 mmol/L group at days 3 and
7. ACTIN served as an internal control. (d) Grayscale analysis of panel C. ∗P < 0.05; ∗∗P < 0.01.

confirmed the enhanced odonto/osteogenic differentiation
ability of SCAPs in high glucose media.

In this study, NF-𝜅B signaling pathway was activated after
high glucose treatment and the increased odonto/osteogenic
capability of SCAPs can be blocked by the NF-𝜅B signaling
pathway inhibitor (BMS345541). Various studies have proved
that high glucose can activate NF-𝜅B signaling in different

cells [21, 23, 49–51]. Some reports have revealed that reactive
oxygen species (ROS) is a crucial signal driving the differ-
entiation of both adipose-derived stem cells (ADSCs) and
myeloid-derived suppressor cells (MDSCs) into adipocytes
after high glucose exposure. ROS may modulate the activity
of transcription factors directly, such asNF-𝜅B, thus changing
the related gene expression [20, 52]. Moreover, high glucose
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Figure 4: NF-𝜅B pathway involvement in high glucose-mediated odonto/osteogenic differentiation of SCAPs. (a) The protein levels of P65,
p-P65, I𝜅B𝛼, and p-I𝜅B𝛼 in the cytoplasm of 25 mmol/L high glucose-treated SCAPs at 0, 15, 30, and 60 min, respectively. 𝛽-ACTIN served
as an internal control. The nuclear P65 expression of 25 mmol/L high glucose-treated SCAPs at 0, 15, 30, and 60 min, respectively. Histone
3 served as an internal control. (b) Quantitative analysis for the ratios of p-I𝜅B𝛼/I𝜅B𝛼 and p-P65/P65 and grayscale analysis of panel A after
25 mmol/L glucose treatment at indicated time points. Values were presented as means± SD, n = 6. ∗ P< 0.05; ∗∗P< 0.01. (c) The expression
of odonto/osteogenic genes (ALP, RUNX2, OSX, OCN, and DSPP) in 25 mmol/L+BMS345541 group was obviously decreased as compared
with that in 25 mmol/L group. Values were presented as means ± SD, ∗ ∗ 2−��Ct ≥ 2, P< 0.01; ∗ 1 < 2−��Ct < 2, P < 0.05, n=3.

can induce the expression as well as the secretion of Par-4
in islet beta cells while TLR-2/4 expression is significantly
upregulated in retinal microvascular endothelial cells after
high glucose treatment, which subsequently causes the acti-
vation of NF-𝜅B [53–55].

Together, high glucose is transported into SCAPs by
glucose transporters (GLUT) [56], and then I𝜅B𝛼 is degraded
and released from the p50/p65 complex, which leads to the
translocation of P65 into nuclei and the activation of NF-
𝜅B. The odonto/osteogenic genes are expressed later which
ultimately result in the committed differentiation of SCAPs
(Figure 5).

5. Conclusions

In summary, high glucose could reduce the proliferation
ability of SCAPs.Meanwhile, the odonto/osteogenic differen-
tiation capacity of SCAPs was enhanced in high glucose envi-
ronment by activation of NF-𝜅B pathway. This work provides
a novel insight into the interactions between high glucose
and apexogenesis mediated by SCAPs, in which high glucose
may have a crucial influence on the odontogenesis and pulp

calcification [40, 41, 56].More extensive investigations should
be performed to explore the potential applications of high
glucose in clinical endodontic treatments.
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