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Background aims: Evidence regarding the extent that mesenchymal stromal cells (MSCs) may improve clinical
outcomes in patients with coronavirus disease 2019 (COVID-19) has been limited by marked inter-study het-
erogeneity, inconsistent product characterization and appreciable risk of bias (RoB). Given the evolution of
treatment options and trajectory of the pandemic, an updated analysis of high-quality evidence from ran-
domized controlled trials is needed for a timely and conclusive understanding of the effectiveness of MSCs.
Methods: A systematic literature search through March 30, 2022, identified all English language, full-text ran-
domized controlled trials examining the use of MSCs in the treatment of COVID-19.
Results: Eight studies were identified (316 patients, 165 administered MSCs and 151 controls). Controls
evolved significantly over time with a broad range of comparison treatments. All studies reported mortality
at study endpoint. Random effects meta-analysis revealed that MSCs decreased relative risk of death (risk
ratio, 0.63, 95% confidence interval, 0.42—0.94, P = 0.02, I? = 14%) with no significant difference in absolute
risk of death. MSCs decreased length of hospital stay and C-reactive protein levels and increased odds of clin-
ical improvement at study endpoint compared with controls. Rates of adverse events and severe adverse
events were similar between MSC and control groups. Only two (25%) studies reported all four International
Society for Cell & Gene Therapy criteria for MSC characterization. Included studies had low (n = 7) or some
(n=1) concerns regarding RoB.
Conclusions: MSCs may reduce risk of death in patients with severe or critical COVID-19 and improve second-
ary clinical outcomes. Variable outcome reporting, inconsistent product characterization and variable control
group treatments remain barriers to higher-quality evidence and may constrain clinical usage. A master pro-
tocol is proposed and appears necessary for accelerated translation of higher-quality evidence for future
applications of MSC therapy.

© 2022 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.

Introduction

continued waves of hospitalization, incomplete vaccination coverage,
variable patient responses to vaccines and the potential for new var-

Improved treatment options for coronavirus disease 2019
(COVID-19) remain relevant as the pandemic evolves given

* Correspondence: David S. Allan, MD, Clinical Epidemiology, Ottawa Hospital
Research Institute, 501 Smyth Rd, Box 704, Ottawa K1H 8L6, Canada.
E-mail address: daallan@toh.ca (D.S. Allan).

https://doi.org/10.1016/j.jcyt.2022.10.003

iants of the severe acute respiratory syndrome coronavirus 2 (SARS-
Cov-2) virus to emerge [1-3]|. Mesenchymal stromal cells (MSCs)
have emerged as a promising therapy given their immunomodula-
tory and tissue reparative capabilities [4—6]. At the start of the pan-
demic, many studies of MSCs for COVID-19 were launched [7].
Moreover, the two previous iterations of the authors’ living
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systematic review and meta-analysis indicated a potential reduction
in mortality in severe and critical cases of COVID-19 [8,9]. However,
because of modest enrollment targets, variable study methodology
and inconsistent MSC product characterization, individual studies are
insufficiently powered to determine safety and efficacy on their own
[10,11]. A timely assessment of evidence would require combining
the results of individual studies through meta-analysis, which is
strengthened when common outcomes are reported and studies are
sufficiently similar [12,13]. Product characterization, risk of bias
(RoB) in published reports and variable outcome reporting were
identified as key barriers in previous iterations of the authors’ living
systematic review [8,9]. To augment the quality of evidence synthe-
sized from published studies at this juncture in the pandemic, a focus
on randomized controlled trials (RCTs) now appears most appropri-
ate [14]. Without sound evidence now, it seems highly unlikely that
clinical trials of MSCs for COVID-19 will recruit enough patients to
have an impact on the pandemic [15,16]. However, preparing for
future threats or considering MSCs in the treatment of related condi-
tions seems worthwhile [17] and warrants a proposed strategy for
coordinated research using MSCs that could yield improved quality
of evidence on a faster timeframe.

MSCs are multipotent stem-like cells that can be isolated from a
variety of adult and neonatal tissues, including adipose, bone mar-
row, umbilical cord and placenta [18]. The therapeutic mechanisms
of MSCs may be mediated through the release of paracrine factors,
which contain the same therapeutic molecules (microRNAs, proteins,
lipids, etc.) as their parent cells [19]. This allows MSCs to exert their
therapeutic effects without cell engraftment. Moreover, the thera-
peutic efficacy of MSCs is independent of the SARS-CoV-2 viral strain
under consideration [6,20], which may offer a solution to reduced
efficacy in the context of SARS-CoV-2 escape variants, which may
evolve to evade targeted treatments such as antiviral drugs and
monoclonal antibodies over time [21,22].

Previous iterations of the authors’ living systematic review sug-
gested that MSCs could reduce COVID-19-related mortality and improve
a number of important secondary clinical outcomes (length of hospitali-
zation, oxygenation index, levels of pro-inflammatory mediators, etc.)
[8,9]. Moreover, treatment-related adverse events were generally mild,
and rates of severe adverse events were low and not increased between
MSC and control groups. However, confidence in the conclusions drawn
from the authors’ meta-analyses continues to be limited by a lack of
definitive estimates of safety and efficacy, variability in study design
and outcome reporting and inconsistent MSC product characterization
that infrequently aligned with published International Society for Cell &
Gene Therapy (ISCT) guidelines. Moreover, considerable RoB was
detected. By including only high-quality studies such as RCTs, the
authors will provide more robust estimates of the safety and efficacy of
MSCs as a therapeutic intervention for COVID-19. The authors’ analysis
will also provide the rationale and basis for a master protocol that could
guide future studies of MSC-based therapy to accelerate the timelines
for obtaining high-quality evidence.

Methods

This systematic review is reported in accordance with Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines
(see supplementary Table 3) [23]. The study protocol has been regis-
tered at the International Prospective Register of Systematic Reviews
(CRD42021225431) and published in Systematic Reviews [24]. The first
and second editions of this living systematic review were published in
Cytotherapy |8] and Stem Cells Translational Medicine [9], respectively.

Literature search strategy

The literature search strategy was performed as described in the
first edition of the authors’ living systematic review [8] and updated

to March 30, 2022 (i.e., 1947 to March 30, 2022) (see supplementary
Figure 15). In this third iteration of the living systematic review, the
authors included only RCTs examining the use of MSCs as a therapeu-
tic intervention for COVID-19.

Eligibility criteria

The authors’ eligibility criteria were similar to those described in
previous editions of the living systematic review [8,9]. However, the
authors included only RCTs to minimize bias and strengthen the con-
clusions. Non-RCTs, uncontrolled clinical trials, case series, reviews,
commentaries, editorials, letters, case reports, conference abstracts,
unpublished gray literature and other study types (in vitro studies,
pre-clinical animal studies, etc.) were excluded.

Outcomes

Mortality at study endpoint and mortality at 28 days were the
authors’ primary outcomes for meta-analysis. The authors’ secondary
outcomes included number of patients requiring hospital admission,
number of patients requiring intensive care unit (ICU) admission,
number of patients requiring mechanical ventilation, length of time
in the hospital, length of time in the ICU, length of time on mechani-
cal ventilation, circulating levels of immune cells, pro-inflammatory
cytokines and anti-inflammatory cytokines and occurrence of
adverse events.

Study selection and data extraction

Study selection, data extraction and data analysis steps were per-
formed as described in previous editions of the authors’ living sys-
tematic review [8,9]. As all included studies were RCTs, RoB was
assessed using the Cochrane Risk of Bias 2 tool [25].

Data analysis

Results from individual studies were pooled for meta-analysis
using RevMan 5.4 systematic review software (https://training.
cochrane.org/online-learning/core-software-cochrane-reviews/rev
man/revman-5-download). For dichotomous outcomes, risk ratios
(RRs), risk differences (RDs) and odds ratios between control and
experimental groups were calculated for each relevant outcome. For
certain outcomes, both RRs and RDs were presented to account for
studies that reported zero events in both control and experimental
groups. For continuous outcomes, the mean difference (MD) or stan-
dardized mean difference (SMD) between control and experimental
groups was calculated using random effects meta-analysis. SMD was
applied for analyses of inflammatory markers (IL-6, ferritin, C-reac-
tive protein [CRP]), as it was anticipated that these outcomes would
vary substantially according to time of measurement. Moreover,
mean of the medians and interquartile range (IQR) were reported
along with MD and SMD for continuous outcomes to account for dis-
persion and help describe the shape of the distribution (normal, right
skewed, left skewed, etc.). Pooled analysis was performed using the
DerSimonian and Laird random effects model [26]. All data are pre-
sented with 95% confidence intervals (CIs). Meta-analysis was per-
formed only for quantitative outcomes that were reported in three or
more studies in a format amenable to pooling. Outcomes were ana-
lyzed descriptively if they were reported in less than three studies or
where quantitative data were reported in a format in which pooling
of individual study results was not possible. Statistical heterogeneity
was assessed using the I? statistic. The thresholds for interpretation
of I> were 0—40% (low heterogeneity), 30—60% (moderate heteroge-
neity), 50-90% (substantial heterogeneity) and 75—100% (consider-
able heterogeneity) Potential subgroup analyses (MSCs isolated from
different tissue sources, MSCs compared with their secretome, MSCs
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treated and/or genetically modified before administration or isolation
of paracrine factors, COVID-19 severity, presence of comorbidities,
patient age, patient sex, geographic location and type of funding sup-
port for the study) were determined a priori in the authors’ published
protocol article [24]. Publication bias was not assessed, as less than
10 studies were included in this edition of the living systematic
review.

Results

Literature search

The authors’ systematic literature search yielded 712 unique cita-
tions. After title/abstract and full text screening, eight studies

[27—-34] met all criteria for inclusion in the authors’ review. Reasons
for study exclusion at the full-text stage included wrong publication
type (n = 39), different outcome (n = 20), uncontrolled design (n = 9),
MSCs not studied (n = 6) and language and wrong population studied
(n=3)(Figure 1).

Study characteristics

Characteristics of the eight included studies are summarized in
Table 1. All eight studies were RCTs [27—34]. Study publication dates
ranged from August 18, 2020 [27], to March 21, 2022 [33]. Two of the
studies were conducted in China [27,30], one was conducted in the
USA [28], one was conducted in Indonesia [29], one was conducted in

)
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Fig. 1. Results of third systematic search of the literature. MEDLINE, Embase and Cochrane Central Register of Controlled Trials searched from 1947 through March 30, 2022.
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Table 1
Characteristics of patients enrolled in clinical studies of MSCs as a therapeutic inter-
vention for COVID-19.

Patient characteristics All groups Control groups  MSC groups
Total patients, n 316 151 165
Sex, male, % 64.2 64.9 63.6
Age, years, mean (SD) 58.0 (4.7) 58.8(3.3) 57.2(5.9)
COVID-19 severity, n (%)
Mild 20(6.3) 10(6.6) 10(6.1)
Moderate 22 (7.0) 12(7.9) 10(6.1)
Severe 197 (62.3) 93(61.6) 104 (63.0)
Critical 77 (24.4) 36(23.8) 41 (24.8)
Comorbidities, n (%)
Hypertension 107 (33.9) 53(35.1) 54(32.7)
Diabetes 70(22.2) 35(23.2) 35(21.2)
Obesity 25(7.9) 8(5.3) 17(10.3)
Chronic obstructive pul- 4 (1.3) 2(1.3) 2(1.2)
monary disease
Coronary artery disease 9 (2.8) 5(3.3) 4(2.4)
Congestive heart failure 2 (0.6) 1(0.7) 1(0.6)
Chronic kidney failure 8 (2.5) 5(3.3) 3(1.8)
Other* 37(11.7) 16 (10.6) 21(12.7)
Median follow-up, days 28(14-122) 28(14-122)  28.8(14-122)

(range)

SD, standard deviation.
2 Includes heart disease, tuberculosis, chronic bronchitis, atrial fibrillation,
stroke, schizophrenia and cancer.

Turkey [31], one was conducted in Iran [32], one was conducted in
Brazil [33] and one was conducted in France [34].

Participant characteristics

A total of 316 patients (mean age, 58.0 + 4.7, male, 203) were
enrolled across all study groups, with 165 (mean age, 57.2 + 5.9,
male, 105) being administered MSCs and 151 (mean age, 58.8 + 3.3,
male, 98) serving as controls. The overall distribution of disease
severity was similar for patients in the intervention and control
groups, with 62.3% and 24.4% of all patients having severe and critical
COVID-19, respectively (Table 1). In terms of patient comorbidities,
those associated with worse COVID-19 outcomes, such as hyperten-
sion, obesity, diabetes, chronic kidney failure, chronic obstructive
pulmonary disease and coronary artery disease, were well balanced
between the control and MSC groups.

Intervention characteristics

Intervention characteristics are summarized in Table 2. Seven of
the eight studies used MSCs [27-31,33,34], and one used MSC-
derived secretome [32]. All MSCs were derived from allogeneic
human tissues, including umbilical cord tissue (n = 7) [27-31,33,34]
and menstrual blood (n = 1) [32]. The passage number in ex vivo cul-
ture of MSCs varied widely between studies (passage two to passage
six) (Table 2), with one of the studies [28] not reporting how many
passages were performed before harvesting MSCs from ex vivo cul-
ture. In terms of the extent to which studies reported on specific ISCT
criteria [35] for MSC characterization, only two of the eight included
studies reported sufficient information to satisfy all four minimal cri-
teria laid out in the latest guidance document published by the ISCT.
Details regarding the number of studies reporting each of the four
ISCT criteria can be found in Table 2.

MSC dosing and administration strategies varied between studies.
Three formats for MSC dosing were reported: cells/kg of body weight
(1-3 x 10° cells/kg, n = 5), total cells/injection (1.2—2.0 x 10® cells,
n = 2) and milliliters of MSC secretome (25 mL, n = 1). In five of the
studies, MSCs were cryopreserved prior to administration. The
remaining three studies did not report whether their MSC-derived
products were administered fresh or were cryopreserved. All eight
studies used MSC-derived products administered intravenously.

Table 2

Intervention characteristics for clinical studies of patients
administered MSCs as a therapeutic intervention for
COVID-19.

Intervention Studies, n

MSC tissue source
Umbilical cord blood or tissue 7
Menstrual blood 1
MSCs, fresh or frozen/cryopreserved
Fresh 0
Cryopreserved 5
Notstated 3
Product dose
MSCs, cells/kg (n=5)  1-3 x 10°
MSCs, total cells (n=2)  1.2-2.0 x 10®
MSC secretome, mL (n=1) 25
Route of administration
Intravenous 8
No. patient MSC infusions (%)

1 32(194)
2 12(7.3)
3 107(64.8)
5 14(8.5)
MSC passage number
2 1
4 2
5 1
3-5 2
5-6 1
Not stated 1
ISCT criteria
Fully met criteria,n 2
Plasticadherence 3
Trilineage differentiation 2
Positive/negative surface markers 7
6

MSC viability

Most (64.8%, n = 107) patients received three infusions of MSC-
derived products, although other studies reported administering one,
two or five MSC product infusions (Table 2). The reported time from
COVID-19 diagnosis to intervention was similar between control
(median, 12.4 days, range, 1-47) and MSC (median, 11.1 days, range,
1-45) groups.

Patients were administered other therapeutic agents in addition
to MSCs in all eight included studies. The specific therapeutic agents
administered to patients varied considerably between studies and
are summarized in Table 5. However, the specific concomitant thera-
pies administered to MSC and control patients in each individual
study were well balanced. Two of the studies indicated that other
therapeutics were used in addition to MSCs, but the researchers did
not specify exactly which therapeutic agents were used [28,32]. The
mean follow-up period was 28 days for both the control and MSC
groups (Table 1).

Outcome reporting

Outcome reporting across studies was variable, with only a few
outcomes, including mortality and levels of pro-inflammatory cyto-
kines, being reported in all eight studies. Outcomes such as number
of patients on mechanical ventilation, time to improvement of clinical
symptoms and improvement in radiological parameters and viral
load were reported in fewer than half of the studies. An overview of
outcomes reported across studies is shown in Table 3.

Primary outcome analysis: mortality

All eight studies reported mortality at study endpoint, which
ranged from 14 days to 122 days. Mortality rate at the study endpoint
for patients in the control groups was 49 of 151 patients (32.5%)



Table 3

Reported outcomes in clinical studies examining MSCs as a therapeutic intervention for COVID-19.

Viral Radiological

Anti-
cell level inflammatory inflammatory load outcome

Oxygenation Immune Pro-

Improvement Time to
level

Progression

No. patients Time

Mortality Diagnosis to Intervention No. patients No.

Study

on ventilator in hospital of symptoms in symptoms clinical

intervention, to recovery, hospitalized patients on

rate

cytokine s

cytokines

improvement

supplemental
oxygen

time

time

Shu [27]

Lanzoni [28]
Dilogo [29]
Shi [30]

Adas [31]
Fathi-

Kazerooni [32]
Rebelatto [33]
Monsel [34]

Total

Outcomes reported for each study are indicated by  and outcomes not reported are indicated by —.
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comparedwith300f165patients(18.2%)intheMSCgroups.Inmeta-anal-
ysis (n = 8 studies), patients administered MSCs had a significantly
decreasedrelativeriskof mortality at the study endpoint compared with
controls(RR,0.63,95%C1,0.42—0.94,P=0.02,1>=14%)(Figure2A).However,
absoluteriskofdeathatthestudyendpointwasnotsignificantlydifferent
inmeta-analysisbetween patientsadministered MSCsand controls (RD,
—0.14,95%Cl1,—0.34t00.05,P=0.14,1°=85%)(Figure 2B). Meta-analysis of
studiesreportingriskofdeathat28days(n=5studies)alsodemonstrated
no significantreduction inrelative (RR, 0.57,95%Cl, 0.25-1.29, P=0.18,
I? = 34%) (see supplementary Figure 1A) or absolute (RD, —0.15, 95% CI,
—0.38t00.07,P=0.18,1>=88%)(seesupplementaryFigure 1B)riskofdeath
atstudyendpointinpatientsadministeredMSCscomparedwithcontrols.
Interestingly, whenthe studyexaminingMSC-conditioned medium[32]
wasremovedfromtheauthors’analysisofmortalityatstudyendpoint,the
beneficialeffectsofsignificantlyreducedrelativeriskofdeathatstudyend-
point in patients administered MSC-based products were not observed
(RR,0.68,95%CI,0.38—1.19,P=0.18,12=26%)(see supplementary Figure
2A).However,aswiththeauthors’previousanalysesofmortality,absolute
riskof deathat study endpoint (RD, -0.11,95%Cl,—0.30t00.07,P=0.22,
12=82%)(seesupplementaryFigure2B),relativeriskofdeathat28days(RR,
0.49,95%Cl1,0.09—2.55,P=0.40, I =56%) (see supplementary Figure 3A)
and absolute risk of death at 28 days (RD, —0.10, 95% CI, —0.29 to 0.09,
P=0.31,12=82%)(seesupplementaryFigure 3B)werenotsignificantlydif-
ferentbetweenpatientsadministered MSCsand controlswhenthestudy
examiningtheuseofMSC-conditionedmediumwasexcluded.

Subgroup analysis was performed to determine whether the impact
of MSCs on mortality at study endpoint varied based on the tissue
source from which the MSCs were isolated. More specifically, the
authors sought to determine whether there was a significant difference
in mortality at study endpoint compared with controls in patients
administered MSCs derived from umbilical cord Wharton jelly com-
pared with MSCs derived from unspecified umbilical cord tissue. The
authors observed no significant difference in relative and absolute risk
of mortality at study endpoint compared with controls (see supplemen-
tary Figure 4A,B). Other potential subgroup analyses (e.g., whether
patients had or did not have acute respiratory distress syndrome,
whether studies included patients with any severity of disease or just
severe or critical disease, whether a single infusion or multiple infusions
of MSCs were administered) could not be conducted because of an
insufficient number of studies for the various subgroups.

Secondary outcomes

Hospitalization

Four of the eight studies described the number of patients requiring
hospital admission at study endpoint. No significant difference in relative
(RR, 0.82, 95% CI, 0.59—1.16, P = 0.27, I? = 52%) or absolute (RD, —0.08,
95% Cl, —0.23 to 0.06, P = 0.27, I? = 52%) risk of requiring hospital admis-
sion at study endpoint was demonstrated in meta-analysis for patients
administered MSCs compared with controls (see supplementary Figure
5A,B). However, length of hospital stay (n = 3 studies) was reduced in
MSC groups compared with controls (MD, —4.42 days, 95% CI, —6.73 to
—2.10, P=0.0002, I = 0%, MSC mean of the median, 20.0 days, IQR, 174,
control mean of the median, 24.0 days, IQR, 14.0) (Figure 3).

Pro-inflammatory and anti-inflammatory cytokine levels

All eight studies reported changes in a range of pro-inflammatory
cytokines from baseline to the end of the study period. Four of the
studies reported CRP levels at study endpoint. Meta-analysis revealed
that patients administered MSCs had significantly lower CRP levels at
the study endpoint compared with controls (SMD, —0.80, 95% CI,
—1.27 to —0.34, P = 0.0007, I? = 19%, MSC mean of the median, 63.5,
IQR, 58.5, control mean of the median, 98.9, IQR, 42.4) (Figure 4). Five
of the studies reported IL-6 levels at the study endpoint. Meta-analy-
sis revealed no significant decrease in IL-6 levels at the study end-
point compared with controls (SMD, —0.46, 95% CI, —0.96 to 0.03,
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Fig. 2. (A) Forest plot demonstrating significantly decreased relative risk of death at study endpoint in patients administered MSCs (experimental) compared with patients not
administered MSCs (control). (B) Forest plot demonstrating that absolute risk of death at study endpoint was not significantly reduced in patients administered MSCs compared
with controls. Control groups received standard of care for COVID-19 at time of hospital admission, which varied depending on the institution. df, degrees of freedom.

P = 0.06, I> = 56%, MSC mean of the median, 34.2, IQR, 43.1, control
mean of the median, 72.8, IQR, 105.6) (see supplementary Figure 10).
Interferon gamma (IFN-y) and IL-2 levels at the study endpoint were
also reported in three studies each. Meta-analysis demonstrated no
significant difference in levels of IFN-y (SMD, —0.72, 95% CI, —1.77 to
—0.33, P = 0.18, I? = 83%, MSC mean of the median, 88.8, IQR, 101.2,
control mean of the median, 268.0, IQR, 363.5) (see supplementary
Figure 11) or IL-2 (SMD, —0.41, 95% CI, —1.52 to 0.71, P = 048,
I? = 76%, MSC mean of the median, 130.7, IQR, 134.0, control mean of
the median, 328.6, IQR, 425.4) (see supplementary Figure 12) at the
study endpoint in patients administered MSCs compared with con-
trols. All other biomarkers were reported infrequently and could not
be pooled through meta-analysis.

Experimental Control

Other outcomes

Other outcomes measured across studies, including oxygenation

levels, immune cell levels, length of time in the ICU, number of
patients requiring supplemental oxygen, length of time on mechani-
cal ventilation, radiological parameters, virological and/or antibody
responses and clinical scale scores, are summarized in the supple-
mentary materials.

Adverse events

Adverse event reporting for all studies is summarized in Table 4.
Treatment-related adverse events associated with MSC infusion
occurred in five of the eight studies. However, rates of non-treat-
ment-related adverse events (i.e., adverse events occurring in control

Mean Difference Mean Difference

Study or Subgroup Mean SD Total Mean  SD Total Weight IV, Random, 95% ClI IV, Random, 95% ClI
Adas 2021 [31] 47 60 10 45 2296 10 0.3% 2.00[-37.82,41.82)
Fathi-Kazerooni 2022 [32] 123 368 14 17 435 15 624%  -4.70[-7.63,-1.77]
Shu 2020 [27] 20 593 12 24 481 29 373% -4.00[-7.78,-0.22]
Total (95% Cl) 36 54 100.0% -4.42[-6.73,-2.11] )
TS 2z . Chi? = = = S 2= 0% I 1 T t {
Heterogeneity: Tau? = 0.00; Chi? = 0.18,df =2 (P =0.91); = 0% 7100 50 0 50 100

Test for overall effect: Z = 3.75 (P = 0.0002)

IV; Inverse Variance

Favours [experimental] Favours [control]

Fig. 3. Forest plot demonstrating decreased length of stay in hospital for patients administered MSCs (experimental) and patients not administered MSCs (control). Control groups
received standard of care for COVID-19 at time of hospital admission, which varied depending on the institution. df, degrees of freedom; SD, standard deviation.
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Experimental Control

Std. Mean Difference

Std. Mean Difference

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Adas 2021 [31] 99.2 908 10 1396 7205 10 22.6% -0.47 [-1.36, 0.42] L
Fathi-Kazerooni 2022 [32] 54.38 54.21 14 1265 56.64 15 26.5% -1.26 [-2.07, -0.46] . —

Rebelatto 2022 [33] 100 60 11 110 50 6 18.7% -0.17 [-1.16, 0.83] .
Shu 2020 [27] 0592 123 12 195 214 29 322% -1.02 [-1.73,-0.31] —

Total (95% Cl) a7 60 100.0%  -0.80 [-1.27, -0.34] S

Heterogeneity: Tau? = 0.04; Chi? = 3.70, df = 3 (P = 0.30); I = 19%
Test for overall effect: Z = 3.38 (P = 0.0007)

IV; Inverse Variance

2 1 0 1 2
Favours [experimental] Favours [control]

Fig. 4. Forest plot demonstrating significantly lower CRP levels at study endpoint in patients administered MSCs (experimental) compared with controls. Control groups received
standard of care for COVID-19 at time of hospital admission, which varied depending on the institution. df, degrees of freedom; SD, standard deviation; Std., Standard.

groups) were similar to those of treatment-related adverse events,
occurring in five of the eight studies. Furthermore, adverse events
associated with MSC infusion were mild and resolved spontaneously
or with minimal supportive treatment in all patients. In addition,
meta-analysis demonstrated no significant difference in relative (RR:
0.85 [0.65-1.11, 95% CI, p=0.23, 1>=0%]) or absolute (RD: -0.02 [-0.07-
0.03, 95% CI, p=0.43, I>=0%]) risk of adverse events between the MSC
and control groups (Figure 5). Five of the studies reported the occur-
rence of severe adverse events in patients who were administered
MSCs. However, most severe adverse events occurring in the MSC
arm were deemed by the site investigators to be unrelated to MSC
infusion. Furthermore, non-treatment-related severe adverse events
(i.e., severe adverse events occurring in control groups) were more
common than treatment-related severe adverse events, occurring in
six of the eight included studies.

Risk of bias

RoB was assessed for each outcome reported in RCTs using the
Cochrane Risk of Bias 2 tool [20]. RoB analysis for the authors’ pri-
mary outcome of risk of death at study endpoint can be seen in sup-
plementary Table 1. Seven studies [28—34] were found to have low
RoB, and one study [27] had RoB of “some concerns,” as the method
of randomization was unclear, and it was unclear whether there
were deviations from intended interventions and whether there was
selection of reported results. With regard to other outcomes that
were subject to meta-analysis (e.g., risk of death at 28 days, levels of
pro-inflammatory cytokines, length of stay in the hospital, risk of
requiring mechanical ventilation at study endpoint), each study had
the same RoB classification for both individual RoB domains and
overall RoB (low RoB, n = 7, “some concerns,” n = 1) (see supplemen-
tary Table 1).

FASTER Approval criteria evaluation

With regard to the extent to which evidence presented in this
third edition of the living systematic review met the authors’

Table 4

proposed FASTER Approval criteria, which were described in the first
two iterations of the living systematic review [8,9], three of the
domains were considered satisfactory (number of studies, sample
size, study populations), two of the domains were considered unclear
(study characteristics, RoB) and two of the domains were considered
unsatisfactory (outcome measurement, product characterization)
(Table 6).

Evolution of trial characteristics, included studies and primary effect
estimate

A full breakdown of changes in terms of studies included, number
and types of trials (uncontrolled, non-randomized controlled, ran-
domized controlled) and primary effect estimate (mortality at study
endpoint) over the three iterations of the authors’ living systematic
review can be seen in supplementary Table 2.

Current status of trials examining the use of MSC products for COVID-19

To summarize the details of all currently registered trials examin-
ing the use of MSCs as a therapeutic intervention for COVID-19, the
authors included a comprehensive table in the supplementary mate-
rials (see supplementary Table 2). This table was adapted from Liao et
al. [7] to reflect the current landscape surrounding clinical trials for
MSC-based products as a therapeutic intervention for COVID-19. In
terms of current trial status, 11 trials are still recruiting patients, 11
trials are not yet recruiting patients and one trial has been withdrawn
because of lack of ethics committee approval. In terms of the number
of additional patients who can be expected from registered trials that
have yet to be published, another 840 patients are expected, with
599 of these patients being administered MSCs. In terms of RCTs, an
additional 568 patients are expected, with 324 of these patients being
administered MSCs. Other characteristics of registered trials, includ-
ing MSC tissue sources, clinical trial databases used and countries of
origin, can be seen in supplementary Table 3.

Adverse events and severe adverse events reported in clinical studies examining MSCs as a therapeutic intervention for COVID-19.

Study Safety labvalues  Treatment-related AEs ~ Non-treatment-related AEs ~ Treatment-related SAEs ~ Non-treatment-related SAEs
Shu [27] . . . . .
Lanzoni [28] . _ _ o B
Dilogo [29] . . . . .
Shi [30] - . — . .
Adas [31 ] L] . . . 3
Fathi-Kazerooni [32] e - . — .
Rebelatto [33] . - - - -
Monsel [34] . . . _ .
Total 7 5 5 5 6

AEs, adverse events; SAEs, severe adverse events.
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Table 5
Concomitant therapies reported in studies.

Study Antiviral agents Antibiotic agents Glucocorticoids ~ Transfusion-based interventions  Other interventions
Shu [27] Abidor, oseltamivir ~ Moxifloxacin Yes None None

Lanzoni [28] BAT BAT BAT BAT BAT

Dilogo [29] Oseltamivir Azithromycin None None None

Shi [30] Antiviral drugs Antibiotics Yes None None

Adas [31] Favipiravir, HCQ Piperacillin-tazobactam  Yes None Enoxaparin
Fathi-Kazerooni [32]  BSC BSC BSC BSC BSC

Rebelatto [33] Antiviral drugs Antibiotics Yes None Anticoagulants
Monsel [34] None None Yes None None

BAT, best available therapy; BSC, best standard of care; HCQ, hydroxychloroquine.

Discussion

This latest analysis and update to the authors’ living systematic
review and meta-analysis suggests that MSCs are safe and may be
effective for treating COVID-19. With repeated waves of the pan-
demic, viral mutations, evolving immunity patterns and myriad alter-
native treatment options, it is not surprising that published studies
have embraced a broad range of comparative treatments in control
groups, which clouds the ability to analyze results regarding effec-
tiveness. With the publication of additional future studies, network
meta-analysis may be a way to account for differences between con-
trol groups [35]. Additionally, the authors observed marked inter-
study heterogeneity and low rates of reporting details concerning
MSC product characterization with regard to ISCT criteria [36].
Despite the fact that the strength of the conclusions in this iteration
of the authors’ living systematic review was augmented by restricting

a

included studies to RCTs, inadequate MSC product characterization
and inter-study heterogeneity continue to be persistent barriers to
performing a more informative meta-analysis. Although regulatory
approval and widespread clinical adoption of MSCs for COVID-19
appear unlikely at this point in the pandemic, addressing these limi-
tations in future clinical trials may increase the likelihood of more
accelerated adoption of MSC-based therapies for other diseases and
conditions. Use of a master protocol may address these limitations if
timely assessments of efficacy are a priority.

Although MSCs decreased relative risk of death at the study end-
point in this iteration of the authors’ living systematic review, no dif-
ference in absolute risk of death at the study endpoint was observed
between patients administered MSCs and controls. Moreover, MSCs
failed to reduce the absolute and relative risk of death at 28 days in a
subset of studies reporting at this specific time point. Given the cur-
rent trajectory of the pandemic [37] and the increasing number of

Experimental Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
Adas 2021 [31] 0 10 0 10 Not estimable
Dilogo 2021 [29] 0 20 0 20 Not estimable
Fathi-Kazerooni 2022 [32] 0 14 0 15 Not estimable
Lanzoni 2020 [28] 8 12 11 12 38.1% 0.73[0.47,1.12) —aT
Monsel 2022 [34] 0 21 2 24 0.8% 0.23 [0.01, 4.48]
Rebelatto 2022 [33] 0 1 0 6 Not estimable
Shi 2021 [30] 37 65 21 35 61.1% 0.95 [0.67, 1.34] e 5
Shu 2020 [27] 0 12 0 29 Not estimable
Total (95% CI) 165 151 100.0% 0.85 [0.65, 1.11]
Total events 45 34
Heterogeneity: Tau? = 0.00; Chi? = 1.64, df = 2 (P = 0.44); I = 0% 40.01 of1 3 1=0 100‘

Test for overall effect: Z = 1.21 (P = 0.23)

M-H; Mantel-Haenszel

Favours [experimental] Favours [control]

b Experimental Control Risk Difference Risk Difference
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
Adas 2021 [31] 0 10 0 10 82% 0.00 [-0.17, 0.17]

Dilogo 2021 [29] 0 20 0 20 29.1% 0.00 [-0.09, 0.09]

Fathi-Kazerooni 2022 [32] 0 14 0 15 16.0% 0.00[-0.12, 0.12] —
Lanzoni 2020 [28] 8 12 11 12 26% -0.25 [-0.56, 0.06] I
Monsel 2022 [34] 0 21 2 24 14.0% -0.08 [-0.22, 0.05] =
Rebelatto 2022 [33] 0 11 0 6 50% 0.00[-0.22, 0.22] -1
Shi 2021 [30] 37 65 21 35  6.1% -0.03 [-0.23, 0.17] - T
Shu 2020 [27] 0 12 0 29 19.0% 0.00[-0.11, 0.11] .
Total (95% ClI) 165 151 100.0% -0.02 [-0.07, 0.03]

Total events 45 34

Heterogeneity: Tau? = 0.00; Chi* = 4.24, df =7 (P = 0.75); I’ = 0%
Test for overall effect: Z =0.79 (P = 0.43)

M-H; Mantel-Haenszel

I
r

4 0.5 05 1
Favours [experimental] Favours [control]

o1—4@

Fig. 5. Forest plot demonstrating no significant difference in (A) relative and (B) absolute risk of experiencing adverse events in patients administered MSCs (experimental) com-
pared with controls. Control groups received standard of care for COVID-19 at time of hospital admission, which varied depending on the institution. df, degrees of freedom.
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Assessment of proposed criteria in FASTER Approval framework for performing meta-analysis of high-quality studies of MSC-based therapy for COVID-19.

Number of studies

Study characteristics

Sufficient number and similar enough to perform meta-analysis
that achieves the required power for determining efficacy. See sam-
ple size.

Controlled with contemporary and similar control groups. Random-
ized is preferable. Concomitant therapies should be controlled.

v Eight controlled studies identified

vVRCTs:n=8
? Concomitant therapies not always controlled
v Sample size = 316 total, with 165 patients in treatment (MSC) arm

Sample size ¢ To reduce mortality from 20% to 10%, 199 subjects needed in inter-
vention group(s) [24].
Study population e Severe or critical COVID-19 in hospitalized patients (most com-

mon).
Outcome measurement e Mortality at day 28.
e WHO response criteria.

function at 1 month, 6 months and 12 months.
Safety and AE reporting.

Product characterization e MSCs produced and characterized according to ISCT criteria.

Secondary: IL-6 levels; hospitalization; ICU admission; pulmonary

v Most patients presented with severe (62.3%) or critical (24.4%)
COVID-19
? Mortality at 28 days (n=5)
X WHO response criteria (n = 0)
? IL-6 levels (n = 6); hospitalization (n = 4); ICU admission (n = 1);
pulmonary function at 1 month (n = 3), 6 months (n =0) and 12
months (n=0)
v Safety laboratory values (n = 3) and AE reporting (n = 8)
x Full criteria (n=2)
v Positive/negative surface markers (n=7)
? MSC viability (n = 6)
? Trilineage differentiation potential (n = 2),
? Plastic adherence (n = 3)

RoB o Studies with high risk of potential bias should not be included in ? “Some concerns” RoB: n=1

meta-analysis.

Checkmark indicates criteria satisfied, question mark indicates uncertainty as to whether criteria satisfied and “x” indicates criteria not met.

AE, adverse event; WHO, World Health Organization.

approved therapeutics [38,39], MSCs likely need to demonstrate a
significant mortality benefit to achieve regulatory approval and
mainstream clinical translation in light of the resource intensity asso-
ciated with production and distribution of cell-based therapies [40].

It was interesting to observe that when the study examining
MSC-conditioned medium [32] was removed from the authors’
analysis regarding mortality at the study endpoint, the observed
beneficial effects were lost. Although more studies are needed, it
may be worth examining the possibility that infused MSCs may
be eliminated by the host immune response more rapidly than
factors in conditioned medium [41,42]. It was originally thought
that MSCs were completely immune-privileged, without concern
of immune rejection [43,44]; however, recent studies have sug-
gested that rapid clearance by the host immune response can
occur [45,46]. This may be particularly relevant when MSCs are
infused into a highly pro-inflammatory environment [41], such as
with COVID-19 [47]. Strategies to prolong MSC persistence have
been explored [41,48,49], and the use of MSC-secreted factors
may achieve the therapeutic effects of MSCs with less concern
regarding host immune rejection. Additional studies of MSC-con-
ditioned medium and extracellular vesicles are ongoing.

An improvement in hospital stay was observed and consistent
with observations in earlier iterations of the authors’ systematic
review [8,9]. Shortened hospital stays suggest attenuation of disease
severity and have been correlated with less severe disease course
and lower mortality rates [50,51]. Moreover, shortened hospital stays
alleviate pressure on the health care system, which is important dur-
ing pandemics with widespread societal implications [52,53].
Reduced hospital stays have been observed with other therapies,
including corticosteroids [54,55], remdesivir [56,57] and SARS-CoV-
2-specific vaccines [58,59]. Thus, given the complexities and chal-
lenges associated with widespread distribution of cellular therapies
[60,61], reducing the duration of hospitalization alone may be insuffi-
cient to buoy widespread support for MSC therapy.

Although MSCs significantly lowered CRP levels at the study end-
point, patients who were administered MSCs failed to show appreci-
able decreases in other pro-inflammatory markers such as IL-6 and
IFN-y. In the context of viral infection, pro-inflammatory factors help
to resolve infection through several mechanisms, including promo-
tion and optimization of T-cell response, enhancement of migration
and phagocytic activity of macrophages, prevention of viral-induced
cell apoptosis and regulation of IgG isotype switching [62,63].

However, infection with SARS-CoV-2 can result in excess production
of pro-inflammatory factors, leading in some cases to the develop-
ment of cytokine storm and associated organ dysfunction or multior-
gan failure, which can be fatal [64,65]. Although the anti-
inflammatory actions of MSCs may result from a decrease in infiltra-
tion of infected tissues by pro-inflammatory immune cells and
through polarization of pro-inflammatory immune cells to anti-
inflammatory phenotypes [66,67], the authors’ analysis suggests that
MSCs fail to exert significant anti-inflammatory effects in the context
of COVID-19. This is further corroborated by the lack of significant
differences the authors observed regarding CD4+ and CD8+ T-cell lev-
els at the study endpoint in patients administered MSCs compared
with controls. It has been suggested that pre-conditioning of MSCs
may be necessary to generate potent anti-inflammatory properties
for therapeutic use [68,69]. Techniques to augment the anti-inflam-
matory properties of MSCs include pre-culturing with pro-inflamma-
tory cytokines in three-dimensional culture conditions and pre-
conditioning with chemical agents and/or through gene transfer
approaches [70,71]. As none of the studies in the authors’ review
reported augmenting the therapeutic properties of MSCs using any of
these techniques, this may explain the observed inability of MSCs to
reduce pro-inflammatory cytokine levels and decrease mortality

The lack of reporting specifics regarding MSC characterization in
accordance with minimal criteria established by the ISCT [36]
remains an issue in studies addressing the treatment of COVID-19
that the authors identified in previous iterations of this systematic
review [8,9]. The issue has been previously identified more broadly
in MSC studies [17,72], despite the publication of two editions of ISCT
guidelines [36,73], and was identified as a barrier in a position paper
released by the US Food and Drug Administration in 2014 [74]. This
position paper highlighted that despite a growing number of MSC-
based trial submissions to the Food and Drug Administration, MSC
products are becoming increasingly diverse and trials rarely report
product characterization in sufficient detail to satisfy published ISCT
criteria [36,73]. Rigorous MSC characterization can provide assurance
that patients consistently receive a safe and effective therapeutic
product [74]. Issues related to cell product characterization are not
unique to MSC-based studies. A systematic review examining the use
of endothelial colony—forming cells as a therapeutic intervention in
pre-clinical animal models found that very few studies characterized
these cells according to established minimal standards [75]. Strength-
ening the reporting and adherence to standardized product
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Table 7

Hypothetical master protocol for use of MSCs as a therapeutic intervention for COVID-19.

Diagnosis of COVID-19
Classification of COVID-19 severity
Patient characteristics

COVID-19 diagnosis using RT-qPCR

Classification of COVID-19 severity using NIH guidelines®
Should be balanced between control and MSC groups

Ensure adequate distinction between adult and pediatric trials
Patients with conditions that may complicate interpretation of study results (e.g., hematological malignancies, autoimmune con-

ditions) should not be included
Study procedures RCT

Minimum number of patients: N = 100 (n = 50 for MSCs, n = 50 for control)
Investigators, outcome assessors and patients should be blinded to the intervention that is given

MSC intervention characteristics UC-MSCs should be used

3 x 10° cells/kg administered as three doses of 1 x 10° cells/kg 2 days apart or according to patient symptoms (improvement ver-
sus deterioration); additional doses as per criteria

Use of WHO OSCI for clinical improvement

MSCs should be administered via intravenous infusion

UC-MSC product should satisfy all ISCT criteria
Should be balanced between MSC and control arms
Outcomes should be standardized across studies and measured at common time points

Concomitant therapies
Outcome measures
Endpoints should include the following:
Mortality at 28 days (n = 5)
WHO 0OSCI criteria at 28 days

Levels of pro-inflammatory and anti-inflammatory biomarkers (e.g., IL-6, CRP, IL-2) and immune cell levels (e.g., neutrophils, CD4+
T cells, CD8+ T cells) at 7 days, 14 days and 28 days

Number of patients in hospital and ICU at 28 days

Number of patients on supplemental oxygen or mechanical ventilation at 28 days

Changes in pulmonary imaging (e.g., ground-glass opacities, pleural effusion) at 7 days, 14 days and 28 days

Occurrence of treatment-related and non-treatment-related AEs and SAEs during the study period, including frequency, time

points and severity

Levels of safety laboratory biomarkers (e.g., troponin, blood urea nitrogen, lactate dehydrogenase) at 7 days, 14 days and 28 days

Follow-up

Minimum inpatient follow-up of 5 days after last MSC infusion and minimum outpatient follow-up of 28 days

AEs, adverse events; NIH, National Institutes of Health; RT-qPCR, reverse transcription quantitative polymerase chain reaction; SAEs, severe adverse events; UC-MSC, umbilical
cord-derived MSC; WHO OSCI, World Health Organization Ordinal Scale for Clinical Improvement.
2 (linical spectrum of SARS-CoV-2 infection section of COVID-19 treatment guidelines document provided by NIH.

characterization should reduce heterogeneity and improve confi-
dence in study results from cell therapy studies.

Trials included in the authors’ analysis were modest in size and
heterogeneous with regard to study design, outcome reporting and
product characterization. This heterogeneity and lack of sufficient
sample size meant that the authors’ meta-analyses lacked adequate
statistical power to provide definitive conclusions regarding the effi-
cacy of MSCs as a therapeutic intervention for COVID-19 [76,77]. By
contrast, many well-designed and sufficiently powered clinical trials
have been completed for other COVID-19 therapeutics, including vac-
cines, antivirals and antibody-based therapies [78—-80]. These inter-
ventions have been widely adopted across the globe to curtail the
impacts of COVID-19 [81-83]. One strategy to accelerate the comple-
tion of studies that share greater homogeneity is the use of a master
protocol [84,85]. Master protocols would provide guidance regarding
recommended sample sizes, patient populations, MSC product char-
acteristics, administration strategies, outcome measures and blinding
procedures to be followed. This would allow for standardization of
these aspects across individual clinical studies, which would facilitate
the pooling of results from more studies in a meaningful meta-analy-
sis. The authors provide a proposed outline of a master protocol in
Table 7. Although the authors’ proposal provides only an initial tem-
plate and framework, a more refined master protocol could evolve
through expert consensus and collaboration. Umbrella trials using
master protocols have previously been launched for the treatment of
patients with cancer who have different subtypes, mutations or dis-
ease manifestations and where treatment interventions and outcome
reporting are aligned [86,87].

The authors’ study has limitations that are worth mentioning.
First, the number of studies and patients included in the authors’
analysis remains modest. Although the authors could have achieved
a larger sample size had the inclusion criteria to all controlled studies
been kept regardless of randomization status, the authors believe
that the benefits of restricting studies to high-quality RCTs outweigh
the downsides of a reduced number of studies and patients. Variable

outcome reporting across the studies included in the authors’ review
is also a persistent issue and a major hurdle to performing a robust
meta-analysis. The only outcome reported across all studies was mor-
tality. However, mortality was not measured at a uniform time point
across all studies, further limiting the informative nature of this anal-
ysis. Moreover, only two studies reported sufficient MSC product
characterization details to satisfy all ISCT criteria [36]. This inade-
quate product characterization further limits the confidence in the
authors’ pooled results.

Conclusions

The authors’ living systematic review and meta-analysis of RCTs
demonstrates continued uncertainty regarding the use of MSCs as a
therapeutic intervention for COVID-19. Although MSCs reduced rela-
tive risk of death at the study endpoint, absolute risk of death at the
study endpoint and several important secondary clinical outcomes
were not significantly different in patients administered MSCs com-
pared with controls. These mixed benefits contrast with the more
promising results the authors initially observed when all study types
were considered. A more refined estimate of the treatment effect
with higher-quality evidence coupled with evolving comparative
treatments in control arms continues to influence the evidence sup-
porting the use of MSCs in the treatment of COVID-19. Although
MSCs may never achieve mainstream clinical use in the treatment of
COVID-19 given the current trajectory of the pandemic, the potential
role of master protocols in accelerating the acquisition of high-quality
data from studies that share more similarities should be investigated
and may be applicable to future clinical trials of MSCs for other dis-
eases and conditions.
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