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The traditional Chinese medicine (TCM), which has thousands of years of clinical application among China and other Asian coun-
tries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it
is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The
use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is
still in its early stage.This paper firstly surveys TCMdatabases for virtual screening that have been greatly expanded in size and data
diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of
TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein struc-
tures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments
in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein
networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.

1. Introduction

Drug discoverywas once an empirical process when the effect
of the medicine was purely based on phenotype readout,
while the mode of action of drug molecules remained
unknown. Later, reductionists began to research on themole-
cular mechanism of the drug-target interactions, believing
that the drug is like a magic bullet towards the functioning
targets [1]. This means that a drug takes action on the disease
by interacting with one specific therapeutic target.The idea of
each drug being like a key (or ligand) matching each “lock”
(or protein) has guided the modern drug discovery practice
for the last several decades. However, in the recent years,
more and more evidence has shown that many drugs exert
their activities by modulating multitargets [2–4]. Besides,
some drugs interact with antitargets and induce strong side
effects [5, 6]. Therefore, it is inappropriate to stick to the
paradigm that drug interacts with only one target. How to
modulate a set of targets to achieve efficacy while avoiding
others to reduce the risk of side effects remains a central
challenging task for pharmaceutical industry.

The traditional Chinesemedicine (TCM), which has been
widely used in China as well as in other Asian countries for a
long history, is considered to be the pioneer of the “multi-
component-multitarget” pharmacology [7, 8]. Thousands
of years of clinical practices in TCM have accumulated a
considerable number of formulae that exhibit reliable in vivo
efficacy and safety. Based on the methodology of holism,
hundreds of different components in a TCMprescription can
cure the diseases or relieve the patients bymodulating a serial
of potential therapeutic targets [9].

In recent years, great efforts have been made on modern-
ization of TCM, most on identification of effective ingredi-
ents, and ligands in TCM formulae and functioning targets
[10, 11]. Several databases of TCM formulae, ingredients and
compounds with chemical structures have been established
such as traditional Chinese medicine database (TCMD) [12].
However, the molecular mechanisms responsible for their
therapeutic effectiveness are still unclear. On one hand,
experimental validation of new drug-target interactions still
remains very limiting and expensive, and very few new
drugs and targets are identified as clinical applications every
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Table 1: Basic information for main TCM databases.

Database Description URL or ref.
Traditional Chinese medicine database (TCMD) 6760 herbs, 23,033 compounds [12]
Chinese herb constituents database (CHCD) 240 herbs, 8264 compounds [15]
3D structural database of biochemical components 2073 herbs, 10,564 compounds [16]
TCM database@Taiwan 453 herbs, 20,000 compounds [17]
Traditional Chinese medicine information database
(TCM-ID)

1197 formulae, 1313 herbs, ∼9000
compounds [18]

TCM drugs information system
1712 formulae, 2738 herbs, 16,500
compounds, 868 dietotherapy
prescription

[19]

Comprehensive herbal medicine information system
for cancer (CHMIS-C)

203 formulae, 900 herbs, 8500
compounds [20]

China natural products database (CNPD) 45,055 compounds [21]

Marine natural products database (MNPD) 8078 compounds, 3200 with
bioactivity data [22]

Bioactive plant compounds database (BPCD) 2794 compounds [15]

acupuncture.com.au TCM formulations http://www.acupuncture.com.au/
education/herbs/herbs.html/

Dictionary of Chinese herbs TCM formulae, toxicity, and side
effects

http://alternativehealing.org/
chinese herbs dictionary.htm/

Plants for a future Herb medical usage and
potential side effects http://www.pfaf.org/

year [13, 14].On the other hand, the complex composition and
polypharmacology of TCMmake it even harder to conduct a
full set of experiments between compounds and targets and
elucidate the multitarget mode of action from the holistic
view on the biological network level.

On the contrary, in silico methods can predict a large
number of new drug-target interactions, construct the drug-
target networks, and explore the functional mechanism
underlying the multicomponent drug combinations at the
molecular level. In the present stage, there have already been
successful applications in interpreting the action mechanism
of TCM from the perspective of drug-target networks,
although the quantity is limited. Compared with the huge
amounts of TCM formulae and components, only a small
portion of drug-target pairs has been validated by the labo-
rious and costly biochemical experiments.This motivates the
needs for constructing models that could predict genuine
interacting pairs between ligands and targets, based on the
existing small number of known ligand-target bindings.

In this paper, we firstly investigate TCM databases for
in silico methods that have been greatly expanded in size
and data diversity in recent years. On that basis, different
screeningmethods and strategies for identifying active ingre-
dients and targets of TCM are outlined based on the amount
of information available, both on sides of ligand bioactivity
and the protein structures. Finally, successful applications
in this area have been summarized and reviewed, including
experimental and computational examples. Learning from
the methods in modern western medicine (WM), different
computing models and strategies can be used to confirm the
effective components and related targets in TCM in order
to build the ligand-target networks. One of the research

directions of themodernization of TCM is to clarify themode
of action of TCM based on ligand-protein networks.

2. Databases for TCM

Data availability is the first consideration before any virtual
screening or data-mining task could be undertaken. The
TCM databases can be classified in accordance with several
categories, namely, formulae, herbs, and compounds. The
formula of TCM is a combination of herbs for treating a
disease, while compounds are the bioactive molecules within
herbs. In this section, we have summarized a list of databases
for TCM herbs, formulations, and compounds, as shown in
Table 1.

The elementary units of TCM databases are compounds,
the bioactive components that exert efficacy through binding
to therapeutic targets. Most of the compounds in TCM
databases have two-dimensional structure, while some of
them have three-dimensional structures deduced by force
field. In most TCM databases, the information of both herbs
and compounds are collected while some even have formulae
information as well.

The traditional Chinese medicine database (TCMD)
contains 23,033 chemical constituents and over 6760 herbs
that mainly come from Yan et al. [12]. The query keywords
for the database include molecular formula, substructure,
botanical identity, CAS number, pharmacological activity,
and traditional indications. Only a small proportion of herbs
in TCMD have full coverage of compounds while most
have partial coverage. Chinese herb constituents database
(CHCD) contains information on 8264 compounds derived
from 240 commonly used herbs with both botanical and
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Chinese pinyin names, the part of the herbs that contain the
compounds, pharmacological and toxicological information,
and other useful information [15]. Qiao et al. [16] have devel-
oped 3D structural database of biochemical components
which covers 10,564 constituents from 2073 herbs with 3D
structures built and optimized using the MMFF94 force field
[23]. This database uses MySQL as the data engine and con-
tains detailed information such as basicmolecular properties,
optimized 3D structures, herb origin, and clinical effects.
The TCM database@Taiwan was reported to be the world’s
largest traditional Chinesemedicine database.Theweb-based
database containsmore than 20,000 pure compounds isolated
from 453 TCM herbs [17]. Both simple and advanced query
methods are acceptable in terms of molecular properties,
substructures, TCM ingredients, and TCM classifications.

In addition to herbs and compounds, traditional Chinese
medicine information database (TCM-ID) [18], TCM drugs
information system [19], and comprehensive herbalmedicine
information system for cancer (CHMIS-C) [20] also collect
the information of TCM formulae. TCM-ID is developed
by Zhejiang University together with National University of
Singapore on all aspects of TCM herbs. TCM-ID currently
takes in 1197 TCM formulae, 1313 herbs, and around 9000
compounds. It covers ∼4000 disease conditions, and more
than half of the compounds have valid 3D structures. The
data are collected from creditable TCM books as well as
journals, and the records can be retried by different sets of
query keywords. TCM drugs information system based on
networks of five large databases has also been developed
[19]. It includes information of 1712 formulae, 2738 herbs,
16,500 compounds, and 868 dietotherapy prescriptions from
the integration of Chinese herb database, Chinese patent
medicine database, effective components database of Chinese
herbs, Chinese medical dietotherapy prescription database,
and Chinese medical recipe database. Herbal medicine
information system for cancer (CHMIS-C) integrates the
information of 203 formulae that are commonly used to treat
cancer clinically as well as 900 herbs and 8500 compounds.
The compounds in this database are linked to the entries in
National Cancer Institute’s database and drugs approved by
the U.S. Food and Drug Administration.

The China natural products database (CNPD) [21],
marine natural products database (MNPD) [22], and bioac-
tive plant compounds database (BPCD) [15] only focus on
the structures of the compounds in TCM and do not contain
pertinent information on formulae and herbs. CNPD is built
to meet the needs for drug discovery using natural products
including TCMand collects the 2D and 3D structures ofmore
than 45,055 compounds. MNPD has a collection of 8078
compounds from 10,000 marine natural products, of which
3200 have bioactivity data. BPCD contains information on
2794 active compounds against 78 molecular targets, as
well as the subunits of the target structures to which the
compounds bind.

There are other databases on the internet focusing only
on the clinical efficacy or side effects of formulae and herbs,
without details of compounds. acupuncture.com.au collects
the TCM formulae according to their clinical action and
efficacy. Both the English and Chinese names of TCM herbs

are recorded to facilitate studies using both traditional and
modern methods. The dictionary of Chinese herbs contains
information on both clinical usage and side effects of the
TCM herbs. It also includes the samples of TCM formulae
for treating diseases such as cancer, dengue fever, diabetes,
and hepatitis B. Besides, the compatibility of TCM herbs and
certain drugs is listed to provide biochemical explanation
for drug designers. The plants for a future database allows
querying of herbs with special medicinal usage and also
lists the potential side effects, medical usage, and physical
characteristics.

3. In Silico Methods for
Ligand-Protein Interactions

The computational methods for drug discovery based on
ligand-protein networks have been increasingly developed
and applied in the area of TCM and other drugs in recent
years [7, 8]. These methods mainly fall into the territories of
ligand-based approach, target-based approach, and machine
learning.

3.1. Ligand-Based Approach. The ligand-based approach, also
known as the chemical approach, is to reorganize pharma-
cological characteristics and protein associations, by means
of ligand similarities rather than genomic space such as
sequence, structural or pathway information. The basic
assumption for ligand-based approach is that, regardless that
similar chemical structures may interact with proteins in
different ways, similar ligands tend to bind to similar targets
more than not [24]. The general practice of ligand-based
approach is to describe ligands with chemical descriptors,
and calculate the similarity coefficient (most commonly,
Tanimoto coefficient or 𝑇

𝐶
[25–27]) between ligands. With

the ligand-based descriptions of a protein, one can predict
which targets are likely to be hit by a ligand, given its known
structure.

In the area of ligand-based virtual screening, researchers
have tried to evaluate whether novel ligand-target pairs could
be identified, based on the chemical knowledge of ligands
and ligand-target interactions. G protein-coupled receptors
(GPCRs) are a family of effective drug targets with significant
therapeutic value.Many researchers have built support vector
machine (SVM) models as well as substructural analysis to
describe GPCRs from the perspective of ligand chemoge-
nomics [28]. In particular, the deorphanization of receptors
without known ligands was employed using the ligands of
the related receptors. For 93% of the orphan receptors, the
prediction results are better than random, while for 35% the
performance was good.

A powerful ligand-based prediction method based
on features of protein ligands is the similarity ensemble
approach (SEA), which was originally used to investigate
protein similarity based on chemical similarity between their
ligand sets with the main idea that similar ligands might tend
to share same targets [3]. SEA calculates𝑍-score and 𝐸-value
by summing up the 𝑇

𝐶
over a threshold between two ligand

sets as indicators to evaluate the possible interaction between
two ligand sets in a way similar to BLAST. The similarity
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threshold for 𝑇
𝐶
is chosen in a way that the 𝑍-score best

observes the extreme value distribution (EVD). This method
was then applied to predict new molecular targets for known
drugs [29]. The author investigated 3000 FDA-approved
drugs against hundreds of targets and found 23 new cases
of drug-target interactions. By in vitro experiments, five of
them were validated to be positive with affinities less than
100 nM. Besides Keiser’s research, SEA was also used to
investigate the off-target effect of some commercial available
drugs against the target protein farnesyltransferase (PFTase)
[30], and two drugs loratadine and miconazole were found
to be able to bind to PFTase.

The pharmacophore model is perhaps the most widely
used methods that make use of the 3D structure representa-
tions of molecules [31]. A pharmacophore is defined to be the
molecular features pertinent to bioactivity aligned in three-
dimensional spaces, including hydrogen bonding, charge
transfer, and electrostatic and hydrophobic interactions [32].
The underlying methodology of pharmacophore model was
defined by different researchers [33]. Recently, thismodel was
successfully applied in mesangial cell proliferation inhibitor
discovery and virtual screening of potential ligands for many
targets such as HIV integrase and CCR5 antagonist [34–37].
In 3D pharmacophore model, the molecular spatial features
and volume constraints represent the intrinsic interactions of
small bioactive ligands with protein receptors. Wolber and
Langer tried to extract ligand pharmacophores from protein
cavities based on a defined set of six types of chemical struc-
tures [38] and develop the algorithms for ligand extraction
and interpretation as well as pharmacophore creation for
multiple targets.

Pharmacophore screening only considers those com-
pounds who are direct mimics of the ligand from which
the pharmacophore has been generated and may neglect
the other positive binding modes as well. In fact, the phar-
macophore model is limited to only one mode of action
for small molecules [39]. However, this limitation can be
conquered by combining multiple pharmacophore models
with different modes of action. This method is called virtual
parallel screening and has been successfully applied to the
identification of natural products’ activity [39, 40]. In such
work, The PDB-based pharmacophores were firstly used for
target fishing for TCM constituents. Results showed that
16 constituents of Ruta graveolens were screened against a
database of pharmacophores, and good congruity was found
between the potential predictions and their corresponding
IC50 values.

Quantitative structure-activity relationships (QSARs)
were first established in the early 1960s when computational
meanswere used to quantitatively describe pharmacodynam-
ics and pharmacokinetic effects in biology systems and the
chemical structures of compounds [41]. Generally speaking,
any mathematical model or statistical method that builds
relationship between molecular structures and biological
properties may be considered as QSAR. The idea of QSAR is
easy while training and application of QSAR is much difficult
since similar structures may interact with totally different
targets due to the diversity and complexity of biology [42].
Furthermore, the intrinsic noise in data to describe both the

chemical space and biological effects brings much trouble
in accurate modeling [43]. Despite these difficulties, in case
robust biological data is available and few outliers coexist,
thousands of QSAR models have been generated and stored
in related database in the past 40 years [44, 45].

3.2. Target-Based Approach. The target-based approach pre-
dicts ligand-target interactions by the structural informa-
tion of protein targets as well as ligands. The target-based
approach depends highly on the availability of the structural
information of targets, either from wet experiments or
numerical simulations [46, 47]. On one hand, these methods
aim to predict the conformation and orientation of the ligand
within the protein cavity. On the other hand, the binding
affinity of the ligand and protein is simulated with scoring
functions.Themain target-based approach is docking, which
predicts the preferred orientation of one molecule to another
when they bind to each other to form a stable complex
[48]. Usually, docking is implemented to search appropriate
ligands for known targets with the lowest fitting energy. On
the contrary, inverse docking seeks to fish targets fromknown
ligands “from scratch” and also plays an important role in
virtual screening.

Despite more than 20 years of research, docking and
scoring ligands with proteins are still challenging processes
and the performance is highly dependent on targets [49–51].
Docking cannot be applied to proteins whose 3D structures
are not identified [52]. The high-resolution structure of the
protein target is preferably obtained from X-ray crystallog-
raphy and NMR spectroscopy. However, approximately half
of the currently approved drugs bind to the membrane pro-
teins, whose structures are extremely difficult to be acquired
experimentally. Alternatively, homology modeling is usually
adopted to build a putative geometry and docking cavity [53].
Besides, threading and ab initio structure prediction together
withmolecular dynamics (MD) andMonte Carlo simulations
are utilized to predict the target structures. However, the
fidelity of homology modeling, threading, and ab initio
structures is still questioned by many researchers. Other
important challenges of docking are the dynamic behavior,
the large number of degrees of freedom, and the complexity
of the potential energy surface. This confines docking to be
a low-throughput method on a very small scale, which fails
to predict interactions on the level of millions of ligands and
targets.

To alleviate the situation that docking depends on the
nature of targets, multiple active sites have been used to
compensate the ligand-dependent biases, and the consensus
scoring has been also suggested to reduce the false positives in
virtual screening [54]. The accuracy of scoring functions still
remains the main weakness of docking approach [55]. Also,
docking is starting to adopt the conformation information
derived fromprotein-bound ligands as a strategy to overcome
the limitations of current scoring functions and can predict
the orientation of the ligands into the protein cavity [56].
Besides, molecular-dynamics-assisted docking method has
been applied in virtual screening against the individual
targets in HIV to search for multitarget drug-like agents, and
KNI-765 was identified to be potential inhibitor [57].
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Regardless of all limitations, virtual screening based on
docking and inverse docking has been successfully utilized
to identify and predict novel bioactive compounds in the
past 10 years. Using the combinatorial small molecule growth
algorithm, Grzybowski applied the docking to the design
of picomolar ligands for the human carbonic anhydrase II
[58, 59]. Inverse docking was firstly developed to identify
multiple proteins to which a small molecule can bind or
weakly bind. In some cases, the bioactivity of the TCM
compounds is well recognized, while the underlying mode of
action is not very clear. In 2001, INVDOCK [60] has been
developed to search for the targets for TCM constituents and
employed a database of protein cavities derived from PDB
entries. The results of inverse docking involving multiple-
conformer shape-matching alignment showed that 50% of
the computer-predicted potential protein targets were impli-
cated or experimentally validated. The same approach was
used to determine potential drug toxicity and side effects in
early stages of drug development, and results showed that
83% of the experimentally known toxicity and side effects
were predicted [61]. Zahler et al. tried the inverse docking
method to find potential kinase targets for three Indirubin
derivatives and examined 84 unique protein kinases in total
[62]. Recently, one indirubin compoundwas found to possess
therapeutic effects against myelogenous leukemia [63].

Docking is usually used as the second step to further
validate the ligand-target binding features after the first round
of virtual screening by other ligand-based approaches [64–
67]. Wei et al. applied the docking together with similarity
search andmolecular simulation to search for anti-SAS drugs
[68], find the binding mechanism of H5N1 influenza virus
with ligands [69], detect possible drug leading to Alzheimer’s
disease [70, 71], and identify the binding sites for several novel
amide derivatives in the nicotinic acetylcholine receptors
(AChRs) [72].

3.3. Machine Learning. The ligand-based approach and
target-based approach predict potential ligand-target bind-
ings by means of chemical similarity and structural informa-
tion.Machine learning is a high-throughputmethod of artifi-
cial intelligence that enables computers to learn from data of
knowns, including ligand chemistry, structural information,
and ligand-protein networks, and to predict unknowns, such
as new drugs, targets, and drug-target pairs. This method
gains stability and credibility and has strong ability for
classifications among large numbers of ligand-protein pairs
that otherwise would be impossible to be connected based on
chemical similarity alone.

Machine learning is to exact features from data auto-
matically by computers [73]. Basically, machine learning can
be categorized into unsupervised learning and supervised
learning. In unsupervised learning, the objective is to extract
and conjecture patterns and interactions among a series of
input variables, and there is no outcome to train the input
variables. The common approaches in unsupervised learning
are clustering, data compression, and outlier detection, such
as principal-component-based methods [74]. In supervised
learning, the objective is to predict the value of an out-
come variable based on the input variables [75]. The data

is commonly divided into training and validation datasets,
which are used in turn to finalize a robust model. The
variable the supervisedmodel predicts is typically the binding
probability of ligands and targets.

Nidhi et al. trained a multiple-category Laplacian-modi-
fied naı̈ve Bayesian model from 964 target classes in WOM-
BAT and predicted the top three potential targets for com-
pounds inMDDRwith orwithout known targets information
[76]. On average, the prediction accuracy with compounds
with known targets is 77%. Bayesian classifier was usually
used in early prediction, while the Winnow algorithm was
reported more recently [77]. With the same training datasets,
the prediction result is slightly different with the multiple-
category Laplacian model. This indicates that it is necessary
to apply different predictionmethods andmake comparisons
even on the same training dataset.

The Gaussian interaction profile kernels, which repre-
sented the drug-target interactions, were used in regularized
least squares combined with chemical and genomic space to
achieve the prediction with precision-recall curve (AUPR)
up to 92.7 [78]. Based on simple physicochemical properties
extracted from protein sequences, the potential drug targets
were related to the existing ones by several models [79].
The supervised bipartite graph inference is used to represent
the drug interaction networks and can be solely able to
predict new interactions, or together with chemical and
genomic space [80, 81]. Besides, semisupervised learning
method (Laplacian regularized least square FLapRLS) was
also explored to effectively predict the results by integration
of genomic and chemical space [82].

The support vector machine (SVM) is a powerful classifi-
cation tool in which appropriate kernel functions are selected
to map the data space into higher-dimensional space without
increasing the computational difficulties. The performance
of SVM is usually stronger than other probability-based
models. Wale and Karypis [83] made comparisons between
a Bayes classifier together with binary SVM, cascaded SVM,
a ranking-based SVM, ranking perception, and the combi-
nation of SVM and ranking perception in terms of the ability
to predict the targets for small compounds and found that the
cascaded SVMhas better performance than the Bayesmodels
and thet the combination of SVM and ranking perception
has the best performance of all. Kuhn et al. developed an
SVMmodel based on the chemical-protein interactions from
STITCH [84] using new features from ligand chemical space
and interaction networks. Four new D-amino acid oxidase
inhibitors were successfully predicted by this model and
validated by wet experiments, and one may have a new
application in therapy of psychiatric disorders other than
being an antineoplastic agent [85].

Random forest, a form of multiple decision trees, recently
has been applied to screen TCM database for potential
inhibitors against several therapeutically important targets
[86]. With the use of binding information from another
database, random forest was performed to find multiple
hits out of 8264 compounds in 240 Chinese herbs on an
unbalanced dataset. Among all the predictions, 83 herb-target
predictions were proved by the literature search.Three Poten-
tial inhibitors of the human, aromatase enzyme (CYP19)
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myricetin, liquiritigenin, and gossypetin, were screened by
random forest as well as molecular docking studies. The
virtual screening results were subsequently confirmed exper-
imentally by in vitro assay [87].

Linear regression models have also been applied to
predict ligand-target pairs. Zhao and Li developed a compu-
tational framework, drugCIPHER, to infer drug-target inter-
actions based on pharmacology and genomic space [88]. In
this framework, three linear regression models were created
to relate drug therapeutic similarity, chemical similarity, and
target similarity on the basis of a protein-protein interaction
network. The drugCIPHER achieved the performance with
AUC of 0.988 in the training set and 0.935 in the test set,
and 501 new drug-target interactions were found, implying
potential novel applications or side effects.

Although machine learning has strong performance in
classification of protein-ligand interactions, its shortcoming
is obvious. The process of some machine learning methods
is implicit, like a black box, from which we cannot have an
intuitive biological or physical relevance between proteins
and ligands. SVM maps the classification problem into
higher space and acquires excellent performance with high
computational efficiency. The tradeoff is that it can hardly
explicitly create relationship between a protein and a ligand.
Therefore, even with a very strong prediction tool, we can
hardly move forward with innovations in theory of protein-
ligand interactions.

4. Applications of Ligand-Protein Networks in
TCM Pharmacology

Network-based pharmacology explores the possibility to
develop a systematic and holistic understanding of the mode
of actions of multidrugs by considering their multitargets
in the context of molecular networks. It has also been
suggested that relatively weak patterns of inhibition of many
targets may prove more satisfactory than the highly potent
single-target inhibitors routinely developed in the course
of a drug discovery program [89]. In drug discovery, the
use of networks incorporating multiple components and the
corresponding multiple target, is one of the driving forces
to propel the current development in TCM pharmacology.
Several successful examples have been accumulated both in
experiments and in silico analysis, as shown in Table 2.

4.1. Experimental Study. Many bioactive compounds in TCM
herbs may have synergetic effort with many non-TCM drugs
in markets. Tannin, a component derived from a TCM,
can be combined with HIV triple cocktail therapy to yield
everlasting efforts in preventing HIV virus propagation. The
underlying mechanism is that tannin suppresses the activity
of HIV-1 reverse transcriptase, protease, and integrase and
cuts off virus fusion and virus entry into the host cells [90].
Recently, Li et al. proposed a new idea to induce immune
tolerance in T cells by usingmatrine, a chemical derived from
the root of Sophora flavescens AIT, targeting both the PKCy
pathway and the NFAT pathway in cocktail preparations for
treating AIDS [91].

Lam et al. recently showed in murine colon 38 allograft
model that a formula containing 4 herbs (PHY906) has
synergetic effect on reducing side effects and enhancing
efficacy induced by CPT-11, a powerful anticancer agent with
strong toxicity. The reason is that PHY906 can repair the
intestinal epithelium by facilitating the intestinal progenitor
or stem cells and several Wnt signaling components and
suppressing a batch of inflammatory responses like factor kB,
cyclooxygenase-2, and inducible nitric oxide synthase [92].

Multicomponent and multitarget interactions are the
main mode of action for TCM formula, which exerts syner-
getic effects as a whole preparation rather than the primary
active compound in TCM alone. Xie et al. demonstrated
that other components in “Qingfu Guanjieshu” (QFGJS)
could effectively influence the pharmacokinetic behavior and
metabolic profile of paeonol in rats, indicating the synergy
of herbal components. This synergy may be the result of
enhanced adsorption of paeonol in the gastrointestinal
tract induced by P-glycoprotein-mediated efflux change [93].
Another similar study showed that paeoniflorin from the root
of Paeonia lactiflora was markedly enhanced when coadmin-
istrated with sinomenine, the stem of Sinomenium acutum.
Sinomenine promotes intestinal transportation via inhibition
of P-glycoprotein and affects the hydrolysis of paeoniflorin
via interaction with b-glycosidase [94].

Huang-Lian-Jie-Du-Tang (HLJDT) is a TCM formula
with anti-inflammatory efficacy, but the action mechanism
is still not very clear. Zeng et al. investigated the effects of
its component herbs and pure components on eicosanoid
generation and found out the active components and their
precise targets on arachidonic acid (AA) cascade. Results
showed that Rhizoma coptidis and Radix scutellariaewere the
key herbs responsible for the suppressive effect of HLJDT
on eicosanoid generation. Further experiments on the pure
components of HLJDT revealed that baicalein derived from
Radix scutellariae has significant inhibitory effect on 5-LO
and 15-LO while coptisine from Rhizoma coptidis shows
medium inhibitory effects on LTA(4)H. Besides, baicalein
and coptisine were proven to have synergetic inhibition on
LTB(4) by the rat peritoneal macrophages [95].

A TCM formula, Realgar-Indigo naturalis formula (RIF),
was applied to treat Acute promyelocytic leukemia (APL)
and showed a high complete remission (CR rate) [96]. In
RIF, multiple agents within one formula were found to
work synergistically. A small-scale combinational study using
Chou and Talalay combination index method was performed
and three main active components of RIF and six core
proteins they targets in mediating the auti-tumor effect were
identified.Themain active ingredients of RIF are tetraarsenic
tetrasulfide (A), indirubin (I), and tanshinone IIA (T), from
Realgar, Indigo naturalis, and Salviamiltiorrhiza, respectively.
A acts as the principal component of the formula, whereas T
and I serve as adjuvant ingredients. ATI leads to ubiquitina-
tion/degradation of promyelocytic leukemia (PML) retinoic
acid receptor oncoprotein, reprogramming of myeloid dif-
ferentiation regulators, and G1/G0 arrest in APL cells by
mediating multiple targets. Using multiomics technologies,
Zhang et al. later proved that the combined use of Imatinib
and arsenic sulfide from toxic herbal remedy exerted better
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Table 2: Summary of multi-target drugs/preparations with TCM pharmacology based on ligand-protein networks.

Disease Methods and
experiments

Formula, herbs, and
components TCM pharmacology Reference

AIDS Experiments Tannin
Tannin suppresses the activity of HIV-1 reverse
transcriptase, protease, and integrase and cuts off virus
fusion and virus entry into the host cells.

[90]

AIDS Experiments Matrine from the root
of Sophora flavescens

Matrine is effective in inducing T-cell anergy by
targeting both the MAPKs pathway and the NFAT
pathway.

[91]

Antitumor Experiments

PHY906:
Glycyrrhiza uralensis
Fisch (G),
Paeonia lactiflora Pall
(P),
Scutelleria baicalensis
Georgi (S), and
Ziziphus jujubaMill
(Z).

PHY906 reduces CPT-11-induced gastrointestinal
toxicity in the treatment of colon or rectal cancer by
several mechanisms. It both repairs the intestinal
epithelium by facilitating the generation of intestinal
progenitor or stem cells and several Wnt signaling
components and suppresses inflammatory responses
like factor kB, cyclooxygenase-2, and inducible nitric
oxide synthase.

[92]

Anti-inflammatory
and analgesic effects Experiments

Qingfu Guanjieshu
(QFGJS): paeonol and
other components

The pharmacokinetic behavior and metabolites of
paeonol are greatly promoted by other components in
QFGJS. This may be the result of enhanced adsorption
of paeonol in the gastrointestinal tract by
P-glycoprotein-mediated efflux change.

[93]

Inflammatory and
arthritic diseases Experiments

Paeoniflorin from the
root of
Paeonia lactiflora and
sinomenine from the
stem of
Sinomenium acutum.

Paeoniflorin is markedly enhanced when
coadministrated with sinomenine, which promotes
intestinal transportation via the inhibition of
P-glycoprotein and affects the hydrolysis of paeoniflorin
via interaction with b-glycosidase.

[94]

Anti-inflammatory Experiments

Huang-Lian-Jie-Du-
Tang (HLJDT):
Rhizoma coptidis and
Radix scutellariae

Baicalein derived from Radix scutellariae showed
significant inhibitory effect on 5-LO and 15-LO while
coptisine from Rhizoma coptidis showed medium
inhibitory effects on LTA(4)H.

[95]

Acute promyelocytic
leukemia (APL) Experiments

Realgar-Indigo
naturalis: tetraarsenic
tetrasulfide (A),
indirubin (I), and
tanshinone IIA (T)

ATI leads to ubiquitination/degradation of
promyelocytic leukemia (PML) retinoic acid receptor
oncoprotein, reprogramming of myeloid differentiation
regulators, and G1/G0 arrest in APL cells by mediating
multiple targets. A acts as the principal component of
the formula, whereas T and I serve as adjuvant
ingredients.

[96]

Chronic myeloid
leukemia
(CML)

Experiments
Imatinib (IM) and
arsenic sulfide
[As(4)S(4) (AS)]

AS targets BCR/ABL through the ubiquitination of key
lysine residues, leading to its proteasomal degradation,
whereas IM inhibits the PI3K/AKT/mTOR pathway.

[97]

Inflammation
Pharmacophore-
assisted
docking

Twelve examples of
compounds from
CHCD

The screened compounds target cyclooxygenases 1 and
2 (COX), p38 MAP kinase (p38), c-Jun terminal-NH(2)
kinase (JNK), and type 4 cAMP-specific
phosphodiesterase (PDE4).

[98]

Type II diabetes
mellitus (T2DM)

Molecular docking
(LigandFit),
clustering, and
drug-target
network analysis

676 compounds in
eleven herbs from
Tang-min-ling Pills

Multiple active components in Tangminling Pills
interact with multiple targets. The 37 targets were
classified into 3 clusters, and proteins in each cluster
were highly relevant to each other. Ten known
compounds were selected according to their network
attribute ranking in drug-target and drug-drug
network.

[99]

Cardiovascular
disease

Similarity search
and alignment,
docking
(LigandFit)

Xuefu Zhuyu
decoction (XFZYD):
501 compounds, 489
drug/drug-like
compounds

Active components in XFZYD mainly target rennin,
ACE, and ACE2 in renin-angiotensin system (RAS),
which modulates the cardiovascular physiological
function.

[100]
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Table 2: Continued.

Disease Methods and
experiments

Formula, herbs, and
components TCM pharmacology Reference

9 types of cancer, 5
diseases with
dysfunction, and 2
cardiovascular
disorders

Distance-based
mutual
information model
(DMIM)

Liu-wei-di-huang
formula (LWDH),
Shan-zhu-yu
(Fructus Corni),
Ze-xie
(RhizomaAlismatis),
Dan-pi
(CortexMoutan),
Di-huang
(Radix Rehmaniae),
Fu-ling (Poria Cocos)
and Shan-yao
(RhizomaDioscoreae)

The interactions between TCM drugs and disease genes
in cancer pathways and neuro-endocrine-immune
pathways were inferred to contribute to the action of
LWDH formula.

[101]

Cardiovascular
diseases

Quantitative
composition-
activity
relationship model
(QCAR) (SVM and
linear regression)

Shenmai, Qi-Xue-
Bing-Zhi-Fang
(QXBZF)

The proportion of active components of Shenmai and
QXBZF were optimized based on clinical outcome
(collateral and infarct rate of heart) using QCAR. The
interactions of multiple weak bindings among different
compounds and targets may contribute to the
synergetic effect of multicomponent drugs.

[102, 103]

Anticoagulant

Network-based
computational
scheme utilizing
multi-target
docking score
(LigandFit and
AutoDock)

Six argatroban
intermediates and a
series of components
from 24 TCMs widely
used for cardiac
system diseases

A ligand can have impact on multiple targets based on
the docking scores, and those with the highest-target
network efficiency are regarded as potential
anticoagulant agents. Factor Xa and thrombin are two
critical targets for anticoagulant compounds and the
catalytic reactions they mediate were recognized as the
most fragile biological matters in the human clotting
cascade system.

[104]

Alzheimers’ disease
Systematical target
network analysis
framework

Ginkgo biloba,
Huperzia serrata,
Melissa officinalis, and
Salvia officinalis

AD-symptoms-associated pathways,
inflammation-associated pathways, cancer-associated
pathways, diabetes-mellitus-associated pathways,
Ca2þ-associated pathways, and cell-proliferation
pathways are densely targeted by herbal ingredients.

[105]

Depression
Literature search
and network
analysis

Hyperforin (HP),
hypericin (HY),
pseudohypericin
(PH), amentoflavone
(AF), and several
flavonoids (FL) from
St. John’s Wort (SJW)

Active components in SJW mainly intervene with
neuroactive ligand-receptor interaction, the
calcium-signaling pathway, and the gap-junction
related pathway.
Pertinent targets include NMDA-receptor, CRF1
receptor, 5-hydroxytryptamine receptor 1D, and
dopamine receptor D1.

[106]

Rheumatoid arthritis
(RA)

Integrative
platform of TCM
network
pharmacology
including
drugCIPHER

Qing-Luo-Yin (QLY),
including four herbs,
Ku-Shen
(Sophora flavescens),
Qing-Feng-Teng
(Sinomenium
acutum), Huang-Bai
(Phelloden-
dron chinensis) and
Bi-Xie
(Dioscorea collettii),
which contain several
groups of ingredients
such as saponins and
alkaloids

The target network of QLY is involved in RA-related
key processes including angiogenesis, inflammatory
response, and immune response. The four herbs in QLY
work in concert to promote efficiency and reduce
toxicity. Specifically, the synergetic effect of Ku-Shen
(jun herb) and Qing-Feng-Teng (chen herb) may come
from the feedback loop and compensatory mechanisms.

[107]
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therapeutic effects in a BCR/ABL-positive mouse model of
chronic myeloid leukemia (CML) than either drug as a single
agent. AS targets BCR/ABL through the ubiquitination of
key lysine residues, leading to its proteasomal degradation,
whereas IM inhibits the PI3 K/AKT/mTOR pathway [97].

4.2. Computational Framework. To target the complex, mul-
tifactorial diseases more effectively, the network biology
incorporating ligand-protein networks has been applied in
multitarget drug development as well as modernization of
traditional Chinese medicine in the systematic and holistic
way. Zhao et al. reviewed the available disease-associated
networks, drug-associated networks that can be used to assist
the drug discovery and elaborate the network-based TCM
pharmacology [106]. Klipp et al. discussed the possibility
to use networks to aid the drug discovery process and
focused on networks and pathways in which the components
are related by physical interactions or biochemical process
[108]. Leung investigated the possibility of network-based
intervention for curing system diseases bymeans of network-
based computational models and using medicinal herbs to
develop into newwave of network-basedmultitarget drugs. It
was concluded that further integration across various “omics”
platform and computational tools would accelerate the drug
discovery based on network [109].

Barlow et al. screened among Chinese herbs for com-
pounds that may be active against 4 targets in inflammation,
by means of pharmacophore-assisted docking. The results
showed that the twelve examples of compounds from CHCD
inhibit multiple targets including cyclooxygenases 1 and 2
(COX), p38 MAP kinase (p38), c-Jun terminal-NH(2) kinase
(JNK), and type 4 cAMP-specific phosphodiesterase (PDE4).
The distribution of herbs containing the predicted active
inhibitors was studied in regard to 192 Chinese formulae, and
it was found that these herbs were in the formulae that were
traditionally used to treat fever, headache, and so on [98].

Many traditional Chinesemedicines (TCMs) are effective
to relieve complicated diseases such as type II diabetes
mellitus (T2DM). Gu et al. employed the molecular docking
and network analysis to elucidate the action mechanism of
a medical composition-Tangminling Pills which had clinical
efficacy for T2DM. It was found that multiple active com-
ponents in Tangminling Pills interact with multiple targets
in the biological network of T2DM. The 37 targets were
classified into 3 clusters, and proteins in each cluster were
highly relevant to each other. Ten known compounds were
selected according to their network attribute ranking in drug-
target and drug-drug network [99].

XFZYD, a recipe derived fromWang Q. R. in Qing dyna-
sty, waswidely used in cardiac systemdisease. From similarity
search and alignment, the chemical space of compounds in
XFZYD was found to share a lot of similarities with that
of drug/drug-like ligands set collected from cardiovascular
pharmacology, while the chemical pattern in XFZYD is more
diverse than that in drug/drug-like ligands for cardiovas-
cular pharmacology. Docking protocol between compounds
in XFZYD and targets related to cardiac system disease
using LigandFit shows that many molecules have good
binding affinity with the targeting enzymes and most have

interactions with more than one single target. The active
components in XFZYD mainly target rennin, ACE, and
ACE2 in renin-angiotensin system (RAS), which modulates
the cardiovascular physiological function. It was proved that
promiscuous drugs in TCM might be more effective for
treating cardiosystem diseases, which tend to result from
multitarget abnormalities, but not from a single defect [100].

A lot of integrative computational tools and models have
been developed and widely used to optimize the combination
regimen ofmulticomponents drugs and elucidate the interac-
tive mechanism among ligand-target networks.

Li et al. built a method called distance-based mutual
information model (DMIM) to identify useful relationships
among herbs in numerous herbal formulae. DMIM combines
mutual information entropy and distance between herbs to
score herb interactions and construct herb network. Novel
antiangiogenic herbs, Vitexicarpin and Timosaponin A-III,
were discovered to have synergistic effects. Based on herb
network constructed by DMIM from 3865 collateral-related
herbs, the interactions between TCMdrugs and disease genes
in cancer pathways and neuro-endocrine-immune pathways
were inferred to contribute to the action of Liu-wei-di-huang
formula, one of the most well-known TCM formulae as
potential treatment for a variety of diseases including cancer,
dysfunction of the neuro-endocrine-immune-metabolism
system, and cardiovascular system [101].

Wang et al. adopted a new method based upon lattice
experimental design and multivariate regression to model
the quantitative composition-activity relationship (QCAR) of
Shenmai, a Chinese medicinal formula. This new strategy for
multicomponent drug designwas then successfully applied in
searching optimal combination of three key components (PD,
PT, and OP) of Shenmai. Experimental outcome of infarct
rate of heart in mice with different dosage combination of
the three components was finally measured, and the fitted
relationship equation showed that the optimal values of PD,
PT, and OP were 21.6, 39.2, and 39.2%, respectively [102]. The
proportion of two active components of Qi-Xue-Bing-Zhi-
Fang, PF and FP, was also optimized in similar way using sev-
eral fitting techniques like linear regression, artificial neural
network, and support vector regression [103]. Although the
underlying mechanism of drug synergy for the two formulae
was still not very clear, the interactions of multiple weak
bindings among different compounds and targets might be
the contributory factors.

A network-based multitarget computational scheme for
the whole efficacy of a compound in a complex disease was
developed for screening the anticoagulant activities of a
serial of argatroban intermediates and eight natural products,
respectively. Aimed at the phenotypic data of drugs, this
scheme predicted bioactive compounds by integrating bio-
logical network efficiency analysis with multitarget docking
score, which evolves from the traditional virtual screening
method that usually predicted binding affinity between single
drug molecule and target. A ligand can have impact on
multiple targets based on the docking scores, and those with
highest-target-network efficiency are regarded as potential
anticoagulant agents. Factor Xa and thrombin are two crit-
ical targets for anticoagulant compounds, and the catalytic
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reactions they mediate were recognized as the most fragile
biologicalmatters in the human clotting cascade system [104].

Sun et al. presented a systematic target network analysis
framework to explore the mode of action of anti-Alzheimer’s
disease (AD) herb ingredients based on applicable bioin-
formatics resources and methodologies on clinical anti-AD
herbs and their corresponding target proteins [105]. The
results showed that, just as many FDA-approved anti-AD
drugs do, the compounds of these herbs bind to targets in
AD symptoms-associated pathway. Besides, they also interact
closely with many successful therapeutic targets related to
diseases such as inflammation, cancer, and diameters. This
suggests that the possible cross talks between these compli-
cated diseases are prevalent in TCM anti-AD herbs [110].
Moreover, pathways of Ca(2+) equilibrium maintaining,
upstream of cell proliferation and inflammation, were found
to be intensively hit by the anti-AD herbal ingredients.

Based on the available experimental results, Zhao et al.
analyzed the molecular mechanism with the aid of path-
ways and networks and theoretically proved the multitarget
effect of St. John’s Wort [106]. A comprehensive literature
search was conducted and the neurotransmitter receptors,
transporter proteins, and ion channels on which the SJW
active compounds show effects were collected. Three main
pathways that SJW intervenes were found by mapping these
proteins onto KEGG pathways. Active components in SJW
mainly intervene with neuroactive ligand-receptor interac-
tion, the calcium-signaling pathway, and the gap-junction-
related pathway, pertinent to targets including NMDA-
receptor, CRF1 receptor, 5-hydroxytryptamine receptor 1D,
and dopamine receptor D1.The networks show that the effect
of SJW is similar to that of combinations of different types
of antidepressants. However, the inhibitory effects of the
SJW on each of the pathway are lower than other individual
agents. Accordingly, the significant antidepressant efficacy
and lower side effects are due to the synergetic effect of low-
dose multitarget actions.

Zhang et al. established an integrative platform of TCM
network pharmacology to discover herbal formulae on basis
of systematic network. This platform incorporates a set of
state-of-the-art network-basedmethods to explore the action
mechanism, identify active ingredients, and create new
synergetic combinations of components. The Qing-Luo-
Yin (QLY), an antirheumatoid arthritis (RA) formula, was
studied comprehensively using the new platform. It is found
that the target network of QLY is involved in RA-related key
processes including angiogenesis, inflammatory response,
and immune response. The four herbs in QLY work in
concert to promote efficiency and reduce toxicity, as the
jun, chen, zuo, and shi in Chinese, respectively. Specifically,
the synergetic effect of Ku-Shen (jun herb) and Qing-Feng-
Teng (chen herb) may come from the feedback loop and
compensatory mechanisms [107].

5. Discussion and Conclusion

In recent years, the bottleneck in western medicine has
brought unprecedented opportunities in TCM research and
development. For decades, the fundamental research has

achieved great success and laid the foundation of modern
western medicine, and the philosophical idea of “reduction-
ism” was considered to own the credit.

The counterparty of “reductionism” in Chinese medicine
is the philosophical idea of holism,which has thousands years
of history of practice in China as well as in other Asian coun-
tries. Using this methodology, the effectiveness of TCM can
only be verified from a large number of clinical trials given
the unclear composition and unknown relationship among
various components.This implicit effect without clear clarifi-
cation at the molecular level has been hindering the modern-
ization of TCM. How to learn from the accumulative knowl-
edge of western medicine in order to identify the effective
compositions and explore the molecular mechanism of the
efficacy is an urgent problem that needs to be solved in TCM.

The hypothesis of “multidrug, multitarget, multigene” in
fact bridges the gap between TCM and western medicine and
is also amanifestation of unity of opposites on “reductionism”
and “holism.” TCM uses the holistic method to investigate
the effects of multicomponent formula across the whole
organism, such as the use of a variety of “ZHENG” in TCM
theory [111]. However, the only option we have to uncover
the underlying mechanism of TCM at the molecular level is
to make use of the theory of reductionism. Of course, for
complex systems, the reduction method can only reach to
a certain depth since it becomes more troublesome as we
get deeper. Therefore, some researchers tend to reduce the
mechanism of TCM to the level of “multidrug, multitarget,
multigene” at present, and for further reduction to the level
of “single-drug, single-target, single-gene,” the problem of
emergentism [112] in philosophy needs to be addressed
properly. The theory of emergentism believes that some
unique features or “ultimate features” of a system can never
be reduced to properties at lower levels, nor the former can
be predicted or explained by the latter, as shown in Figure 1.

So far, ligand-protein network or “multidrug,multitarget,
multigene” is one of the few basic modules that can clearly
reveal the pharmacology of TCM and is expected to be the
future direction of the modernization of TCM. But just rely-
ing on experimental scientists to build ligand-protein inter-
actions nonexhaustively will slow down both the moderniza-
tion of TCM and the development of its industry. Therefore,
the use of cross-platform database (TCM compounds and
recipe database; see Section 2 in this paper) and the improve-
ment on modeling technique (computational method of
ligand-protein interactions; see Section 3 in this paper) will
afford the basis of in silico research for future modernization
and development of TCM. It can be foreseen that one future
direction is to use these TCM databases and predictive
models to reveal the pharmacological effect of TCM, through
the establishment of ligand-protein networks or, “multidrug,
multitarget, multigene” relationships. Nevertheless, the phar-
macological mechanism of TCM can be very complex and
may not be well explained only with the known ligand-
protein network. After all, this is a process of reeling silk from
cocoons and also one of the best choices we have right now.

The increasing availability of ligand-protein networks
is a unique chance to boost success in the modernization
of TCM based on the accumulative knowledge of TCM
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Phenotype Disease (WM)ZHENG (TCM) 

Multicomponent, multitarget, 

Multitarget synergy

Multicomponent
synergy

Specific 
therapeutic targets

One drug, one target,
one gene

Single drug

Emergentism

Holism Reductionism

multigene or ligand-protein
networks

Figure 1: Unity of opposites on holism in traditional Chinese medicine and reductionism in western medicine. Emergentism constructs the
framework of the understanding of holism in TCM via accumulative practice of reductionism in WM.

formulae and practices based on the assumption that TCM
exerts the pharmacological efficacy in multidrug, multitarget
way. Although preliminary research has been initiated in
this area, there is still a long way to go to further leverage
these networks and modeling techniques. Virtual screening
and informatics in the drug discovery area have already
been proven to be quite useful either to predict potential
new drug and target candidates for experimentalists or to
explore the functional mechanism at the molecular level.
A large number of drug-target interactions have thus been
gained and the resulted drug-target networks will also be
quite beneficial to investigate the underlying mechanism
of multicomponent drugs, such as the TCM. With further
applications of these methods in TCM area, we are expecting
to reveal themode of action underlying polypharmacology of
TCM.This grants us the possibility to discover novel effective
drug leads, understand the synergistic mechanism of drug
combinations, andmore importantly, develop drug portfolios
against epidemic, chronic disease, cancer, and other complex
diseases that are almost incurable by western medicine.
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