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Background: The efficacy of upper-limb Robot-assisted Therapy (ulRT) in stroke

subjects is well-established. The robot-measured kinematic data can assess the

biomechanical changes induced by ulRT and the progress of patient over time. However,

literature on the analysis of pre-treatment kinematic parameters as predictive biomarkers

of upper limb recovery is limited.

Objective: The aim of this study was to calculate pre-treatment kinematic parameters

from point-to-point reaching movements in different directions and to identify biomarkers

of upper-limb motor recovery in subacute stroke subjects after ulRT.

Methods: An observational retrospective study was conducted on 66 subacute stroke

subjects who underwent ulRT with an end-effector robot. Kinematic parameters were

calculated from the robot-measured trajectories during movements in different directions.

A Generalized Linear Model (GLM) was applied considering the post-treatment Upper

Limb Motricity Index and the kinematic parameters (from demanding directions of

movement) as dependent variables, and the pre-treatment kinematic parameters as

independent variables.

Results: A subset of kinematic parameters significantly predicted the motor impairment

after ulRT: the accuracy in adduction and internal rotationmovements of the shoulder was

the major predictor of post-treatment Upper Limb Motricity Index. The post-treatment

kinematic parameters of the most demanding directions of movement significantly

depended on the ability to execute elbow flexion-extension and abduction and external

rotation movements of the shoulder at baseline.

Conclusions: The multidirectional analysis of robot-measured kinematic data predicts

motor recovery in subacute stroke survivors and paves the way in identifying subjects

who may benefit more from ulRT.
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INTRODUCTION

More than 70% of stroke survivors suffer from upper limb
impairment and from a kind of disability in the activities of daily
living (1, 2). For these reasons, the recovery of the upper limb
motor function and the reintegration into the real-life context
have always been the main goals of post-stroke rehabilitation
(3, 4). A Cochrane review of 2014 showed that any approach
of high dose physical rehabilitation is more effective than usual
care in improving motor functions (5). This outcome has been
subsequently confirmed by Mehrholz et al. who reviewed the
literature on the efficacy of upper limb Robot-assisted Therapy
(ulRT) in improving activities of daily living, arm function, and
arm muscle strength (6). The efficacy (7–11), acceptability (12),
safety (13), and cost-effectiveness (14) of ulRT in stroke patients
are well-established in literature.

Traditionally, the effects of ulRT are reported by using
standardized clinical assessments [such as, the upper extremity
subscale of the Fugl-Meyer Assessment (15), the upper limb
Motricity Index (16, 17), or the Action Research Arm Test (18)]
and biomechanical measurements of upper limb movements
(19–22). Specifically, a multiplicity of kinematic parameters has
been applied for upper limb evaluations, such as movement
accuracy, speed, and smoothness, and some of them have
been correlated to the clinical outcome measures (21, 23).
Interestingly, a number of publications analyzed the Robot
Measured Kinematic (RMK) data (i.e., the trajectories for
movements) registered by the robot (20, 24–28) assessing the
biomechanical changes induced by ulRT, and thus the patient
progress, in terms of motor control and coordination. Moreover,
these robotic measurements allow monitoring the time course
of motor recovery during ulRT (24–27), showing that it is
movement direction-dependent (20, 28). The robot-measured
data have been processed not only for assessing the efficacy of
ulRT, but also for predicting the clinical scales (29–31). Krebs et
al. found that measurements of kinematics and kinetics recorded
by a robot may predict the clinical outcomes registered on a
given day (29), thus suggesting that the robotic measurements
can be biomarkers of motor impairment. These findings were
confirmed by Grimm et al. who showed that exoskeleton-based
kinematics correlated to clinical outcome measures (30). More
recently, Agrafiotis et al. analyzed the RMK data and developed
predictivemodels of the clinical outcomes with the aim to remove
inter- and intra-rater variability and reduce the sample size in
stroke clinical trials (31). Even though the literature on clinical
predictors after ulRT is well-established (32–36), only Duret et al.
analyzed the RMK data with the aim to predict the upper limb
recovery at the end of ulRT (37). However, the results obtained
on 46 subacute stroke subjects evidenced that selected RMK

parameters, calculated from the overall trajectory, do not predict
the total upper limb Fugl-Meyer Assessment scores at the end of
the treatment (37).

Nevertheless, considering the importance of evidence-based

practice in stroke rehabilitation (38), the identification of patients

who may benefit more from a robotic treatment (34) is needed.
Especially, the pre-treatment motor status of subject should be
analyzed in detail, considering the recent findings on the time

course of motor recovery and the variations of the workspace
exploration skills of a patient during ulRT (20, 39). In particular,
movements characterized by elbow extension and shoulder
flexion and by the abduction and external rotation of the shoulder
are the most demanding to be executed by stroke subjects (40, 41)
since these are against the abnormal flexor strategy. For these
reasons, the recovery of these movements should be monitored
as post-rehabilitation outcomes.

The aim of this study was to calculate a set of kinematic
parameters from RMK data and to identify reliable predictors
of upper-limb motor performance following ulRT in subacute
stroke subjects. Specifically, the ability to execute point-to-
point reaching movements in different directions has been
considered as representative of motor impairment and of motor
synergies in stroke survivors. Therefore, we hypothesized that the
analysis of pre-treatment kinematic parameters would allow us
to find predictors of upper limb recovery and, thus, to identify
individuals who can benefit more from ulRT.

MATERIALS AND METHODS

An observational retrospective study was carried out on stroke
subjects who had conducted ulRT in addition to the conventional
therapy. This secondary analysis considered the RMK data for
assessing the time course of motor recovery during ulRT (19).
The data covered by this paper were acquired and processed by
the IRCCS San Raffaele Roma (Rome, Italy).

Selection of Patients
The study was conducted on a database of 271 inpatients who
underwent ulRT with the planar end-effector InMotion 2.0 robot
(Bionik Laboratories, Watertown, MA, USA) at the IRCCS San
Raffaele Roma (Italy) between January 2011 and December 2017.
Data were selected from patients who satisfied the following
inclusion criteria: age between 18 and 80 years; first event
of unilateral hemiparetic stroke; subacute phase (ulRT started
within 30 ± 7 days post-stroke); upper limb Chedoke-McMaster
scores between 2 and 5; Motricity Index affected Upper Limb
<100; and ulRT for 20 sessions. The exclusion criteria were the
following: bilateral impairment; chronic phase; ulRT for less than
20 sessions; interruption of the ulRT for more than 3 consecutive
days; the presence of other severe medical conditions; and
incomplete data in the database.

Rehabilitative Protocol
All subjects conducted 20 sessions (5 times/week) of InMotion2-
based ulRT with an “assist as needed” strategy. The InMotion
2.0 device is an integrated system for interactive upper limb
motor training and the simultaneous kinematic data registry
(42). Each session of treatment lasted 45minutes and consisted
of the execution of a sequence of point-to-point reaching
movements in the horizontal plane (16, 34). Each task involved
the training of different muscle synergies, moving the end-
effector from a central target to 8 peripheral targets, equally
spaced on a 0.14m radius circumference and vice versa
(Figure 1). Visual biofeedback was delivered from a monitor
placed in front of the subject. In addition, the subjects
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FIGURE 1 | Experimental setup and reference system in case of right (I) or left

(II) affected limb.

underwent conventional physiotherapy sessions according to the
standardized rehabilitation protocol for subacute stroke patients:
assisted stretching, shoulder and arm exercises, and functional
reaching tasks. Detailed and relevant information on ulRT is
available in the previous paper of the authors (20).

Data Extraction
The demographic and clinical data have been extracted from the
electronic medical records, such as age, gender, affected side, time
since stroke, and etiology. The clinical and kinematic assessments
were registered at the beginning (T1) and at the end (T2) of the
ulRT. The privacy of patient was preserved by identifying each
record in the database by means of a unique alphanumeric code.

The clinical outcomes are the following: modified Barthel
Index (mBI) (4), Motricity Index of the affected Upper Limb
(MIUL) (43), and the Motricity Index sub-items assessing
the elbow flexion (MIELBOW) and the shoulder abduction
(MISHOULDER). The item related to the pinch grip was not
considered in this study because the InMotion2-based ulRT
typically involves the elbow and shoulder joints.

The kinematic parameters were calculated from the
trajectories recorded by the robot at 200Hz, as detailed in the
previous study of the authors (20). Specifically, the end-effector
trajectory has been expressed with respect to a reference system
consistent with the lesion side (Figure 1) and the following
kinematic parameters have been calculated for each trajectory
from the central target to the peripheral ones (directions of
movement A, B, C, and D): Movement Path Error in centimeters
(MPE); mean Movement Speed in centimeters/second (MS); and
the number of Peaks Speed (nPS). The MPE is the mean absolute
value of the minimum distance of each point of the actual path
traveled by the subject from the ideal one (i.e., the straight line

connecting the targets): the value is 0 if the trajectory lies exactly
on a straight line connecting the targets. The MPE means how
much the trajectory is far from the ideal straight line. The MS
is the mean value of the resultant velocities in the plane where
the trajectory lies. The nPS is defined as the number of peaks
of the resultant velocity and it is a metric used for assessing the
smoothness of the movement: low nPS values derive from few
accelerations and decelerations, i.e., smooth movement.

The kinematic parameters computed in this study describe
functional abilities and are in the “body function and structure”
ICF domain as described by Tran et al. (24). They are
considered as “performance metrics” for assessing the quality
of the movement by assuming that the physiological reaching
movements are straight, fairly quick, and smoothed (23,
29). Since the reference system is consistent with the lesion
side (Figure 1), the directions of movement corresponded to
the following major anatomical joint movements: A (elbow
extension and shoulder flexion), B (abduction and external
rotation of the shoulder), C (elbow flexion and shoulder
extension), and D (adduction and internal rotation of the
shoulder). Therefore, the ability to execute point-to-point
reaching movements in different directions described by the
kinematic parameters has been considered as representative of
different synergies involved in the execution of the reaching
tasks (51).

Ethical Considerations
SinceMarch 2012, the ItalianData Protection Authority (Garante
per la protezione dei dati personali) declared that IRCCS
(Istituto di Ricovero e Cura a Carattere Scientifico - Institute
for scientific research and healthcare) are authorized to perform
retrospective studies without the approval of the local Ethical
Committee, and mandatory formal communication is sufficient.
Such communication relative to this study was registered by the
Ethical Committee of the IRCCS San Raffaele Roma on February
22, 2017 (code number: 06/17).

Data Analysis and Statistical Analysis
The statistical analyses were performed on SPSS, Version 27.0
(SPSS Inc., Chicago, IL, USA, 2020). Descriptive statistics
were computed to appropriately explain the characteristics
of the sample. Data are represented as frequency (with the
relative percentage), mean value with Standard Deviation (SD),
and median value with Interquartile range (IQR) for the
categorical, continuous, and ordinal variables, respectively. The
Kolmogorov–Smirnov test with the Lilliefors correction was
used to evaluate the normality of distribution. The statistically
significant difference between T1 and T2 was assessed with paired
t-test if the data were normally distributed, while Wilcoxon
signed-rank test for other comparisons.

The regression analysis was applied for assessing the
relationship between a dependent variable and a set of
independent variables. The following analyses were conducted:

A. Dependent variable: MIELBOW at T2. Independent variables:
age, kinematic parameters at T1.
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B. Dependent variable: MISHOULDER at T2. Independent
variables: age, kinematic parameters at T1.

C. Dependent variable: MIUL at T2. Independent variables: age,
kinematic parameters at T1.

D. Dependent variable: MPE A at T2. Independent variables:
kinematic parameters at T1.

E. Dependent variable: MPE B at T2. Independent variables:
kinematic parameters at T1.

F. Dependent variable: MS A at T2. Independent variables:
kinematic parameters at T1.

G. Dependent variable: MS B at T2. Independent variables:
kinematic parameters at T1.

H. Dependent variable: nPS A at T2. Independent variables:
kinematic parameters at T1.

I. Dependent variable: nPS B at T2. Independent variables:
kinematic parameters at T1.

The MIELBOW and MISHOULDER are categorical variables
composed of six classes, as defined by Wade (43). The MIUL
has been transformed into a categorical variable, by grouping the
possible MIUL values into the following six classes: class0 = 1–27;
class1 = 29–40; class2 = 41–54; class3 = 55–66; class4 = 67–77;
and class5 = 78–100.

The choice of considering, as dependent variables, the
kinematic parameters calculated from the trajectories executed in
direction A and B, was made taking into account that the motor
tasks in these directions were the most challenging after stroke,
as confirmed by the literature (20, 44).

In the regression analysis, the general linear model or the
Generalized Linear Model (GLM) has been applied in the case
of dependent variables with normal distribution or with no-
normal distribution, respectively. Specifically, in the case of GLM,
the following models have been used: Poisson model with a log
link function, for categorical variables; Gamma model with a log
link function, or Linear link identity for continuous variables;
and multinominal cumulative logit for ordinal variables. The
Pearson’s χ2 and the deviance statistics were evaluated to assess
the model’s goodness of fit. The partial slope β was reported
to measure the influences of each predictor. All tests were
considered significant at a p < 0.05.

RESULTS

Starting from a database of 271 inpatients, 66 subacute stroke
subjects satisfied the inclusion criteria and were included in the
study (Figure 2). The mean age was 64.97 years (SD 12.75 years);
44 (66.7%) patients were male; and 39 (59.1%) subjects had the
right upper limb impairment. Table 1 shows the demographic
characteristics of the sample at baseline, the clinical scores
(mBI, MIELBOW, MISHOULDER, and MIUL), and the kinematic
parameters (MPE, MS, and nPS: directions A, B, C, and D)
calculated at T1 and T2. At the end of ulRT, all clinical
outcomes significantly improved (p < 0.05). The kinematic
outcomes registered significant changes between T1 and T2 in
all parameters except the MPE calculated from the trajectories
executed in direction B (p= 0.159).

FIGURE 2 | Consort diagram.
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TABLE 1 | Summary of the sample characteristics before (T1) and after (T2) the upper-limb robot-assisted therapy (ulRT).

N (%) T1 T2 p-value

Age (years) 64.97 ± 12.75

Gender, male/female 44 (66.7)/22 (33.3)

Side, right/left 39 (59.1)/27 (40.9)

Time since stroke (days) 15.27 ± 18.07

Etiology, ischemic/hemorrhagic 47 (71.2)/19 (28.8)

mBI 26.0 (14.75–40.25) 79.5 (64.25–92.25) <0.001*

MIELBOW 14.0 (9.0–19.0) 14.2 ± 9.6 25.0 (17.75–33.0) 23.8 ± 10.3 <0.001*

MISHOULDER 14.0 (9.0–19.0) 14.0 ± 9.1 25.0 (17.75–33.0) 23.5 ± 9.8 <0.001*

MIUL 42.0 (19.0–62.0) 42.6 ± 27.8 77.0 (47.25–93.0) 69.4 ± 30.2 <0.001*

MPE A (m) 0.021 (0.012–0.043) 0.014 (0.010–0.028) 0.004*

MPE B (m) 0.016 (0.007–0.026) 0.013 (0.007–0.022) 0.159*

MPE C (m) 0.017 (0.012–0.029) 0.010 (0.01–0.02) 0.002*

MPE D (m) 0.017 (0.011–0.030) 0.010 (0.01–0.02) 0.002*

MS A (m/s) 0.061 ± 0.043 0.085 ± 0.040 <0.001+

MS B (m/s) 0.074 ± 0.049 0.112 ± 0.054 <0.001+

MS C (m/s) 0.058 (0.031–0.095) 0.10 (0.08–0.14) <0.001*

MS D (m/s) 0.074 ± 0.050 0.108 ± 0.048 <0.001+

nPS A 6.0 (4.0–9.0) 2.0 (1.0–3.0) <0.001*

nPS B 4.0 (2.0–7.0) 2.0 (1.0–3.0) <0.001*

nPS C 4.0 (2.0–8.0) 2.0 (1.0–4.0) <0.001*

nPS D 4.0 (2.0–7.0) 1.5 (1.0–3.0) <0.001*

Data are shown as mean ± SD or median (interquartile range [IQR]). *Wilcoxon signed-rank tests. +Paired t-test. mBI, modified Barthel Index; MIELBOW, Motricity Index affected elbow

flexion; MISHOULDER, Motricity Index affected shoulder abduction; MIUL, Motricity Index affected Upper Limb; MPE, Movement Path Error; MS, mean Movement Speed; nPS, number

of Peaks Speed. T1: before the ulRT; T2: after the ulRT. Directions of movement: A, B, C, D.

Table 2 presents the results of the regression analysis of factors
associated with the upper limb motor impairment: the model
used for the analysis was the GLM with multinomial cumulative
logit since the dependent variables (MIELBOW, MISHOULDER,
and MIUL) were ordinal. The age, the path errors (MPEs in
directions A, C, and D), and the speed (MS in direction B)
at T1 were significant predictors of MIELBOW, MISHOULDER,
and MIUL at T2. Specifically, older subjects were less likely
to increase the Motricity Index of the affected upper limb: all
subjects improved their level of impairment at T2 but for each
year of age, the probabilities to increase of one class in the
MIELBOW, MISHOULDER, and MIUL diminished by 7.0, 5.8, and
7.3%, respectively. The MPEs calculated from the trajectories
executed in direction A and C were significant positive predictors
of MIELBOW, MISHOULDER, and MIUL: the less accurate the
trajectories were at baseline (i.e., high MPE values), the more
the MIELBOW, MISHOULDER, and MIUL increased at the end
of the treatment. Conversely, the MPE (direction D) and the
MS (direction B) were negative prognostic factors for motor
impairment at the end of the ulRT: less accurate trajectories
in direction D and quick movements in direction B at T1
negatively interfere with the increase of MIELBOW, MISHOULDER,
and MIUL at T2. The remaining independent variables did not
significantly contribute in predicting the clinical assessment of
motor impairment at T2.

The regression analysis of MPE and MS was executed
with the GLM with the Gamma distribution (with a log link

function) and with Linear link identity, respectively. Since
the response of the nPS is a count, the nPS A and nPS B
respected the assumptions to perform the GLM with Poisson
distribution (with a log link function). The histograms of
MPE, MS, and nPS and the corresponding distributions are
showed in Appendix.

Table 3 (I) shows the results of the GLM for MPE direction A
at T2. The MPE direction B was not considered as a dependent
variable because it did not significantly change between T1 and
T2 (as shown in Table 1). The analysis revealed that the nPS
direction A was a significant protective factor of MPE direction
A (odds ratio [OR] = 1.088; 95% CI = 1.020–1.159). Expressly,
having one peak more in the resultant velocity (direction A) at
T1 increases 8.8% of the probability to have a higher path error
(i.e., MPE) in executing point-to-point movements in direction
A at T2.

Table 3 (II) depicts the predictors of MS direction A and
direction B at T2. The results show that the MPE direction C
and the nPS direction B were negative prognostic factor for MS
direction A and B, respectively. For each one-unit increase in
MPE direction C, the expected value of the dependent variable
(MS direction A) increases by β = −0.478, assuming all other
variables constant. Therefore, the greater the MPE direction C
at baseline, the smaller the MS direction A at the end of the
treatment. For each one-unit increase in nPS B, the expected
value of MS direction B decreases at T2 (β = −0.006): the
more fluid movements are performed toward B (against the
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TABLE 2 | Results of the regression analysis of factors associated with the upper limb motor impairment at the end of ulRT.

Modeled using

GLM with

Multinominal

cumulative logit

MIELBOW T2 MISHOULDER T2 MIUL T2

β SE OR 95%CI β SE OR 95%CI β SE OR 95%CI

Age −0.072* 0.023 0.930 0.890 0.972 −0.059* 0.0225 0.942 0.902 0.985 −0.076* 0.0237 0.927 0.885 0.971

MPE A T1 0.003* 0.001 1.003 1.001 1.006 0.004* 0.0014 1.004 1.001 1.007 0.003* 0.0013 1.003 1.001 1.005

MPE B T1 0.001 0.002 1.001 0.998 1.004 0.002 0.0013 1.002 0.999 1.004 0.001 0.0013 1.001 0.998 1.003

MPE C T1 0.006* 0.002 1.006 1.003 1.009 0.006* 0.0015 1.006 1.003 1.009 0.005* 0.0015 1.005 1.002 1.008

MPE D T1 −0.007* 0.002 0.993 0.989 0.997 −0.007* 0.0021 0.993 0.989 0.997 −0.006* 0.0022 0.994 0.989 0.998

MS A T1 −0.001 0.001 0.999 0.998 1.001 −0.001 0.0007 0.999 0.998 1.001 −0.001 0.0008 0.999 0.998 1.001

MS B T1 −0.002* 0.001 0.998 0.996 0.999 −0.002 0.0010 0.998 0.996 1.000 −0.002 0.0011 0.998 0.996 1.000

MS C T1 0.002 0.001 1.002 0.999 1.004 0.001 0.0011 1.001 0.998 1.003 0.001 0.0012 1.001 0.999 1.003

MS D T1 0.001 0.001 1.001 0.999 1.003 0.002 0.0008 1.002 1.000 1.003 0.001 0.0009 1.001 0.999 1.003

nPS A T1 0.012 0.094 1.013 0.841 1.218 0.018 0.0970 1.018 0.841 1.231 −0.011 0.0967 0.989 0.818 1.195

nPS B T1 0.124 0.097 1.132 0.9360 1.370 0.021 0.0902 1.021 0.855 1.218 0.125 0.0965 1.133 0.938 1.369

nPS C T1 −0.012 0.060 0.988 0.879 1.111 0.002 0.0601 1.002 0.890 1.127 −0.022 0.0606 0.979 0.869 1.102

nPS D T1 0.067 0.102 1.069 0.875 1.306 0.154 0.1086 1.167 0.943 1.443 0.132 0.1081 1.141 0.923 1.410

Threshold

Class score 1 0.049 1.6914 1.050 0.038 28.911 2.269 1.7729 9.673 0.300 312.33 −0.948 1.7491 0.387 0.013 11.940

Class score 2 −1.010 1.6645 0.364 0.014 9.513 1.155 1.7232 3.173 0.108 92.946 −1.981 1.7656 0.138 0.004 4.391

Class score 3 −1.829 1.6706 0.161 0.006 4.243 −0.117 1.7146 0.889 0.031 25.617 −2.649 1.7840 0.071 0.002 2.335

Class score 4 −2.560 1.6788 0.077 0.003 2.077 −1.173 1.7071 0.309 0.011 8.782 −3.254 1.7901 0.039 0.001 1.290

Class score 5 −3.987* 1.7098 0.019 0.001 0.529 −2.334 1.6961 0.097 0.003 2.691 −3.900* 1.7932 0.020 0.001 0.680

Deviance 0.552 0.568 0.571

Pearson’s Chi

Square/gdl

1.998 1.163 1.273

AIC 208.270 213.251 214.105

Likelihood ratio 33.134* 32.74* 28.329*

MIELBOW, Motricity Index affected elbow flexion; MISHOULDER, Motricity Index affected shoulder abduction; MIUL, Motricity Index affected Upper Limb; MPE, Movement Path Error; MS,

mean Movement Speed; nPS, number of Peaks Speed. T1: before the ulRT; T2: after the ulRT. Directions of movement: A, B, C, and D. *p < 0.05.

pathological pattern) at T1, the more rapid movements are
performed toward B at T2.

Table 4 presents the outcomes of the GLM with Poisson
distribution (with a log link function) with the nPS direction A
and direction B at T2 as dependent variables. The MPE direction
A at baseline was found to be a significant predictor of both
dependent variables (nPS direction A: OR = 1.001, 95% CI =
1.001–1.002; nPS direction B: OR = 1.001, 95% CI = 1.000–
1.001). Thus, the greater the MPE direction A at T1, the greater
the nPS direction A and direction B at T2. On the other hand,
having higherMS direction B at baseline decreases the probability
to have high nPS in the same direction at the end of ulRT (OR =

0.999, 95% CI = 0.999–1.000): the greater the MS direction B the
smaller the nPS in the same direction.

DISCUSSION

This observational retrospective study analyzed the upper limb
kinematics and the clinical characteristics of subacute stroke
subjects, who received ulRT, to find potential inferences on
the degree of impairment with motor outcomes at the end

of the treatment. To this aim, data from 66 subjects were
analyzed by GLMs to explore all potential relations between the
dependent variables and every independent variable as predictive
biomarkers. Although the literature on the clinical predictors
after ulRT is well-established (32–36), a limited number of studies
aimed to find predictors from data registered by a robot for
rehabilitation (31, 37): however, the published studies aimed to
predict the clinical outcomes and calculated the RMK features
from complex trajectories composed by a set of movements
having different directions in the workplace, thus did not
discriminate the performance in executing movements with
different directions. To the best of our knowledge, this is the
first attempt at a multidirectional analysis of RMK data to
find potential predictive biomarkers of motor outcomes after
an intensive rehabilitation protocol that combined ulRT with
conventional rehabilitation.

In our study, all the clinical and RMK outcomes (except the
trajectories executed in direction B) significantly improved at the
end of the treatment, in accordance with studies on the efficacy
of ulRT in stroke survivors (9, 16). The obtained improvement
could depend on the high dose physical rehabilitation, since
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TABLE 3 | Results of the regression analysis of factors associated with: (I) the movement path error (MPE) direction A at the end of ulRT; (II) the movement speed (MS)

direction A and direction B at the end of ulRT.

I) Modeled using GLM with Gamma link log MPE A T2

β SE OR 95%CI

MS A T1 −0.894 2.554 0.409 0.003 61.073

MS B T1 −0.315 3.161 0.729 0.001 35.790

MS C T1 2.630 3.811 13.871 0.008 24354.400

MS D T1 1.309 2.818 3.704 0.015 928.756

nPS A T1 0.084* 0.033 1.088 1.020 1.159

nPS B T1 −0.003 0.029 0.997 0.942 1.056

nPS C T1 0.023 0.021 1.023 0.982 1.066

nPS D T1 0.025 0.027 1.025 0.973 1.081

Intercept −4.844* 0.418 0.008 0.003 0.018

Deviance 0.561

Pearson’s Chi Square/gdl 0.556

AIC −379.092

Likelihood ratio 10.313*

II) Modeled using GLM with linear link identity MS A T2 MS B T2

β SE 95%CI β SE 95%CI

MPE A T1 −0.349 0.198 −0.738 0.039 −0.270 0.274 0.447 1.305

MPE B T1 0.158 0.213 −0.260 0.576 0.409 0.294 0.846 2.681

MPE C T1 −0.478* 0.241 −0.949 −0.006 −0.366 0.332 0.362 1.329

MPE D T1 0.461 0.309 −0.144 1.066 0.219 0.426 0.540 2.868

nPS A T1 0.003 0.002 0.999 1.006 0.003 0.002 −0.002 0.007

nPS B T1 −0.001 0.002 0.995 1.002 −0.006* 0.002 −0.010 −0.001

nPS C T1 −0.001 0.001 0.997 1.001 −0.001 0.001 −0.003 0.002

nPS D T1 −0.002 0.002 0.994 1.001 −0.001 0.002 −0.006 0.003

Intercept 0.101* 0.013 0.076 0.126 0.137* 0.017 0.103 0.171

Deviance 0.001 0.003

Pearson’s Chi Square/gdl 0.001 0.003

AIC −236.621 −194.145

Likelihood ratio 18.853* 17.144*

MPE, Movement Path Error; MS, mean Movement Speed; nPS, number of Peaks Speed. T1: before the ulRT; T2: after the ulRT. Directions of movement: A, B, C, and D. * p < 0.05.

the patients conducted a highly intensive ulRT (20 sessions, 5
times/week), considering the literature on the topic (5).

The results obtained from the regression analysis of upper
limb motor impairment showed that age was a significant
negative prognostic factor, in agreement with the literature
on predictors of upper limb recovery following stroke (45).
Furthermore, a subset of kinematic parameters calculated at
baseline evidenced significant effects on motor impairment
after ulRT, thus suggesting a correlation between upper limb
kinematics and clinical outcomes. The trajectory accuracy is a
significant positive predictor of upper limb recovery, and the
analysis of the MPEs at baseline may suggest the pattern of
motor recovery at the end of ulRT. Adduction and internal
rotation movements of the shoulder are known as the typical
abnormal strategy of stroke survivors (28, 40). Consolidated
literature, in fact, described the stereotyped movement patterns
characterized by simultaneous shoulder abduction and elbow
flexion as flexor synergy (41). In our study, patients with

good ability to perform these movements were more likely to
recover upper limb motor function at the end of the treatment:
as shown in Table 2, less accurate trajectories toward D and
quick movements toward B at baseline negatively interfere
with the increase of MIELBOW, MISHOULDER, and MIUL at the
end of ulRT. Conversely, the ability to perform trajectories
characterized by flexion-extension movements of the elbow
negatively affects motor recovery: subjects who executed less
accurate and controlled elbow movements at baseline were more
likely to recover upper limb functions at the end of the treatment.
These results are in accordance with Dipietro et al. (41) who
described the changes in the motor performance of the circle
drawing task executed by chronic stroke subjects with the same
robot, finding a correlation with the process of tuning of motor
synergies that underlies stroke recovery. Our findings suggest
that more severely compromised patients appear to have a better
chance of recovery after ulRT. Indeed, it is worth to mention
that this outcome could be the result of a ceiling effect of
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TABLE 4 | Results of the regression analysis of factors associated with the number of peaks speed direction A and direction B at the end of ulRT.

Modeled using GLM with Poisson link log nPS A T2 nPS B T2

β SE OR 95%CI β SE OR 95%CI

MPE A T1 0.001* 0.0003 1.001 1.001 1.002 0.001* 0.0003 1.001 1.001 1.002

MPE B T1 0.000 0.0003 1.000 0.999 1.000 −0.083 0.0003 1.000 0.999 1.001

MPE C T1 0.000 0.0003 1.000 1.000 1.001 0.001 0.0003 1.001 1.000 1.001

MPE D T1 0.000 0.0004 1.000 0.999 1.001 0.000 0.0004 1.000 0.999 1.000

MS A T1 0.000 0.0002 1.000 0.999 1.000 −0.001* 0.0003 0.999 0.998 0.999

MS B T1 0.000 0.0003 1.000 0.999 1.000 −0.001* 0.0003 0.999 0.998 0.999

MS C T1 0.000 0.0004 1.000 0.999 1.000 0.081 0.0004 1.000 0.999 1.001

MS D T1 0.000 0.0002 1.000 1.000 1.001 0.000 0.0003 1.000 1.000 1.001

Intercept 1.277* 0.199 3.585 2.429 5.292 1.298* 0.221 3.663 2.375 5.650

Deviance 1.115 1.119

Pearson’s Chi Square/gdl 1.128 1.344

AIC 268.739 255.541

Likelihood ratio 51.871* 43.666*

MPE, Movement Path Error; MS, mean Movement Speed; nPS, number of Peaks Speed. T1: before the ulRT; T2: after the ulRT. Directions of movement: A, B, C, and D.*p < 0.05.

RMK measurements for the less severely damaged patients, as
Agrafiotis et al. claimed (31).

Considering the evidence on the time course of kinematic
parameters during the ulRT (28), the movements characterized
by elbow extension and shoulder flexion (target A) and by the
abduction and external rotation of the shoulder (target B) are the
most difficult to be executed at the end of ulRT (20). The ability to
perform good elbow extension and shoulder flexion movements
after ulRT is significantly dependent on the ability to execute
accurate and smooth elbow flexion-extension movements at
baseline. Moreover, good control of movements toward B at the
end of the treatment depends on the ability to perform accurate
elbow extension movements at baseline. On the other hand,
the smoothness and speed of abduction and external rotation
movements of the shoulder are correlated to good levels of the
same kinematic parameters at baseline. Subjects who did not
present upper limb spastic co-contraction and abnormal motor
synergies at T1 and, as a result, executed smooth and accurate
movements toward A, had a higher probability to recover a
more physiological motor control (i.e., direction A and B)
characterized by high accuracy and smoothness. This outcome is
in accordance with the literature on clinical aspects of upper limb
motor impairment after stroke (46, 47). Specifically, Rohrer et
al. (46) analyzed the movement smoothness changes using RMK
features from the same robot and found a significant difference
between the subacute and chronic patients, and a moderate
correlation to the Fugl-Meyer Assessment score. In addition,
the smoothness and submovement changes in chronic stroke
patients have been analyzed by Dipietro et al. (47) who found
that by the end of the training movements became smoother
and that it could be explained by changes in increasingly
overlapping submovements, which became fewer, longer, and
faster during recovery. These outcomes suggested that recovery
starts first by regaining the ability to generate submovements
and then, over a longer time-period, by reacquiring the means
to combine them.

The kinematic parameters calculated from the trajectories
toward the target C can be representative of upper limb spastic
co-contraction (48, 49). Therefore, the less accurate the trajectory
in C (meaning that the flexion of the elbow is not well-
controlled), the lower the speed in A (stimulating the extension
of the elbow), which could represent the spasticity level. Similarly,
the smoothness (nPS direction C) can be a predictor of accurate
trajectories at T2 toward B. These outcomes are in accordance
with the literature on upper limb kinematics, showing that
the movements of stroke patients are characterized by slow
and segmented trajectories (50, 51), and that motor recovery
increases movement smoothness and decrease the number of
velocity peaks (48). The kinematic parameters calculated from
the trajectories toward target D (toward the hemiparetic side) are
not predictive of any kinematic parameter at the end of ulRT.

This study presented some limitations that deserve to be
discussed. The retrospective design of the research is associated
with the presence of potential confounding factors, with
the limited number of subjects, and with the absence of an
assessment of spasticity. However, environmental influences are
minimized considering that the recruited subjects underwent
additional conventional physiotherapy according to the
standard rehabilitative protocol for subacute stroke patients.
In future studies, an assessment of spasticity, joint sensory
and proprioception, and a description of any flexion synergy
should be included in the study design. Another limitation is
that the motion kinematics was assessed from RMK data, which
could have biased the results. Moreover, the study considered
a planar end-effector robot, while robotic exoskeletons for
ulRT are available. The future research agenda should consider
longitudinal large studies, involving different types of robots
for rehabilitation, and could assess the motion kinematics with
motion capture systems, such as stereophotogrammetry or
inertial sensors (22).

Nevertheless, the obtained results showed that the ability
to execute point-to-point reaching movement in different
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directions can be considered as representative of motor recovery
and that a multidirectional analysis of pre-treatment RMK data
may help to identify subjects who could benefit more from ulRT.
In fact, although the studies on ulRT evidenced that robotic
training is effective in stroke patients (6), the literature on the
impact of characteristics and abilities of patients on the motor
performance outcomes is not consistent.

CONCLUSIONS

The multidirectional analysis of pre-treatment RMK data
allows predicting motor recovery after ulRT in subacute
stroke survivors. Specifically, kinematic parameters calculated
at baseline can help the clinicians in defining the rehabilitative
program, tailoring the ulRT to the characteristics and abilities of
patients at baseline. Specifically, an additional ulRT training in
the elbow extension and shoulder flexion and in the abduction
and external rotation of the shoulder may help reduce the
upper limb flexion synergies and could be a good rehabilitation
strategy in the subjects with negative predictors. The end-
effector ulRT could be considered more effective for severely
compromised patients who appear to have a greater chance of
recovery and reduce their impairment. On the other hand, less
impaired stroke patients have a higher probability to recover
a more physiological motor control characterized by point-to-
point reaching movements with high accuracy and smoothness.
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