
Comprehensive analysis of the
cancer driver genes constructs a
seven-gene signature for
prediction of survival and tumor
immunity in hepatocellular
carcinoma

Jun Zou1 and Wan Qin2*
1Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China, 2Department of Oncology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China

Hepatocellular carcinoma (HCC) is a highly malignant and heterogeneous

tumor with poor prognosis. Cancer driver genes (CDGs) play an important

role in the carcinogenesis and progression of HCC. In this study, we

comprehensively investigated the expression, mutation, and prognostic

significance of 568 CDGs in HCC. A prognostic risk model was constructed

based on seven CDGs (CDKN2C, HRAS, IRAK1, LOX, MYCN, NRAS, and PABPC1)

and verified to be an independent prognostic factor in both TCGA and ICGC

cohorts. The low-score group, which showed better prognosis, had a high

proportion of CD8+ T cells and elevated expression of interferon-related

signaling pathways. Additionally, we constructed a nomogram to extend the

clinical applicability of the prognosticmodel, which exhibits excellent predictive

accuracy for survival. Our study showed the important role of CDGs in HCC and

provides a novel prognostic indicator for HCC.
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Introduction

Global cancer statistics show that primary liver cancer is the sixth most commonly

diagnosed cancer and the third leading cause of cancer death worldwide in 2020 (Sung

et al., 2021). The most common type of liver cancer is hepatocellular carcinoma (HCC).

Owing to the specific phenotypes, most HCC patients are diagnosed at an advanced stage

with extremely poor prognosis (El-Serag, 2011). Although significant progress has been

made in the diagnosis and treatment of HCC, the survival rate for patients over 5 years has

not improved (Bruix et al., 2014). Recent studies about the molecular biological

characteristics and the tumor microenvironments have revolutionized the

management of HCC patients, leading to a transition from traditional chemotherapy

OPEN ACCESS

EDITED BY

Ehsan Nazemalhosseini-Mojarad,
Shahid Beheshti University of Medical
Sciences, Iran

REVIEWED BY

Pedram Azimzadeh,
University of Maryland, United States
Hetong Zhao,
Second Military Medical University,
China

*CORRESPONDENCE

Wan Qin,
wanqinhust@hotmail.com

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 06 May 2022
ACCEPTED 05 July 2022
PUBLISHED 09 August 2022

CITATION

Zou J and Qin W (2022),
Comprehensive analysis of the cancer
driver genes constructs a seven-gene
signature for prediction of survival and
tumor immunity in
hepatocellular carcinoma.
Front. Genet. 13:937948.
doi: 10.3389/fgene.2022.937948

COPYRIGHT

© 2022 Zou and Qin. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 09 August 2022
DOI 10.3389/fgene.2022.937948

https://www.frontiersin.org/articles/10.3389/fgene.2022.937948/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.937948/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.937948/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.937948/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.937948/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.937948/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.937948&domain=pdf&date_stamp=2022-08-09
mailto:wanqinhust@hotmail.com
https://doi.org/10.3389/fgene.2022.937948
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.937948


to novel target therapy and immunotherapy (Shen et al., 2010; El-

Khoueiry et al., 2017; Kudo et al., 2018; Zhu et al., 2018).

However, only a small fraction of HCC patients can benefit

from these novel therapeutic options, and some patients

inevitably suffer from drug resistance (Kimura et al., 2018).

Thus, further efforts are still needed to excavate the

underlying molecular biological mechanisms as well as to seek

effective predictive measures for personalized therapy.

As is known, cancer is a genetic disease characterized by

changes in the genome, genes, chromatin, and cellular levels

(Brown et al., 2019). Mutations in driver genes support the

acquisition of cancer hallmarks (Hanahan and Weinberg,

2000; Hanahan and Weinberg, 2011). Recently, the journal of

Nature Reviews Cancer reported a compendium of 568 cancer

driver genes (CDGs), which was identified from more than

28,000 tumors of 66 cancer types (Martinez-Jimenez et al.,

2020). Mutations and aberrant expression of these genes may

affect cell growth, proliferation, tumor occurrence, and

progression (Leroi et al., 2003). Tumorigenesis is often

associated with alterations in the tumor microenvironment.

Alterations of CDGs may influence the tumor

microenvironment and affect the response to immunotherapy.

Studying CDGs offers a chance to develop accurate biomarkers

for tumor prognosis and make decision on the therapeutic

strategy.

In the current study, we systematically profiled the

expression characteristics and mutation landscape of the

568 CDGs in HCC. We constructed a prognosis score based

on seven CDGs, which could predict the survival of HCC patients

and was validated to be an independent prognostic factor in

different HCC cohorts. Our study underlined the importance of

CDGs in HCC and provided a strategy for patient stratification

for precise medication.

Materials and methods

Data collection

A total of 424 pieces of RNA-seq data of TCGA-LIHC were

downloaded from the Cancer Genome Atlas (TCGA) database as

a training set, which consists of 374 HCC samples and

50 controls. A total of 230 HCC patient cases with gene

expression and complete clinical information from the

International Cancer Genome Consortium (ICGC) dataset

were used as a validation set. The gene mutation and clinical

data of TCGA-LIHC were also downloaded from the TCGA

database.

Differentially expressed cancer driver
gene identification

Differentially expressed CDGs between cancer and normal

tissues were identified by Wilcoxon test with |log2 fold change

(FC)| ≥1 and FDR (false discovery rate) < 0.05. The mutation

pattern of differentially expressed genes was analyzed by the

Maftools R package.

Functional enrichment analyses

In order to explore the functions and signaling pathways of

the differently expressed CDGs, the “clusterProfiler” R package

was used to perform the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway and Gene Ontology (GO)

enrichment analyses, with p < 0.05 and FDR < 0.05 being

used as significance thresholds.

Construction of gene signature

Univariate Cox regression analysis was performed to find

CDGs significantly related to survival. Least absolute shrinkage

and selection operator (LASSO) regression analysis was

performed to further screen prognostic-related CDGs. Finally,

the stepwise multivariate COX regression analysis was performed

to find the optimal key prognostic-related CDGs and obtained

standardized regression coefficients. The risk score of each

patient was calculated by the following formula: Risk score =

Expression of gene1 × Coefficient of gene1 + Expression of

gene2 × Coefficient of gene2 + ... Expression of geneN ×

Coefficient of geneN. Patients were assigned into low-risk

groups and high-risk groups by the median value of the risk

score, and the Kaplan–Meier curve was plotted by the “Survival”

R package. Moreover, the receiver operating characteristic (ROC)

curves were generated by the “SurvivalROC” R package to

determine the accuracy of the gene signature.

Gene signature validation by the ICGC
database

The 230 HCC patient cases from the ICGC database were

utilized as an external validation dataset. The risk score of each

sample was calculated by the formula presented above. The

Kaplan–Meier curve and the ROC curve were plotted as

described above.
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Functional biological, immune infiltration,
and tumor stemness analysis

Gene set enrichment analysis (GSEA) was performed using

the gene set “c2. cp.kegg.v7.5. symbols.gmt” and “c5. go.bp.v7.5.

symbols.gmt” (Subramanian et al., 2005). The “GSVA” package

was used to compare the immune-related pathways between the

two subgroups (Hanzelmann et al., 2013). CIBERSORT was

conducted to calculate the immune cell fraction among the

samples in the TCGA-LIHC cohort (Newman et al., 2015).

Tumor stemness was reported to be capable of evaluation by

RNA stemness score (RNAss) based on mRNA expression

FIGURE 1
Searching differentially expressed CDGs in the TCGA cohort. (A) Heatmap of differentially expressed CDGs between HCC and normal tissues.
(B) Volcano plot of differentially expressed CDGs betweenHCC and normal tissues. (C)Mutation spectrum of the top 30most frequently mutated DE
CDGs in the TCGA-LIHC cohort, with each column representing one patient and the percentage on the right side representing the corresponding
gene mutation rate. (D) Interactions and crosstalk between mutated genes in the TCGA-LIHC cohort. (E) GO enrichment analysis of the
upregulated DE CDGs. (F) KEGG enrichment analysis of the upregulated DE CDGs.
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(Malta et al., 2018). Correlation between risk score and RNAss

was analyzed using Spearman rank-based testing. The R code

used in this study is available in the supplementary file.

Results

Mutation landscape and functional
analysis of the differentially expressed
CDGs in HCC

A total of 568 human CDGs obtained from the somatic

mutations of more than 28,000 tumors of 66 cancer types were

included in our study (Supplementary Table S1). By utilizing

Wilcoxon test, 189 differentially expressed CDGs (DE CDGs)

were identified, including 175 upregulated and 14 downregulated

CDGs, according to the |log2 FC| ≥1 and FDR <0.05 (Figures

1A,B). Of note, most of the DE CDGs were highly expressed in

the cancer tissues than in normal tissues.

Among the 189 differentially expressed CDGs, TP53 had the

highest mutation rate (30%) followed by CTNNB1 (25%), TTN

(24%), MUC16 (14%), ALB (13%), and PCLO (10%) (Figure 1C).

Genetic interaction analysis identified that mutations of TP53 were

positively correlated with mutations of FAT3 and OBSCN and

negatively correlated with CTNNB1. Mutations of CTNNB1 were

positively correlated with mutations of HERC2, DNAH7, and

OBSCN and negatively correlated with AXIN1 (Figure 1D). These

results indicated that CDGs had high mutation rates in HCC, and

there were huge interactions and crosstalk between these mutations.

GO and KEGG pathway enrichment analyses were carried out to

explore the functions and signaling pathways of the DE CDGs. GO

enrichment analysis showed that the upregulated DE CDGs were

mainly associated with “regulation of DNA metabolic process,”

“covalent chromatin modification,” “histone modification,” and

“histone methylation” of the biological process (BP) category. In the

cellular component (CC) category, “nuclear chromatin,” “chromosomal

region,” and “transcription factor complex”were significantly enriched.

The molecular function (MF) term mainly included “transcription

coactivator activity,” “ubiquitin protein ligase binding,” and “ubiquitin-

like protein ligase binding” (Figure 1E). KEGG pathway enrichment

analysis showed that upregulated DE CDGs were highly enriched in

“PI3K-Akt signaling pathway,” “hepatocellular carcinoma,” “cell cycle,”

and so on (Figure 1F). These results suggested that DE CDGs in the

HCC play an important role in the key process in cancer development,

such as epigenetic modification and various signaling pathways. These

aberrantly expressed genes may lead to carcinogenesis and progression

of HCC.

Selection of prognosis-related CDGs

Among the 189 DE CDGs, 96 genes were found to be

associated with the patients’ overall survival by univariate Cox

regression analysis (Supplementary Table S2). Then, the LASSO

regression analysis was conducted to further narrow the survival-

related CDGs (Figures 2A,B). Finally, seven genes were identified

by the stepwise multivariate regression analysis and subsequently

used to construct a prognostic gene signature (Figure 2C). The

seven genes identified were CDKN2C, HRAS, IRAK1, LOX,

MYCN, NRAS, and PABPC1. The risk score = 0.1758*

Expression of CDKN2C + 0.2975* Expression of HRAS

+0.1934 * Expression of IRAK1 + 0.1943 * Expression of LOX

+ 0.3361 * Expression of MYCN + 0.3782 * Expression of NRAS

+ 0.2048 * Expression of PABPC1 (Supplementary Table S3).

To assess the prognostic capacity of the seven-gene signature, we

calculated the risk score for each patient and classified the patients

into low- and high-risk groups based on the medium risk score

value. In the TCGAdataset, the overall survival rate of patients in the

low-risk group wasmarkedly higher than that of the high-risk group

(p = 4.033e-5) (Figure 2D). As the risk score increased, the patients

had a shorter survival time (Figures 2E,F). The area under the time-

dependent ROC curves at 1-, 2-, and 3-year survival was 0.75, 0.701,

and 0.684, respectively (Figure 2G). Taken together, our results

suggested that the risk scores based on the seven CDGs had optimal

prediction ability of the prognosis of HCC patients.

Validation of the seven-gene signature in
the ICGC dataset

The ICGC database was used as a validation cohort to verify

the accuracy of the seven-gene signature. Consistent with the

TCGA dataset, high-risk score patients exhibited a significantly

worse outcome (p = 3.581e-4) (Figure 3A). Patients with high-

risk scores had more mortality and shorter survival time (Figures

3B,C). The time-dependent ROC curves suggested that the AUC

at 1-, 2-, and 3-year survival was 0.765, 0.745, and 0.719,

respectively (Figure 3D). These results suggested good

accuracy and stability of our prognostic signature.

Independent prognostic role of the
prognostic signature

The clinical information including age, gender, and stage was

included for further analysis both in the TCGA and ICGC

cohorts. In the TCGA dataset, the risk score was

independently associated with the survival of the patients,

with a hazard ratio of 1.366 in the univariate analysis and

1.338 in the multivariate Cox regression (Figures 4A,B). In the

ICGC cohort, the hazard ratio of the risk score was 1.649 and

95% confidence interval (CI) was 1.206–2.265 (p = 0.002) in the

univariate Cox regression and 1.653 (1.206–2.656) in the

multivariate regression (Figures 4D,E). The AUC of risk score

was 0.753 in the TCGA cohort and 0.765 in the ICGC cohort

(Figures 4C,F), which exceeded stage and other clinical features.
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Different cancer hallmarks and tumor
microenvironments between two risk
score groups

GSEA was performed to explore the underlying biological

processes related to the risk score signature. We found most

cancer hallmarks, including the VEGF signaling pathway, cell

cycle, DNA replication, ERBB signaling pathway, double strand

break repair, positive regulation of intracellular transport, and

regulation of mitotic cell cycle, were significantly enriched in

patients in the high-risk score group (Figures 5A,B). However,

immune-related pathways including Type_1_IFN_Response

and Type_2_IFN_Response were significantly overexpressed

in the low-risk score group (Figure 5C). Moreover, the

infiltrating immune cell subtypes were significantly different

between the high-risk group and the low-risk group, with more

CD8+T cells and less M0 macrophages accumulating in low-

risk score tumors (Figure 5D). Spearman’s correlation analysis

showed that IRAK1 and PABPC1 expression was positively

correlated with M0 macrophages and negatively correlated with

CD8+T cells. CDKN2C showed negative correlation with Tregs,

CD4 memory resting T cells, and activated dendritic cells.

HRAS was positively correlated with M2 macrophages and

activated NK cells (Figure 5E). The correlation between risk

score with tumor stemness measured by RNAss was explored.

The results showed that the risk score was significantly

FIGURE 2
Construction of the prognostic risk model based on seven CDGs. (A,B) LASSO Cox regression analysis of the selection of CDGs. (C) Forest plot
of the seven genes that construct the risk signature. (D) Survival curves stratified by the risk score in the TCGA cohort. (E,F) Distribution of risk score,
survival time, and survival statuses in HCC patients. (G) Receiver operating characteristic (ROC) curves of risk model for predicting survival in the
TGGA-LIHC cohort.
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positively correlated with stemness score (R = 0.25, p = 1.1e-06,

Figure 5F).

These results together implied that the longer OS of the low-

risk score group might be attributed to an inflamed tumor

microenvironment with more infiltrated CD8+ T cells and less

M0 macrophages, while the poor prognosis of the high-risk score

group might be associated with the tumorigenesis of cancer

hallmarks.

A predictive nomogram development and
validation

To facilitate the clinical applicability and availability of the seven-

gene signature, a predictive nomogram for 1-, 2-, 3-year OS

combined with age, gender, stage, and risk scores was developed

(Figure 6A). The calibration curves showed that the nomogram had

good prediction performance in HCC patients (Figure 6B). In the

TCGA dataset, patients with a low nomogram score had significantly

better survival than patients with a high nomogram score (p= 1.225e-

07) (Figure 6C). The AUCs of the nomogram in the 1-, 2-, and 3-year

ROC curves were 0.777, 0.725, and 0.751, which outperformed the

seven-gene signature (Figure 6E). The nomogram was also validated

in the ICGC dataset, and patients with a low score had a significantly

better survival rate than those with a high score (p = 1.178e-02)

(Figure 6D). The AUCs of the nomogram in the 1-, 2-, and 3-year

ROC curves in the ICGC cohort were 0.874, 0.767, and 0.741,

respectively (Figure 6F).

Discussion

Nowadays, immune checkpoints have greatly changed the

treatment paradigm and increased the survival of HCC patients

FIGURE 3
Validation of the seven-gene risk model in the ICGC dataset. (A) Survival curves stratified by the risk score in the ICGC cohort. (B,C)Distribution
of risk score, survival time, and survival statuses in the ICGC cohort. (D) ROC curves of risk model for predicting survival in the ICGC cohort.
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(Nguyen et al., 2015). Traditional tumor markers including

clinical tumor-node-metastasis (TNM) staging, vascular

invasion, and other parameters help predict HCC prognosis

(Bruix et al., 2016); however, these are gradually showing their

limitations with the evolution of HCC management. Developing

novel prediction models could guide patient prognostic

stratification and facilitate personalized therapy.

In the present study, we systematically analyzed the

expression of 568 cancer driver genes in the TCGA-LIHC

cohort and found 189 differentially expressed cancer driver

genes between cancer and normal tissues. We found that

differentially expressed CDGs had high mutation rates in

HCC, with TP53 showing the highest mutation rate (30%)

followed by CTNNB1 (25%), TTN (24%), MUC16 (14%),

ALB (13%), and PCLO (10%). These results indicated that the

heterogeneity of HCC may be due to the diverse genetic

abnormalities of cancer cells.

By univariate Cox regression analysis, 96 genes were found to

be associated with the survival of HCC patients. LASSO regression

and stepwise multivariate regression analyses found that a novel

prognostic model comprising seven cancer driver genes was able to

accurately distinguish HCC patients with different prognosis.

Finally, a nomogram containing the clinical characteristics and

genetic factors was constructed to provide a more accurate

measure to predict the prognosis of HCC.

The prognostic signature that we constructed consisted of

seven cancer driver genes (CDKN2C, HRAS, IRAK1, LOX,

MYCN, NRAS, and PABPC1). These genes were all

upregulated in the HCC tissues compared to normal tissues in

the TCGA cohort. CDKN2C (cyclin-dependent kinase inhibitor

2C), also known as p18INK4C, is considered a tumor-suppressor

gene (Gagrica et al., 2012). Dysregulated CDKN2C and its protease

activity change are associated with the prognosis of HCC

(Morishita et al., 2004). In human teratoma and thyroid tumor,

mutant CDKN2C has been proven to predict poor prognosis

(Cooke et al., 2017; El Naofal et al., 2017). Harvey-RAS

(HRAS) and neuroblastoma-RAS (NRAS) belong to the RAS

oncogene family. Sorafenib and regorafenib, the only effective

therapeutic strategies for advanced HCC, target multiple kinase-

related pathways including the RAS-RAF-ERK-pathway,

underlining the crucial role of RAS signaling in HCC (Ostrem

and Shokat, 2016; Pascual et al., 2016; Bruix et al., 2017). NRAS

overexpression is demonstrated to be correlated with poor survival

and sorafenib resistance in HCC (Dietrich et al., 2019). HRAS was

also proven to be associated with the prognosis of HCC (Dietrich

et al., 2018). IRAK1 is a widely expressed serine/threonine kinase,

FIGURE 4
Independent prognostic role of the prognostic signature. (A,B) Univariate and multivariate Cox analyses for the prognostic model and other
clinical features in the TCGA cohort. (C) ROC analysis of the risk score and other clinical features in the TCGA cohort. (D,E)Univariate andmultivariate
Cox analyses for the prognostic model and other clinical features in the ICGC cohort. (F) ROC analysis of the risk score and other clinical features in
the ICGC cohort.
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and phosphorylation of IRAK1 binds to the E3 ubiquitin ligase and

TRAF6, leading to the activation of the NF-κB and MAPK

pathways (Zhang and Ghosh, 2001; Flannery and Bowie, 2010).

IRAK1 overexpression was proven to be correlated withmetastasis

and poor prognosis of HCC (Ye et al., 2017). LOX is a copper-

dependent amine oxidase that plays an important role in the

formation of collagen and extracellular matrix (Erler et al., 2006). It

is reported to be involved in the remodeling of cancer stroma and

correlated to metastasis and dedifferentiation of cancer cells

(Semenza, 2012; Boufraqech et al., 2016; Nilsson and Kannius-

Janson, 2016). LOX overexpression can predict early recurrence

and poor prognosis of HCC (Umezaki et al., 2019). MYCN, one of

the members of the MYC family, plays crucial roles in regulating

normal stem cell–mediated tissue regeneration and stem

cell–mediated tumorigenesis (Dang, 2012; Qin et al., 2017).

MYCN has been proven to be a prognostic biomarker and

positively correlated with recurrence of de novo HCC after

curative treatment (Qin et al., 2018). PABPC1 plays crucial

roles in poly(A) shortening, recruitment of ribosome, and

translation initiation via specifically binding to poly(A) tail of

FIGURE 5
Different cancer hallmarks and tumor microenvironments between two risk score groups. (A,B) GSEA of significantly enriched pathways in the
high-risk group based on KEGG and GO (biological process) gene sets. (C)Differences in the proportions of immune-related pathways between the
low- and high-risk groups. (D)Differences in the immune cells infiltrated in the tumormicroenvironment between the low- and high-risk groups. (E)
Correlations between infiltrated immune cells and the seven prognostic-related cancer driver genes. (F) Correlation between risk score and
cancer stemness score (RNAss) based on Spearman’s correlation tests.
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FIGURE 6
Predictive nomogram development and validation. (A) Nomogram based on the risk score and the clinical factors. (B) 1-, 2-, and 3-year
calibration plots of the nomogram. (C) Survival curves stratified by the nomogram score in the TCGA cohort. (D) Survival curves stratified by the
nomogram score in the ICGC cohort. (E) ROC analysis of the nomogram in the TCGA cohort. (F) ROC analysis of the nomogram in the ICGC cohort.
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mRNA in cytoplasm (Kuhn andWahle, 2004). High expression of

PABPC1 has been proven to be correlated with worse overall

survival for HCC (YuFeng and Ming, 2020). Taken together, these

seven genes are closely related to the development and progression

of cancer.

Immunotherapy using immune checkpoint inhibitors (ICIs) has

dramatically changed the treatment of variousmalignancies. Anti-PD-

1/L1 therapies, such as atezolizumab, pembrolizumab, and

nivolumab, have shown promising benefits in a subset of HCC

patients, alone or in combination with other agents (El-Khoueiry

et al., 2017; Zhu et al., 2018; Finn et al., 2020a; Finn et al., 2020b).

Screening out potential patients who may benefit from

immunotherapy is the focus of research. In our study, the low-risk

score group showed elevated expression of Type_1_IFN_Response

and Type_2_IFN_Response signaling pathways compared to its

counterpart. Moreover, it had more CD8+T cells and less

M0 macrophages infiltrated. These results implied that the low-risk

groupmight have a better immunemicroenvironment and responded

better to immune checkpoint inhibitors. A nomogram consisting of

the risk score and several clinical factors was constructed, which

showed great accuracy to predict the prognosis of HCC patients.

There are some limitations in our study. First, the risk signature

was built based on the TCGA-LIHC dataset and was only validated

in the ICGC HCC dataset. Larger cohorts containing more patients

are needed to verify the prognostic value of the risk score signature

and nomogram. Second, the potential biological functions of genes

contained in the risk signature have not been investigated. Further

research should be conducted to elucidate the relevant mechanisms.

Third, most HCC patients in the TCGA database were Caucasian,

and it is not clear whether the risk signature has the same predictive

effect in non-Caucasian races. However, our study provided an

insight into the mutation landscape and expression pattern of the

CDGs and constructed a risk score model and nomogram for

prognosis prediction. This study highlighted the significance of

CDGs in the HCC and provided a novel horizon for the

investigation of HCC in the future.
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