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Abstract.Sequential interactions between several adhesion molecules and their ligands regulate lym-

phocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore,

central and critical components of the immune and inflammatory system. We review the evidence that

tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common fac-

tor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocy-

te-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local

tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smo-

ke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression,

which may help explain the above phenomena, smoking has a profound influence on circulating adhesion

molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of solu-

ble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing eviden-

ce suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to

soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases.

This evidence is discussed herein.

Key words: adhesion molecules; cancer; CD44; chronic obstructive lung disease; ICAM-1; periodonti-

tis; selectins; smoking; tobacco; vascular disease.

INTRODUCTION

Smoking leads to a generalised leukocytosis [1-7]; influences

the production of most immunoglobulin classes and

sub-classes [8-11]; can induce T cell anergy (failure to re-

spond to antigen)[12-14]; effect vascular dynamics [15-19];

cause inappropriate priming and activation of monocytes and

neutrophils [4, 20, 21]; abnormal platelet aggregation [22,

23]; and a generalized increase in local and systemic inflam-

matory markers [21, 24, 25]. Therefore, there is considerable

evidence that smoking exerts profound influences on multiple

components of the immune and inflammatory system in

humans, various aspects of which have been ably reviewed

elsewhere [4, 14, 16, 26, 27]. This paper will focus on the in-

fluence of tobacco smoking on a group of molecules that func-

tion at the heart of the immune and inflammatory response -

the cellular adhesion molecules.

ADHESION MOLECULE OVERVIEW

Adhesion molecules share the common physiological role of

promoting cell-cell or cell-extracellular matrix adhesion, and
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many are multifunctional intracellular signalling molecules.

The ability of lymphocytes (B cells and T cells) to circulate be-

tween the blood and secondary lymphoid tissue, and the move-

ment of leukocytes (lymphocytes and other white blood cells,

such as neutrophils and monocytes) from the systemic circula-

tion to local sites of inflammation, are major and critical compo-

nents of the immune response. Leukocytes must, therefore,

interact with and cross endothelial barriers – either the high en-

dothelial venules of the lymphatic system or the endothelial

cells forming the microvasculature. The sequential processes

of capture, rolling and adhesion of leukocytes to endothelial

cells, and subsequent leukocyte extravasation and migration to

specific sites, are mediated and controlled by a complex and

overlapping series of interactions between adhesion molecules

and their specific ligands - an adhesion cascade - as represented

in Figure 1 [28-31].

Essentially, leukocyte capture is mediated by P-selectin

(CD62P) and L-selectin (CD62L). Rolling is mediated by

P-selectin, L-selectin, and a third member of the selectin fam-

ily of adhesion molecules, E-selectin (CD62E). Firm adhe-

sion is mediated by interactions between intercellular

adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhe-

sion molecule-1 (VCAM-1; CD106) and their ligands - the β2

integrins (particulary LFA-1 [αLβ2; CD11a/CD18] and Mac-1

[αMβ2; CD11b/CD18]) and very late-antigen-4 (VLA-4;

CD49d), respectively - following further activation of the

adhesion cascade by locally produced chemokines, and/or

other stimuli, such as RANTES, fractaline, and stromal

cell-derived factor-1α (SDF-1α) and SDF-1β, as reviewed in

[31]. Extravasation through endothelial-endothelial cell junc-

tions is less well understood. However, homophilic interac-

tions of specific adhesion molecules [junctional adhesion

molecules (JAM), platelet-endothelial cell adhesion mole-

cule-1 (PECAM-1; CD31), and vascular endothelial cadherin

(VE-cadherin; CDH5)] may play important roles in maintain-

ing endothelial-endothelial cell adhesion, and these adhesion

molecule interactions are probably disrupted in order to per-

mit leukocyte transmigration [31-34]. Although the impor-

tance of another adhesion molecule, CD44, in lymphocyte

homing has been known for some time, there is increasing evi-

dence to suggest that CD44 is also involved in leukocyte adhe-

sion and transmigration processes during inflammation

[30, 35]. Glycosylation, and other post-translational modi-

fications; expression densities of adhesion molecules, and

their ligands, on leukocytes and endothelial cells; activa-

tion-induced alterations in the affinity of adhesion molecules

for specific ligands; intracellular signal transduction path-

ways initiated on rolling; and co-operation between various

adhesion molecules, all influence leukocyte/endothelial inter-

actions, as reviewed elsewhere [28, 31, 36-42]. Significant

interference with leukocyte transmigration due to environmen-

tal, acquired, or genetic factor(s) may be expected to have pro-

found consequences. A classic example is leukocyte adhesion

deficiency type I, a rare genetic disorder defined by insuffi-

cient or non-functional CD18, the common chain of the

β2-integrins, resulting in compromised leukocyte trafficking,

reflected in severe and recurrent bacterial infections, and de-

layed wound healing. This paper will focus on the evidence

that tobacco smoking also influences the expression and re-

lease of specific adhesion molecules.

ICAM-1 and CD44

Of the major adhesion molecules, the evidence presented

below will necessitate a particular focus on two — ICAM-1

and CD44. ICAM-1 is an integral membrane glycoprotein

with five extracellular immunoglobulin-like domains and a

short cytoplasmic tail, encoded by a 3.3 kb mRNA transcribed

from a single gene with no alternate exons [43, 44]. ICAM-1

is expressed constitutively by a wide variety of cell types, in-

cluding endothelial cells. Basal expression of ICAM-1 on en-

dothelial cells, and some leukocytes, can be augmented

following induction by TNF-α, IL-1β, and IFN-γ, and other in-

flammatory mediators [38, 45-49]. Recognised ligands of

ICAM-1 include the β2–integrins of leukocytes, hyaluronate,

sialophorin (CD43) and fibrinogen [50, 51], reflecting the ma-

jor role played by ICAM-1 immune and inflammatory

regulation.

By way of introduction to a complex adhesion molecule

family, human CD44 is a widely expressed family of

glycoproteins, encoded by a single gene containing 20 exons.

Numerous CD44 isoforms are generated through alternate
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Figure 1. Leukocyte adhesion and extravasation.

This figure has been adapted from references [28 – 31].

Abbreviations used: CIPD – chronic inflammatory periodontal disease;

COPD – chronic obstructive pulmonary disease; GCF - gingival

crevicular fluid; HUVEC – human umbilical vein endothelial cells;

ICAM-1 - intercellular adhesion molecule-1 (CD54); LFA-1 - lymphocyte

functional antigen-1 (CD11a/CD18; (αLβ2); Mac-1 - CD11b/CD18

(αMβ2); PECAM-1 - platelet-endothelial cell adhesion molecule-1;

VCAM-1 - vascular cell adhesion molecule-1 (CD106).



splicing of pre-mRNA. However, all CD44 isoforms share the

same N- and C-terminal sequences. The haematopoetic, or

standard form, of CD44 (CD44H; CD44s) is a 248 amino acid

protein that contains no variant exon-encoded peptide se-

quences. Thus CD44H is the smallest CD44 isoform, with a

molecular mass of 80-95 kDa, more than half of which is due

to post-translational glycosylation events. Splice variation

and significant post-translational modifications result in a

multifunctional group of CD44 adhesion molecules, with im-

portant functions in embryogenesis, lymphocyte activation

and homing, angiogenesis, leukocyte extravasation,

anti-apoptosis signalling, presentation of growth factors and

proteases, and cell migration and proliferation, including dur-

ing tumor metastasis [30, 52-60]. Many of these activities ap-

pear to be mediated by interaction between the extracellular

matrix component hyalouronate and CD44. However, several

other CD44 ligands are recognised, including laminin, colla-

gen, fibronectin, serglycin, osteopontin and aggrecan [57, 61,

62]. Many recent reviews address the structure, regulation,

function, clinical significance, and therapeutic targeting of

ICAM-1 [38, 50, 51, 63-67] and CD44 [30, 61-63, 68-74].

THE INFLUENCE OF TOBACCO

SMOKING ON CELL-BOUND

ADHESION MOLECULES

It has been known for some time that cigarette smoking can in-

duce leukocyte–endothelial adhesion, microvascular and

macrovascular entrapment of leukocytes, and leukocyte aggre-

gation in humans and animal models [75-89]. Leukocyte-en-

dothelial binding, and subsequent leukocyte-mediated tissue

damage, is a central component of various smoking-associ-

ated inflammatory diseases, leading several groups to investi-

gate the influence of tobacco use on adhesion molecule

networks. This review will pay particular attention to chronic

obstructive pulmonary disease (COPD), direct cigarette

smoke exposure being most intense in the lungs; vascular dis-

eases, vascular endothelial cells and circulating leukocytes

being chronically exposed to systemically distributed compo-

nents and metabolites of smoke; and chronic inflammatory

periodontal disease (CIPD), with the periodontal tissues be-

ing both chronically exposed to systemic smoke components,

and transiently exposed topically.

Chronic Obstructive Pulmonary Disease

COPD is characterised by chronic coughing, obstruction

of the peripheral airways, and destruction of lung surfaces

(emphysema). Although not all smokers develop COPD, 90%

of those who do develop COPD are smokers. As much of the

pulmonary tissue destruction in COPD is thought to be due to

the recruitment and activation of inflammatory cells, several

researchers have examined the influence of smoking on

adhesion molecule expression and release by the endothelial

cells comprising the pulmonary vasculature, and recruited al-

veolar inflammatory cells. Tobacco smoking results in a

significantly increased number of immature neutrophils in the

systemic circulation, characteristic of chronic stimulation of

bone marrow [7]. Accordingly, there is a small, but signifi-

cant, increase in circulating neutrophil L-selectin expression

in smokers [7]. Immature neutrophils are preferentially se-

questered in the lung microvasculature [90], and pulmonary

neutrophil entrapment is a recognised phenomenon in smok-

ers [85]. Additionally, absolute neutrophil and macrophage

numbers are increased in the alveolar space of smokers [24,

88, 91-93]. These observations point to a smoking-induced

dysregulation of adhesion molecule networks in the pulmo-

nary environment.

In support of this, Schaberg et al. [88] noted that a signifi-

cantly higher proportion of alveolar macrophages from smok-

ers expressed β2-integrin subunits than alveolar macrophages

obtained by pulmonary lavage from non-smokers. The in-

crease in β2-integrin expression correlated with increased

numbers of macrophages in the pulmonary environment. In-

creased binding of alveolar macrophages from smokers to

TNF-α stimulated human umbilical vein endothelial cells

(HUVECs) was mitigated by either pre-treatment of the endo-

thelial cells with antibodies to ICAM-1, or pre-treating alveo-

lar macrophages with antibodies to CD18. Therefore,

smoking may contribute to increased ICAM-1/β2-integrin-de-

pendent recruitment of inflammatory cells to the lungs.

Lensmar et al. [94] reported that while the sputum of smokers

(n = 9) contained more macrophages than the sputum of

non-smokers (n = 7), the percentage of macrophages express-

ing ICAM-1 was significantly lower in smokers. However,

upregulation of endothelial ICAM-1 expression is likely to be

a more important limiting factor in terms of leukocyte

recruitment.

In studies of the pulmonary endothelium, there is some evi-

dence that ICAM-1 expression by bronchial vessels may not

be affected by smoking [95]. However, Schaberg et al. [93]

went on to observe a large increase in ICAM-1, but not

P-selectin, E-selectin, or VCAM-1, expression by the endothe-

lium of peripheral pulmonary vessels in smokers, compared

to non-smokers. Schaberg et al. [93] also noted a strong corre-

lation between cumulative tobacco smoke exposure

(pack-years) and the percentage of ICAM-1-positive pulmo-

nary vessels, consistent with a role for smoking in increased

pulmonary recruitment of leukocytes through the dysregu-

lation of adhesion molecule networks.

As only some smokers develop COPD, there is an obvious

interest in defining the characteristics of smokers at enhanced

risk of developing the disease [96]. To this end, Maestrelli et

al. [97] reported that the numbers of neutrophils expressing

CD11b and CD18, but not CD11a or CD11c, were increased

in smoking subjects (n = 33) with airway obstruction, com-

pared to smokers without airway obstruction, and hypothes-

ised that CD11b/CD18 expression by sputum neutrophils may

represent a marker for the development of chronic airway ob-

struction among smokers. Noguera et al. [98] investigated the
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characteristics of circulating neutrophils in subjects with

COPD and in smokers and non-smokers without COPD.

None of the COPD subjects were current smokers, although

they had a total cumulative tobacco exposure similar to the

smoking group (50 pack-years). There were no significant dif-

ferences in Mac-1, LFA-1, or L-selectin expression by TNF-α
stimulated or unstimulated neutrophils isolated from smokers

or non-smokers with normal forced-expiratory volume. How-

ever, expression of Mac-1 on neutrophils was increased in

those with COPD, compared to either healthy group (smokers

or non-smokers), augmented by an increased respiratory

burst, leading the authors to suggest that neutrophil dysfunc-

tion in COPD subjects may not be directly caused by smok-

ing, but, rather, may represent a characteristic of COPD. It is

also possible that smoking may not affect all smokers equally,

and that a differential effect on CD18/CD11b expression

could discriminate smokers at increased risk of developing

COPD. However, a recent comparison of adhesion molecule

expression profiles on leukocyte (L-selectin, VLA-4, and the

three β2-integrin heterodimers), endothelial and epithelial

(E-selectin, P-selectin, VCAM-1, ICAM-1, and ICAM-2) cell

surfaces in freshly resected lungs from smokers with airways

obstruction (n = 10) and smokers with normal lung function

(n = 10) revealed no significant differences in adhesion mole-

cule profiles between diseased and healthy groups [99]. The

authors, therefore, concluded that development of airways ob-

struction in smokers could not be explained by differences in

the expression of adhesion molecules known to be involved in

the control of cell traffic in the lung.

Other investigations have monitored the effect of smoking

on bronchial epithelial cells. Small-airway epithelial cells har-

vested from smokers exhibited significantly elevated

ICAM-1 mRNA levels, compared to non-smokers [100]. Cor-

respondingly, a dramatic increase in ICAM-1 release from the

surface of cultured small-airway epithelial cells of smokers

compared to cells from non-smokers (356 pg 106 cells –1 vs

113 pg 106 cells –1) was noted. No such differences were noted

in epithelial cells isolated from the main bronchi of smokers

and non-smokers. Similarly, di Stefano et al. [95] found no dif-

ference in ICAM-1 expression on the bronchial epithelium of

smokers and non-smokers. Cigarette smoke exposure resulted

in a significant increase (up to 175%) in sICAM-1 release

from primary explant cultures of human bronchial epithelial

cells obtained from never-smokers, or smokers with COPD,

but not in cultured bronchial epithelial cells from smokers

with normal pulmonary function [101]. As similar results

were noted for concentrations of the pro-inflammatory

cytokine IL-1β, this suggests that not all smokers are equally

susceptible to cigarette-smoke induced alterations to the pul-

monary inflammatory response.

Vascular diseases

The pathogenesis of atherosclerosis, the precursor to most

acute coronary syndromes and strokes, includes the activation

of vascular endothelial cells, and the recruitment of

inflammatory cells, predominantly macrophages, to the ves-

sel wall [35, 102, 103]. Leukocyte- endothelial recruitment is

adhesion molecule-dependent, and smoking is a major risk

factor for vascular diseases. Therefore, attention has inevita-

bly turned to examinations of the influence of tobacco smok-

ing on adhesion molecule expression by vascular endothelial

cells. Indeed, tobacco smoking has long been known to in-

duce leukocyte-endothelial adhesion and leukocyte entrap-

ment, as noted earlier.

Monocyte-endothelial interaction is clearly multifactorial.

However, endothelial ICAM-1 expression is likely to exert a

strong influence on such cell-cell adhesions. Adams et al.

[102] were able to show upregulation of ICAM-1 (but not

VCAM-1 or E-selectin) expression on HUVECs exposed to

smokers’ serum, and to confirm increased monocyte-endothe-

lium adhesion in smokers selected to exhibit no other major

risk factor for vascular disease. Nicotine has been shown to in-

duce an increase in VCAM-1 mRNA synthesis, but not

E-selectin, in primary human coronary artery endothelial

cells, but a 1.6 fold elevation required 24 hr exposure to a con-

centration of nicotine as high as 10-5M (or 1.6 µg ml-1), which

is higher than normal physiological exposure levels [17,

104, 105]. Weber et al. [89] determined that increased

monocyte-endothelial adhesion in smokers is CD11b-depend-

ent, through the use of a blocking anti-CD11b antibody. How-

ever, CD11b was not increased on the surface of freshly

isolated monocytes. This indicates that smoking may lead to

increased monocyte-HUVEC adhesion by influencing an en-

dothelial Mac-1 ligand, with ICAM-1 the prime candidate, or

that smoking may induce conformational, or other, alterations

to Mac-1, leading to increased affinity for ICAM-1. Indeed, in-

creased expression of CD11b may not be required or suffi-

cient for increased leukocyte-endothelial adhesion [89, 106,

107].

Neutrophils contain large granular stores of CD11b that

can be rapidly translocated to the surface on activation [108,

109]. Therefore, tobacco-induced translocation of CD11b

could partly explain enhanced neutrophil adhesion in smok-

ers. Recently, Koether et al. [20] exposed whole blood or neu-

trophils isolated from non-smokers to cigarette smoke

condensate (CSC), and observed a rapid (minutes) 2.5 to 3

fold increase in CD18/ CD11b expression on the neutrophil

surface. Other studies have also shown an increased to-

bacco-induced expression of cell surface β2-integrins by leu-

kocytes in in vitro studies [33, 80, 110]. Thus, up-regulation

of CD11b/CD18 in primed neutrophils, coupled with endothe-

lial ICAM-1 expression, would be expected to contribute to in-

appropriate neutrophil adhesion in smokers in cardiovascular,

pulmonary, or other environments, with potential ramifica-

tions to local tissue integrity. However, this specific issue is

not clearcut. Most in vivo, and some in vitro, studies in hu-

mans have not shown a difference between expression levels

of β2-integrins on neutrophils and monocytes and of smokers

and non-smokers [4, 7, 105, 111], which hints at a need for
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consideration of cell conditioning to tobacco smoke, and/or

physiologically relevant dosing in in vitro models. Typical se-

rum nicotine levels in smokers are in the region of 30 ng ml-1

[17, 104, 105].

Shen et al. started the important task of dissecting the sig-

nalling pathways that underlie tobacco-induced monocyte-en-

dothelial adhesion [33]. Cigarette smoke condensate (CSC)

was shown to induce surface expression of ICAM-1,

VCAM-1, and E-selectin on HUVECs and bovine aorta endo-

thelial cells. Nicotine alone, even at 25 mg ml-1, did not influ-

ence endothelial adhesion molecule profiles. Inhibitors of

protein synthesis (cycloheximide), transcription (actinomycin

D) and protein kinase C (GF 109203X and chelerythrine), es-

tablished that increased endothelial adhesion molecule expres-

sion required de novo adhesion molecule production, via a

PKC-dependent pathway. NF-κB, a transcription factor, binds

to a consensus site in specific adhesion molecule genes. Shen

et al. [33] established the importance of CSC-induced NF-κB

activation in the upregulation of endothelial adhesion mole-

cule expression. Furthermore, CSC increased the migration of

monocytic cells across HUVECs and bovine aorta endothelial

cells, concomitant with an up to 10-fold increase in

PECAM-1 phosphorylation, which was inhibited by PKC in-

hibitors. Unfortunately, such studies on the molecular mecha-

nisms by which smoking may dysregulate the expression and

release of specific adhesion molecules are rare, and there is an

obvious need for a concerted research effort in this area.

Several groups have attempted to reduce smoking-in-

duced leukocyte-endothelial adhesion in smokers by pharma-

cological intervention with anti-inflammatory agents.

Smoking-induced monocyte-endothelial adhesion in humans

was acutely abrogated to a significant degree by a single 7g

oral administration of L-arginine, but not vitamin C, suggest-

ing a role for nitric oxide [102]. Weber et al. [89] showed that

ten days of Vitamin C supplementation was successful in re-

ducing monocyte-endothelial adhesion in smokers.

Zapolska-Downar et al. [21] noted that oral administration of

the non-steroidal anti-inflammatory drug ibuprofen reduced

monocyte-HUVEC adhesion in smokers.

Adhesion molecule-mediated platelet aggregation repre-

sents a mechanism contributing to acute coronary events in

smokers [22]. Accordingly, it has been shown that P-selectin

expression is generally increased on the surface of platelets in

smokers, a process that requires translocation of P-selectin

from the intracellular α-granules [22, 112]. In vivo platelet ac-

tivation, and the associated alterations in cell surface presenta-

tion of P-selectin molecules, can occur immediately after

smoking a cigarette [22]. The increased surface of P-selectin

on platelets is not affected by aspirin administration (2 weeks

at 100 mg/day) [112].

Chronic inflammatory periodontal disease:

Chronic inflammatory periodontal disease (CIPD) is a

common disease of the supporting tissues of the teeth, result-

ing from a complex interaction between plaque bacteria and

the host response. Like vascular disease and COPD, tobacco

smoking is also a major risk factor for the development, pro-

gression, and exacerbation of periodontitis [113-116].

ICAM-1 expression is increased in the gingival

vasculature during episodes of experimental gingivitis, -in-

duced on cessation of normal oral hygiene procedures- coinci-

dent with peak measurements of IL-1 in the gingival

crevicular fluid (GCF; a serum-derived fluid that exudes from

the gingival sulcus) [117]. Rezavandi et al. [18] examined ad-

hesion molecule profiles in periodontal tissues taken from

smokers and non-smokers undergoing surgical treatment for

CIPD. Compared to non-inflamed areas, the proportion of the

microvasculature expressing ICAM-1 and E-selectin was sig-

nificantly increased in inflamed areas of tissues, irrespective
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Figure 2. Expression of ICAM-1 in the gingival tissues of a smoker and

non-smoker with chronic inflammatory periodontal disease.

Typical histological sections of gingival tissue from a smoker (A) and a non-

smoker (B) with CIPD. Tissue sections were labelled with monoclonal anti-

bodies to ICAM-1, visualised with streptavidin-biotin peroxidase complex

developed with diaminobenzidine/hydrogen peroxide, and counter-stained

with haematoxylin. ICAM-1 positive cells (dark staining) are predominantly

endothelial. The percentage of ICAM-1-positive vessels of the gingival

microvasculature was determined following immunostaining of von

Willebrand factor, an endothelial marker, in adjacent sections.



of smoking status. However, although smokers had thus re-

tained the ability to upregulate adhesion molecule expression,

an integral part of the inflammatory response, other signs of

smoking-induced immune dysregulation in the gingival

microvasculature were apparent. There was no statistically

significant difference in the number of small blood vessels, de-

tected by immunostaining of von Willebrand factor, in in-

flamed and non-inflamed areas of the gingival tissues of

smokers. In other words, the normal angiogenic response that

helps to define inflammation was compromised.

Rezavandi et al. [18] also noted that in histologically nor-

mal, non-inflamed periodontal tissues, the percentage of ves-

sels expressing ICAM-1 was reduced in smokers. Thus, basal

endothelial ICAM-1 expression levels may be compromised.

Typical expression profiles of ICAM-1 in the gingival tissues

of a smoker and non-smoker with CIPD are presented in Fig-

ure 2. As mentioned earlier, constituents of tobacco smoke

can induce ICAM-1 expression on endothelial cells [33, 80,

93, 102]. One possible outcome of long-term tobacco smoke

exposure is tolerance, with respect to ICAM-1 expression. It

is also a possibility that the reduced level of ICAM-1 expres-

sion in normal gingival tissues could reflect ongoing shedding

of membrane-bound ICAM-1. Smokers are, indeed, known to

carry a high load of a soluble form(s) of ICAM-1 in the sys-

temic circulation [105, 118], a topic we shall re-address

shortly.

In contrast to the pulmonary alveolar space, the absolute

number of neutrophils in the GCF or oral cavity fluids of

smokers is comparable or lower in smokers, compared to

non-smokers [119, 120]. This is despite the increased number

of neutrophils in the systemic circulation of smokers [5, 7].

The reduced angiogenic response and compromised endothe-

lial ICAM-1 expression profiles in the gingival tissues of

smokers may help explain this initially surprising

observation.

In summary, there is growing evidence that smoking influ-

ences tissue and cellular adhesion molecule expression pro-

files in several smoking-induced diseases: COPD; vascular

diseases; and CIPD. However, such studies are at a prelimi-

nary stage, all tissues do not appear to respond equally, and

the in vivo evidence for smoking-induced cell-associated adhe-

sion molecule dysregulation has been obtained primarily with

small numbers of patients. Further research into the influence

of tobacco on adhesion molecules in smoking-induced inflam-

matory disease is warranted and necessary.

SOLUBLE ADHESION MOLECULES

Soluble forms of many adhesion molecules are recognised

(see Figure 3), but the relevance of these circulating forms of

adhesion molecules is not clearly understood. Specific circu-

lating adhesion molecules are proteolytically released from

the cell surface of activated immune cells [45, 48, 121], there-

fore, these circulating adhesion molecules may simply reflect

general immune function. However, there is convincing

evidence that certain soluble adhesion molecules remain

bioactive and have the potential to interfere with a variety of

immunologic / inflammatory processes [29, 122]. As noted

early on by Gearing and Newman [29], there are two obvious

means by which soluble forms of adhesion molecules may

have significant physiological influence - (i) by competitive

inhibition of cell-cell interactions and, (ii) by binding to the ap-

propriate ligand on the surface of a cell, thereby eliciting a

response.

sICAM-1

The evidence that tobacco smoking leads to a significant

increase in circulating levels of sICAM-1 is overwhelming. In

an investigation into the relationship between local

(periodontal) and systemic inflammation, a significant eleva-

tion of sICAM-1 in smoking subjects, independent of

periodontal status, was noted [118]. This observation has

since been confirmed by many authors [105,123-135]. In the

pulmonary environment, involuntary cigarette smoke expo-

sure (“environmental” or “passive” smoking) has been associ-

ated with significantly increased ICAM-1 concentrations in

the bronchoalveolar lavage fluid of children [136]. Rumalla et

al. [137] noticed a 10 fold elevation in sICAM-1 levels in the

pulmonary lavage fluids of some individual smokers.

Cigarette smoking does not seem to lead to an acute in-

crease in circulating sICAM-1 levels [105, 125]. Thus, raised

circulating sICAM-1 levels in smokers could reflect to-

bacco-induced vascular damage, or other underlying patholo-

gies. However, further studies have since established that the

influence of smoking on sICAM-1 levels is dose-dependent

and reversible. There is a strong correlation between

sICAM-1 levels and several quantitative indices of recent to-

bacco smoke intake - expired-air CO levels [138]; plasma and

serum cotinine concentrations [105, 138]; a composite index
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Figure 3. Release of soluble adhesion molecules.



of tobacco intake [138]; and the systemic nicotine intake from

a single cigarette [105]. Systemic sICAM-1 levels decline rap-

idly on smoking cessation to levels approaching that of

non-smokers [125, 138]. Much of this recovery occurs in the

first four weeks following biochemically-validated cessation

(unpublished data). Taken as a whole these data provide

strong evidence that tobacco smoking is a direct causative

agent of a systemically increased sICAM-1 burden. The de-

cline in sICAM-1 levels noted on cessation is not compro-

mised by high-dosage nicotine replacement therapy, in the

form of transdermal nicotine patches (unpublished data).

Therefore, it is a component (or metabolite) of tobacco smoke

other than nicotine (or cotinine) that is responsible for ele-

vated sICAM-1 concentrations in smokers. Typical concentra-

tions of circulating adhesion molecules are presented in

Table 1.

sICAM-1 and disease

A growing number of studies report a significant associa-

tion between elevated sICAM-1 levels, and the presence of

most vascular diseases; the prediction of future adverse

events; and poor prognosis [128, 131, 134, 142-149]. Thus,

elevated sICAM-1 levels may have serious consequences. Se-

rum sICAM-1 concentrations are also reported to be signifi-

cantly elevated in subjects with other diverse disease entities,

including non-small-cell lung cancer and other malignancies

[127, 150], diabetes [29, 151], cystic fibrosis [152], inflamma-

tory bowel diseases [153], bronchial asthma [154], allergic

alveolitis [155, 156], and several other inflammatory dis-

eases. However, a majority of such studies have not consid-

ered smoking habits. Therefore some degree of re-evaluation

of sICAM-1 as a disease marker may be required in light of

the profound, and reversible, influence of tobacco smoke on

sICAM-1.

Blann et al. [157] reported that increased sICAM-1 concen-

tration was only a weak predictor of disease progression in pe-

ripheral atherosclerosis, when the study population was

balanced for age, gender, and smoking status. Wallen et al.

[134] observed that while elevated sICAM-1 levels in those

with angina pectoris was associated with cardiovascular

death, or non-fatal myocardial infarction (354 ng ml-1, n = 7)

compared to those who remained event free (282 ng ml-1,

n = 86), clinical risk factors, including smoking (57% vs

21%), were more prevalent in those with a poor outcome. Ad-

ditionally, mean sICAM-1 was significantly raised in smok-

ers, compared to never-smokers, to a comparable extent to

that noted between coronary event and event free groups. Sim-

ilarly, O’Malley et al. [130] observed a significant increase in

sICAM-1 levels in a group of individuals with ischaemic

heart disease, both at time of presentation with chest pain, and

three months later, compared to healthy controls. Therefore,

sICAM-1 levels where not influenced by the acute event.

However, for the purposes of this review it is most interesting

that sICAM-1 elevation was confounded by cigarette smok-

ing. Fassbender et al. [126] monitored soluble adhesion mole-

cule profiles in 173 subjects with cerebrovascular disaeases,

and 67 controls. Although, there was an increase in sICAM-1

levels in the total population with cerebrovascular disease

compared to controls (275 ng ml-1 vs 260 ng ml-1, respec-

tively), the diseased population contained twice the number of

smokers, and the authors note that sICAM-1 levels were sig-

nificantly increased in smoking subjects. Again, Rifai et al.

[158] examined sICAM-1 levels in the plasma of 100 men
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Table 1. Typical systemic adhesion molecule concentrations (ng ml-1) in age and gender matched smokers, non-smokers, and ex-smokers

Adhesion molecule Non-smokers Smokers Ex-smokers**

sP-selectin 70 - 150 60 - 145 -

sL-selectin 760 - 1200 940 - 1100 -

sE-selectin 40 - 45 40 - 45 -

sICAM-1 220 - 300 320 - 380 240 (-71)

sVCAM-1 500 - 610 500 - 595 -

sPECAM-1 25 30 -

sCD44v5 35 60 40 (-13)

sCD44v6 140 265 170 (-62)

* p < 0.05.

* * Ex-smokers taken from the pan-European CEASE trial [139]. Ex-smokers smoked ≥15 cigarettes per day at baseline (plasma cotinine ≥50ng ml-1); and

ceased tobacco use for 52 weeks. Tobacco cessation was validated biochemically (expired-air CO < 10 ppm and plasma cotinine <15 ng ml-1) at regular inter-

vals. Ex-smokers were matched for baseline tobacco consumption, gender and age with continuing smokers. Drop in adhesion molecule concentration

(ng ml-1) over one year given in brackets.

Data taken from [105, 118, 123, 124, 127, 134, 138-141].



with angiographically documented coronary heart disease,

and 100 healthy controls matched for age and smoking status.

Under this experimental strategy, there was no significant dif-

ference in median sICAM-1 concentrations between the dis-

eased (335 ng ml-1) and healthy groups (339 ng ml-1).

Some studies certainly suggest that elevated sICAM-1 is a

suitable marker of vascular disease status and a risk factor for

future acute vascular events [131, 146, 149], and that these sig-

nificant associations are not confounded by smoking habits.

Nevertheless, it has been clearly established that a dramatic,

dose-dependent increase in circulating sICAM-1 levels is one

consequence of tobacco smoking. Therefore smokers will be

more likely to be in the upper quartile of sICAM-1 levels,

where increased risk of vascular disease is most evident [146].

Indeed, the influence of smoking on sICAM-1 concentration

is commonly reported to be as great, or greater [118, 126, 158]

as that ascribed to disease [126, 130, 158].

Recently, Becker et al. (149) have suggested that the signif-

icant relationship between elevated systemic sICAM-1 and

vascular disease is independent of renal function and major

risk factors such as clinical or sub-clinical atherosclerosis

(prior vascular disease or ankle-brachial pressure index), en-

dothelial activation (von Willebrand factor), inflammation

(C-reactive protein), or elevated sVCAM-1. Thus a causative

link between sICAM-1 and vascular disease has yet to be

firmly established. While it is likely that underlying inflamma-

tory disease(s) will contribute to some extent to the systemic

sICAM-1 load, the possibility that the tobacco-induced

sICAM-1 burden may directly influence the immune

response, and thus represent a common factor in tobacco-in-

duced diseases, is deserving of attention. To this end, the

immunomodulatory effects attributed to sICAM-1 that may

be relevant to various disease processes are summarised in

Figure 4. Briefly, stimulation of proteloytic enzyme release

from granulocytes, which has been proposed as a mediator of

multiple organ failure [159], could make a major contribution

to tissue breakdown; stimulation of inflammatory mediator re-

lease may be expected to potentiate the inflammatory re-

sponse; competitive inhibition of leukocyte-endothelial

interactions may be expected to compromise migration of acti-

vated leukocytes; inhibition of immune surveillance could

abet tumor cells in evading detection; and promotion of

angiogenesis may aid tumor growth, and have obvious rele-

vance to other angiogenesis-dependent diseases. Detailed ex-

planations of these proposed bioactive sICAM-1 properties

can be obtained from the references provided in the figure leg-

end [47, 159-177].

The antioxidant capacity of smokers is compromised

[178]. The influence of antioxidant therapy on smoking-in-

duced endothelial-leukocyte interactions was discussed

briefly earlier. We are currently in the final stages of a study

examining the short-term influence of high-dose vitamin C

on circulating ICAM-1 levels. However, since embarking on

this study an independent research group [133] has reported

that the elevation of serum sICAM-1 in smokers is not abro-

gated by long-term treatment with a different class of antioxi-

dant molecule- α-tocopherol (2 years at 400 IU dL/day).

sICAM-1 levels were reduced in healthy men by

glucocorticoid (dexamethasone) treatment [179].

Molecular characteristics of sICAM-1

sICAM-1 exists as a 80-105kDa monomeric protein [50,

51, 180, 181], and as an unconfirmed immunoreactively dis-

tinct, and essentially uncharacterised, 130kDa protein [182].

Evidence for alternate splicing resulting in two mRNA spe-

cies directly encoding either sICAM-1 or membrane-bound

ICAM-1 in humans has been presented [183]. However, the

majority of studies have found no evidence for alternate

mRNA species in humans, and the predominant theory is that

sICAM-1 is released from the cell surface following proteoly-

sis of the cell-bound form, at a defined site [45, 48, 49, 184].

Dimeric ICAM-1 exhibits significantly higher affinity for its

major ligand (LFA-1) than monomeric ICAM-1 [185, 186].

Young et al. [187] purified sICAM-1 from normal human

serum and the urine of patients with bladder cancer by im-

munoaffinity chromatography and detected only monomeric

sICAM-1, which could not block LFA-1/ICAM-1-dependent

cell-mediated cytolosis of bladder tumour target cells. How-

ever, others have described sICAM-1 dimers and multimers in

vivo [180,181]. Transcriptional regulation of ICAM-1 is par-

ticularly complex, with unusual post-transcriptional control

mechanisms described [50, 51, 66]. Cell-specific regulatory

mechanisms and cell-specific post-translational modifica-

tions of ICAM-1 proteins may affect ICAM-1 function [184,
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Figure 4. Immunomodulatory functions of sICAM-1.

The following references were considered in the construction of this

illustration.

A. [159-161]. B. [162-165]. C. [47, 107, 166-170]. D. [171-176]. E. [177].



188, 189]. However, to the best of our knowledge, the charac-

ter, and source, of ICAM-1 molecules elevated in smokers has

not yet been investigated. Clearly, clarification of the specific

molecular characteristics of sICAM-1 in smokers would repre-

sent a huge step towards an understanding the potential role

of sICAM-1 in smoking-induced diseases. Equally, there is

a pressing need to understand the mechanisms by which com-

ponents, or metabolites, of tobacco smoke induce the

upregulation and shedding of sICAM-1 molecules from the en-

dothelium, and other cellular sources. Interestingly, despite el-

evated systemic sICAM-1 concentration noted in smokers,

there is a consistent decrease, approaching four fold, in GCF

ICAM-1 levels in smokers with CIPD [190]. No difference be-

tween serum and GCF sICAM-1 concentration is apparent in

non-smokers. Thus, ICAM-1 molecules are inhibited in their

passage from the periodontal microvasculature or through the

periodontal tissues. This indirectly implies the sICAM-1 mole-

cules in smokers are active, and may be interacting with to be

determined ligands. However, a reduced angiogenic response

in smokers is another possible explanation for these

observations.

sCD44

In an investigation designed to examine the potential

of specific reputed tumour-associated circulating sCD44

isoforms to act as biomarkers in certain malignancies, Kittl

et al. [140] observed a significant elevation in the mean con-

centration of sCD44 containing the product of exon 5

(sCD44v5) and sCD44 containing the product of exon 6

(sCD44v6), in self-reported smokers, compared to self-re-

ported non-smokers. Total sCD44 has since been shown to be

elevated in the blood of smokers, compared to non-smokers

[191], to a small, but significant, extent. Like sICAM-1, the el-

evations in CD44v5 and v6, but not total CD44, are dose-de-

pendent and reversible [141]. Smoking cessation led to a

reduction in concentrations of both sCD44v5 and sCD44v6

(-13 ng ml-1 and -62 ng ml-1, repectively) to levels approach-

ing those reported in non-smokers [140, 141]. Additionally,

sCD44 recovery was not influenced by transdermal nicotine

replacement therapy (unpublished results).

Alterations to circulating sCD44 profiles patterns have

been extensively attributed diagnostic and prognostic poten-

tial in several malignancies, including, but not limited to,

non-Hodgkin’s lymphoma, breast, gastric, and colon cancer

[61, 72, 192-199]. Soluble CD44 is also known to be raised in

subjects with particular inflammatory conditions [200-202].

However, the majority of studies that have examined the po-

tential utility of sCD44 isoforms as disease biomarkers have

not considered smoking status. In light of the recent evidence

that smoking exerts a profound dose-dependent and reversible

influence on systemic concentrations of specific sCD44 vari-

ant molecules, then it may be necessary to re-evaluate as-

cribed diagnostic and prognostic specificities in certain

inflammatory and malignant diseases. Cellular and tissue

CD44 isoform expression patterns have also been widely pro-

posed as markers of tumor growth, metastatic potential, and

poor prognosis in several malignancies, including lung cancer

[53, 60, 203-210]. Alternations to CD44 profiles have also

been noted in non-cancerous, but pre-neoplastic, lung tissues

[210]. There is, however, evidence that tobacco can induce al-

terations to cell-bound CD44 profiles in normal cells. Nico-

tine and its primary metabolite - cotinine - have both been

shown to alter CD44 expression profiles on lung

microvascular endothelial cells (LEISVO), and bone mar-

row-derived (STR-12) endothelial cells [211]. Therefore, it

may be useful to address the influence of tobacco on the ex-

pression of membrane-bound CD44 isoforms in situ in a defin-

itive manner in future studies.

Soluble CD44 was first reported in serum over twenty

years ago [212]. Despite this, the physiological relevance of

sCD44 molecules is unclear. However, by analogy with

sICAM-1, it is entirely possible that circulating CD44 mole-

cules could be immunomodulatory. There is some evidence to

support this theory. In an in vitro system, sCD44 (in

liposomes) was able to partially suppress T cell activation

[213]. Recently, a novel sCD44 splice variant (CD44RC) was

cloned that dramatically enhanced the hyaluronan binding ac-

tivity of cell surface CD44 [214]. This unusual and unex-

pected observation has been suggested to result from

CD44RC binding to chondroitin sulfate side-chains attached

to cell surface CD44. Therefore, a multivalent complex with

increased avidity for hyaluronan is generated. In addition to

this functional originality, CD44RC is produced in a, so far,

unique manner – splicing of the 3’ end of CD44 exon 2 into an

internal site within exon 18, resulting in an altered reading

frame and, thus, a novel CD44 isoform. Other studies have

suggested that sCD44 variants can bind hyaluronate, and that

the affinity of binding is determined by specific

glycosylations [196, 215]. Specific sCD44 molecules can

bind fibronectin [196]. sCD44, in serum, has also been shown

to inhibit human peripheral blood lymphocyte binding to endo-

thelial cells in frozen tonsil sections [196]. Thus, specific

sCD44 molecules are bioactive and, potentially,

immunomodulatory.

Metastasis to the lung following intravenous delivery of

TA3/St murine mammary carcinoma cells is prevented when

the carcinoma cells are transfected with sCD44-encoding

cDNA, where sCD44 probably acts as a competitive inhibitor

of cell surface CD44-hyaluronate interactions [216]. Indeed,

sCD44 transfection was subsequently shown to prevent

hyaluronate-mediated clustering of CD44 on tumour cell sur-

face [60]. Peterson et al. [217] inhibited murine mammary car-

cinoma cell growth through transfection with cDNA encoding

hyaluronate-binding sCD44v8-v10 or sCD44v6-v10. Other

studies have also indicated that sCD44 may interfere with the

growth and metastasis of specific tumour cells in mice

[217-220]. Suppression of tumour formation by a human

sCD44 fusion protein has again been demonstrated lately

[221], and a soluble CD44-immunoglobulin fusion protein

was able to block the migration of a CD44H-transfected hu-

man melanoma cell line across a hyaluronate-coated surface
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[222]. Interestingly, CD44 may act as a tumor cell surface an-

chor for MMP-9, a matrix metalloproteinase, which may con-

tribute to collagen degradation and contribute to tumor

invasiveness [60]. sCD44 can disrupt CD44/MMP-9 clusters

and inhibit tumor metastasis in vivo [60].

Alternate splicing of the CD44 pre-mRNA permits the sub-

sequent translation of a plethora of potential CD44 variant pro-

teins, whose function may be further modified by extensive

and varied post-translational modifications. The molecular

characteristics of smoking-influenced CD44 proteins have yet

to be ascertained. CD44 has proposed roles in leukocyte-endo-

thelial interactions, there is increasing evidence of several po-

tential mechanisms by which CD44 may play an aetiological

role in certain cancers and vascular diseases [35, 53, 55, 59,

60], there are reputed diagnostic associations between CD44

profiles and various diseases, and there are undoubted connec-

tions between tobacco use and specific cancers and certain

life-threatening inflammatory processes. Consideration of the

available data shows that there is a need to further develop our

understanding of the influence of tobacco smoking on the

CD44 gene, and encoded variant CD44 protein family, both as

a means of properly attributing any diagnostic and prognostic

significance to CD44 molecules, and perhaps, in order to un-

ravel any mechanisms of tobacco-induced disease that may

be, partially at least, CD44-mediated.

Other soluble adhesion molecules

Blann et al. [157] reported that, compared to appropriate

control groups, sVCAM-1 is significantly elevated in the se-

rum of smokers with peripheral artery disease, but not healthy

smokers, implying an indirect relationship. Elsewhere, much

of the available evidence suggests that tobacco smoking does

not influence sVCAM-1 concentrations [134, 142, 223].

Osterud et al. [224] found that sVCAM-1 levels were actually

lower in male smokers, compared to non-smokers, but this

was not true for females, or combined genders. Equally, and

on balance, smoking does not appear to influence systemic

concentrations of the selectins [105, 112, 118, 151, 225-227],

or PECAM-1 [105, 224, 228]. However, there is some evi-

dence to suggest that smoking could influence sP-selectin lev-

els. Blann et al. [229] observed a significant rise sP-selectin

levels in smokers. However, the smokers and non-smoking

subjects were not matched for age or disease status (deep ve-

nous thrombosis), and the difference was not impressive. This

is broadly in agreement with previous reports by the same au-

thors, who have acknowledged that any potential relationship

between smoking and sP-selectin is weak [124, 230-232].

Osterud et al. [224] found a small, but significant, rise in

sP-selectin in the serum of women smokers, compared to

non-smokers, that was not apparent in the male or in the total

study population. Limited evidence suggests that smoking

could influence circulating sE-selectin concentrations.

Kitamura et al. [233] observed a significant increase in serum

sE-selectin levels in heavy smokers (20-40 cigarettes day-1;

92 ng ml-1), compared to non-smokers (67 ng ml-1). However,

this observation was made in subjects with pustulosis

palmaris et plantaris, a dermatological disease that seems to

exert a strong influence on sE-selectin in serum, and it is not

clear how the incidence of this confounding condition was dis-

tributed between the smoking and non-smoking groups. Thus,

the balance of evidence suggests that if circulating profiles of

other major adhesion molecules are indeed influenced by to-

bacco smoking, then this influence is certainly not as pro-

found as the dramatic effects seen in sICAM-1 and some

sCD44 variants.

CONCLUDING REMARKS

Research into the relationship between tobacco use and ad-

hesion molecule networks is at an early stage. Smoking di-

rectly causes an increase in soluble ICAM-1 and specific

CD44 variant concentrations in the systemic circulation, dilut-

ing several previous diagnostic and prognostic attributions.

Both sICAM-1 and CD44 are considered to possess several

immunomodulatory properties. Clarification of the specific

sources and molecular characteristics of smoking-influenced

sICAM-1 and sCD44 protein should provide insight into po-

tential functions of soluble adhesion molecules in tobacco-in-

duced diseases. The influence of tobacco on the cellular and

tissue distribution of cell-bound adhesion molecules is less

clear. Smoking status should certainly be considered in stud-

ies that examine potential prognostic and diagnostic assigna-

tions of significance to circulating adhesion molecule profiles

and membrane-bound expression in cells and tissues. This

does not occur in the majority of studies, even in diseases

were the aetiological significance of smoking is unequivocal,

such as neoplastic and malignant lung tissues and COPD. Al-

though there is extensive, and growing, knowledge of the mo-

lecular mechanisms that regulate transcription, expression,

and shedding of ICAM-1, CD44, and other adhesion mole-

cules, studies that address how tobacco smoke may influence

these control networks are minimal. Adhesion molecules func-

tion at the heart of the immune and inflammatory response.

Dysregulation of these critical molecules may represent a com-

mon mechanism(s) underlying susceptibility to a variety

smoking-induced diseases.
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