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Abstract

Methods of classification using transcriptome analysis for case-by-case tumor diagnosis could be limited by tumor
heterogeneity and masked information in the gene expression profiles, especially as the number of tumors is small. We
propose a new strategy, EMts_2PCA, based on: 1) The identification of a gene expression signature with a great potential for
discriminating subgroups of tumors (EMts stage), which includes: a) a learning step, based on an expectation-maximization
(EM) algorithm, to select sets of candidate genes whose expressions discriminate two subgroups, b) a training step to select
from the sets of candidate genes those with the highest potential to classify training tumors, c) the compilation of genes
selected during the training step, and standardization of their levels of expression to finalize the signature. 2) The predictive
classification of independent prospective tumors, according to the two subgroups of interest, by the definition of a
validation space based on a two-step principal component analysis (2PCA). The present method was evaluated by
classifying three series of tumors and its robustness, in terms of tumor clustering and prediction, was further compared with
that of three classification methods (Gene expression bar code, Top-scoring pair(s) and a PCA-based method). Results
showed that EMts_2PCA was very efficient in tumor classification and prediction, with scores always better that those
obtained by the most common methods of tumor clustering. Specifically, EMts_2PCA permitted identification of highly
discriminating molecular signatures to differentiate post-Chernobyl thyroid or post-radiotherapy breast tumors from their
sporadic counterparts that were previously unsuccessfully classified or classified with errors.

Citation: Ugolin N, Ory C, Lefevre E, Benhabiles N, Hofman P, et al. (2011) Strategy to Find Molecular Signatures in a Small Series of Rare Cancers: Validation for
Radiation-Induced Breast and Thyroid Tumors. PLoS ONE 6(8): e23581. doi:10.1371/journal.pone.0023581

Editor: Ying Xu, University of Georgia, United States of America

Received October 7, 2010; Accepted July 21, 2011; Published August 11, 2011

Copyright: � 2011 Ugolin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

In oncology, tumor classification is key when assessing prognosis,

defining the most appropriate treatment, identifying sensitive and

resistant patients or comparing treatments [1–3]. Currently,

histological criteria for tumor sections and fine-needle biopsy

specimens do not always greatly improve tumor classification.

Numerous studies have sought to enrich these criteria with data

from molecular biology, comparative genomic hybridization, and

transcriptomic and/or proteomic analysis. In particular, tumors

have been successfully studied and classified using DNA chip

analysis. However, the routine use of gene expression data to classify

tumors is limited by the background noise inherent in the technique

[4], by the fact that gene expression varies within a given subgroup

of tumors, and because most levels of gene expression do not differ

significantly from one group to another. Consequently, these

difficulties increase the two challenges when using microarrays in

tumor classification, namely: 1) identification of the gene signature

to discriminate two subgroups of tumors, 2) objective validation of

the signature, diagnosing independent tumors [5]. It is worth

mentioning that most of the commonly used methods select genes

expressed differentially between two subgroups, unless the intra-

group heterogeneity is not high enough [6–9]. To circumvent these

limitations, some methods use permutations to minimize the effect

of the heterogeneity between the tumors [10]. However, this could

be problematical in two cases: if the genes included in the signature

vary substantially depending on the different permutations, since

divergence may lead to lack of a common signature, and if large

tumor overlap, among the permutations, results in biased selection

of genes. These problems could lead to the impossibility of

classifying independent tumors for the validation, notably with the

usually applied methods such as hierarchical clustering and PCA

analysis. Moreover, it may also occur that the information of interest

is masked in the gene expression profiles [5,11,12]. All these

difficulties are enhanced by working with small series, which is

necessarily the case for rare diseases.

The EMts_2PCA method, presented hereafter, was specially

designed to overcome these limitations. It was applied to two
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subgroups of human thyroid tumors (follicular thyroid adenoma

(FTA) and papillary thyroid carcinoma (PTC)), to define a

biologically relevant gene signature and to blindly classify a testing

set of independent tumors. Moreover, the accuracy of the

EMts_2PCA method was also tested by the classification of the

tumors of two already published series. The first series of post-

Chernobyl and sporadic PTC was either not classified using the

usual methods of unsupervised or supervised tumor classification

[11], or classified with errors using methods such as generalized

partial least-square (GPLS), random forest (RF), linear kernel

support vector machine (LKSVM), prediction analysis of micro-

array (PAM) [12], and the second series of post-radiotherapy

breast tumors was classified with errors using an unsupervised

hierarchical clustering and subsequent supervised classification

(SAM) [13]. In addition, analyzing the same three series of tumors,

we have compared the performance of the EMts_2PCA method

with three alternative methods, gene expression bar code [14],

top-scoring pair (TSP) [15] and a PCA-based method [16].

Advantages and weaknesses of these methods are discussed, but in

any case our method performed best in analysis of a small series of

samples.

Results

The details of the process are given for the follicular thyroid

adenoma and papillary thyroid carcinoma (FTA/PTC) series. For

other sample series, only signature and scoring will be given.

EMts_2PCA analysis: Identification of a gene expression
signature with a great potential for discriminating
subgroups of tumors (EMts stage)

Learning step to screen for candidate genes. The 54

tumors analyzed in this study were divided into two sets: a

learning/training set of known histology subgroups, comprising 13

follicular thyroid adenomas (FTAs) and 13 papillary thyroid

carcinomas (PTCs), and a testing set of 28 independent tumors.

After microarray hybridization, the hybridization signals were

acquired and normalized, and the calculated expression ratios

were arranged in expression matrices [8]. From the learning/

training set, 169 combinatorial matrices of 10 tumors (5 FTAs

versus 5 PTCs = 10-tumor matrix) were built as described in

(Material and Methods: Learning step/Search for set of candidate

genes). For each 10-tumor matrix, a weakly discriminating filter,

based on a t-test with permutations, retained the genes expressed

differentially from those belonging to the noise [17].

The filtering t-test selected between 1604 and 2800 genes

depending on the combinatorial matrices. Then, for each of the

169 filtering 10-tumor matrices, an EM algorithm was applied to

select the genes which were always expressed in the same way

(induced or down-regulated) within the PTC subgroup and in an

opposite way (down-regulated or induced, respectively) in the FTA

subgroup. Then, the 169 10-tumor matrices were reduced to 169

training-matrices of the selected genes. The training matrices used

in the training step comprised on average 331 candidate genes

(standard deviation 290).

Training step. The next step, the training step, determined

which training matrices have the higher potential to classify

tumors (Material and Methods: Training step with internal cross-

validation). This training step consisted in using each training

matrix to classify, by a two-step PCA stage (2PCA), the tumors of

the learning set that did not belong to the considered matrix

(training tumors) (Material and Methods: Classification of training

tumors). Each training tumor of a given training matrix and all the

tumors of this training matrix were projected into the training

space. The training tumor was then automatically attributed to

either the FTA or the PTC subgroup, or assigned to neither the

FTA nor the PTC subgroup, as a function of the RMS values

(Material and Methods: Classification rules as a function of the

RMS). The training matrix was validated when at least one

training tumor was correctly classified and none was misclassified

(the classification of the other tumors must be unattributed).

Applying this rule, 121 of 169 training matrices were validated and

used for the search for the final signature.

Gene compilation and standardization for the final

signature. The search for the unique set of genes (final sig-

nature) for the tumor classification needed a standardization step to

smooth the gene expression heterogeneity. So, the standardized

matrix j was calculated from the compilation of the 121 validated

training matrices, each element (i,j) of the matrix j being the mean

of the equivalent elements (ih,jh) of all training matrices, as described

in Material and Methods (Standardization). After the standardi-

zation, the single signature was composed of the genes of the matrix

j with the greater frequencies of relevance F(i). The greater

frequencies of relevance are defined by the asymptote to 1 of the

cumulative distribution function of the F(i,j) matrix, and by the limit

(mF+2vF) for which the function becomes asymptotic. Above this

limit, the observed F(i,j) become statistically different and higher as

compared with the mean frequency mF. In the present analysis, this

point corresponded to p = 0.001, and 227 genes (230 probes) were

selected by this threshold and constitute the final signature (Table

S1).

EMts_2PCA analysis: Validation by the predictive
classification of testing tumors by 2sPCA

A matrix Y’ of learning tumors was built from the standardized

matrix j, restricted to the genes of the final signature, and pro-

jected into the validation space (Material and Methods: Classifi-

cation of testing tumors). The validation space clearly separated

the tumors of the learning set into two subgroups (FTA and PTC)

(Figure 1). Each tumor of the testing set to be classified in a blinded

evaluation was then projected into the validation space, already

containing the tumors of the learning set. Of the 28 tumors to be

classified, 26 were unambiguously located in their FTA or PTC

subgroup. Two outlier tumors were positioned in the validation

space between the two subgroups (tumors66 and616, Figure 1B,

1C) (Material and Methods: Aid to classification of testing tumors).

By considering all eigenvectors in the RMS computation (Material

and Methods: Classification rules as a function of the RMS), one of

these remaining tumors (tumor 66), was automatically attributed

to the FTA subgroup (Figure 2B), while the last tumor (tumor

616), could not be attributed (Figure 2C). However, by selecting

the combination of eigenvectors that maximized the asymmetry

between the two groups and minimized the heterogeneity within

each subgroup (Material and Methods: Selection of eigenvectors to

improve the classification), the new validation space and the RMS

computation from these vectors (Figure 2D) clearly classified the

616 tumor in the FTA subgroup without modifying the classi-

fication of any other tumors.

In conclusion, we found a 227-gene signature by analyzing a

series of 26 tumors which was further validated for an independent

series of 28 tumors. The EMts_2PCA method is robust since after

the histology code-break by the clinicians all 28 tumors were found

to be correctly predicted (Table S2A).

To demonstrate the efficiency of our method, we analyzed two

previously analyzed and published datasets, a sporadic or post-

Chernobyl PTC series of tumors (GSE3950, [12]) and a post-

radiotherapy series of breast cancers (E-NCMF-30, [13]).

Signature on Small Series of Rare Cancers
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EMts_2PCA analysis of post-Chernobyl PTC series
We chose the dataset of 26 sporadic or post-Chernobyl PTCs

because the authors could not find a discriminating signature using

several standard bioinformatic methods of supervised and un-

supervised classification [11,12]. However, by reading the manu-

script, the existence of a signature could be suspected since, by

applying an empirical signature elaborated from previously pub-

lished stress-specific signatures on lymphocytes, these 26 samples

were roughly classified by the authors [12,18].

A signature of 106 genes (109 probes) was found by applying the

EMts stage to a learning/training set of 13 tumors (Table S3). The

robustness of this signature was assessed by the case-by-case 2PCA

classification of an independent testing set composed of the 13

remaining tumors. This signature correctly classified 12 out of 13

of the tumors of the testing set; the remaining tumor (the sporadic

tumor PTC18) was unclassified but not misclassified (Figure 3,

Table S2B).

EMts_2PCA analysis of published radiation-induced
breast tumor series

We chose this other series of 42 sporadic or post-radiotherapy

breast cancers because the authors using the SAM classification (a

method that was not used by Detours et al.), misclassified five

tumors [13]. A signature of 44 genes (45 probes) was found by

applying the EMts stage to a learning/training set of 20 tumors

(Table S4). The robustness of this signature was assessed by the

case-by-case 2PCA classification of an independent testing set

composed of the 22 remaining tumors. Twenty of the 22 testing

tumors were correctly classified and 2 tumors (a post-radiotherapy

tumor, BfHL31 and a sporadic tumor, control 10) were unclassi-

fied but not misclassified (Figure 4, Table S2C).

EMts_2PCA classifier efficiency
With the EMts_2PCA method the predictive classification is

done according to three categories, the two groups of samples (for

example PTC and FTA) and the third category corresponding to

the unclassified samples. The commonly used sensitivity and

specificity evaluators are poorly adapted to EMts_2PCA, because

these evaluators required a dichotomous classification (2 catego-

ries). Consequently, in order to make a comparison with the

performance of previously published classifiers [12,13], we have

adapted the EMts_2PCA classification into two categories: first

correctly classified and second misclassified and unclassified (Data

S1). It can be seen that the EMts_2PCA method is rather efficient

in predicting tumor classification since, regarding the three series

of tumors, the sensitivity ranged from 0.86 to 1 and specificity was

always equal to 1. However, as a function of the category taken as

a positive reference (Data S1), the test could give asymmetric

results.

Comparison of EMTS_2PCA with gene expression bar
code, top-scoring pair(s), and PCA methods

We decided to compare the EMts_2PCA with three efficient

methods for the classification of large series of samples: gene

expression bar code [14], top-scoring pair (TSP) [15] and a PCA-

based method [16]. We chose these three methods of classification

because 1) like the EMts_2PCA, TSP uses a strategy of gene

selection, without, however, a training step, 2) the bar code, in

contrast, is based on a global approach without stringent criteria

for the gene selection, and 3) PCA is frequently used to classify

samples with or without a gene selection step.

The comparison of the three methods was done for the three

series of tumors and focused on the performance of 1) the

Figure 1. Two-step PCA positioning of the testing tumors:
follicular thyroid adenoma and papillary thyroid carcinoma.
Examples of positioning of tumors 623, 66 and 616 (dot) in the
validation space. The FTA (triangle) populated area and the distinct PTC
(square) populated area delimited the spatial distribution of the learning
tumors in the validation space (Material and Methods 4.3.1b). A: one
example of a correctly classified tumor (623). B, C: outlier tumors (66,
616) positioned in the validation space between the two subgroups.
doi:10.1371/journal.pone.0023581.g001
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predictive classification of testing tumors and 2) all tumors

clustering, without considering learning and testing groups.

However, in order to better evaluate the efficiency of tumor

classification, with the distinction of unclassified and misclassified

tumors, and without any asymmetry as a function of the group

taken as a reference (positive group), we calculated a relative

predictive efficiency (RPE) defined by the number of correctly

classified tumors (whatever the groups) divided by the number of

predicted tumors (correctly and incorrectly predicted), and a

general predictive efficiency (GPE) defined by the number of

correctly classified tumors divided by the total number of tumors

(correctly classified, misclassified and unclassified) (Table 1; Data

S1). The high RPE and GPE scores of EMts_2PCA, whatever the

series of tumors, illustrate its high efficiency in tumor prediction

and its high frequency in providing a prediction.

Comparison of EMTS_2PCA with Gene expression bar
code

The principle of the bar code consists in coding the levels of

expression of all genes, 1 or 0, as a function of expressed or non-

expressed, respectively. Then, a unique gene expression bar code

is defined for each sample [14].

For each series (FTA/PTC, post-Chernobyl and breast tumors),

a bar code limit (expressed/non-expressed) was determined for

each gene, based on the distribution mode of expression of the

gene in the learning set. Those limits were used to code all tumors

of the considered series (learning and testing). Then, the bar codes

(the tumors) were classified as a function of the correlation of the

Euclidean distances.

Gene expression bar code prediction and clustering of

PTC/FTA. Regarding tumor prediction, the 26 PTC/FTA

tumors of the learning set were clearly separated into two groups,

and 15 out of 28 testing tumors were correctly classified. Six of the

remaining tumors were unclassified and 7 were misclassified

(Table 2A, Figure S1A). Regarding tumor clustering, by con-

sidering all 54 tumors, whether learning or training, the tumors

could be separated into two PTC or FTA subgroups with 7 errors

and 2 unclassified.

Gene expression bar code prediction and clustering of

breast tumors and Chernobyl cancers. The bar code

approach did not permit classification into two subgroups of

either the 20 breast learning tumors or the 13 post-Chernobyl

learning tumors (Figure S1B–C). When considering all tumors,

whether learning or training, tumors of both series could not be

Figure 2. RMS classification of the testing tumors: follicular thyroid adenoma and papillary thyroid carcinoma. Testing tumor (623,
66 and616) (dot) classification considering all eigenvectors (validation space) in the RMS computation (A, B and C), or considering the combination
of eigenvectors that maximized the asymmetry between the two groups and minimized the heterogeneity within each subgroup together (new
validation space) (D). Scatter plot of RMSFTA

matrix as a function of the RMSPTC
matrix for the learning tumors and the RMSFTA

class as a function of the
RMSPTC

class of the considered testing tumor. The RMS values of the training tumors fall into two distinct groups (FTA, triangle and PTC, square).
A: good classification of the 623 tumor. B: good classification of the 66 tumor without considering RMS (Figure 1B). C: outlier classification of the
616 tumor in the validation space but D: good classification of the 616 tumor considering the new validation space.
doi:10.1371/journal.pone.0023581.g002
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separated into two groups because they were randomly distributed

(Figure S1B–C).

In conclusion, the bar code method was only efficient in

separating the two groups of 26 learning PTC/FTA tumors, and

was inefficient in predicting the testing tumors of this series and in

either prediction or clustering of the two smaller series of breast

and post-Chernobyl tumors.

Comparison of EMTS_2PCA with top-scoring pair(s)
method

The top-scoring pair (TSP) classifier selects the most discrim-

inating genes based on the relationship between the expression of a

pair of genes in a tumor (expression of gene 1. expression of gene

2). The more frequent pairs of genes that follow the relationship

within a subgroup and the reciprocal relationship in the second

subgroup form the TSPs [15].

The TSP method was applied to the learning set of tumors of

each series (PTC/FTA, post-Chernobyl, and breast) to determine

the top genes pairs with the highest frequencies. The selection of

the first TSP can be used to classify the tumors. Indeed, the

classification can also be made with the TSPs but this necessitates

doing a PCA.
First top-scoring pair prediction and clustering of PTC/

FTA, post-Chernobyl and breast tumors. For all three series,

the learning set could be separated into two groups by using the

first top-scoring pair of genes (Figure S2A–C). However, the

predictive classification of the testing tumors gave poor results for

the three series, even using PCA to find the best projection to

maximize asymmetry (Table 2B; Figure S3A–C). Moreover,

regarding tumor clustering, when considering all tumors (whether

learning or testing), the first top-scoring pair did not differentiate the

two subgroups of tumors (Figure S3A–C).

Top-scoring pairs prediction and clustering of PTC/FTA,

post-Chernobyl and breast tumors. Using the learning set of

tumors, the TSPs are composed of 30, 55 and 860 pairs of genes

for PTC/FTA, breast cancers and post-Chernobyl tumors,

respectively. These signatures were used to classify all tumors of

each series using conventional PCA. As shown in (Figure S3D–F),

the use of the TSPs distinguished the two subgroups of learning

tumors for each three series. Regarding the predictive classification

of the testing PTC/FTA, breast and post-Chernobyl tumors, they

correctly predicted 14 of 28, 11 of 22 and 5 of 13 tumors,

respectively. Except for two tumors misclassified (one in each

FTA/PTC and post-Chernobyl series), all remaining tumors were

unclassified (Table 2C; Figure S3D–F).

Regarding all tumor clustering, whether learning or testing sets,

except for the post-Chernobyl series, which could not be separated

into two subgroups, breast and FTA/PTC series were well

clustered into two groups (only one tumor was misattributed in the

FTA/PTC series) (Table 2C; Figure S3D–F).

Figure 3. RMS classification of the testing tumors: sporadic and post-Chernobyl papillary thyroid carcinoma. Testing tumors (sporadic
PTCs, PTC18, PTC19 and PTC25 and post-Chernobyl PTC, S404) (dot) classification considering all eigenvectors (validation space) in the RMS
computation. Scatter plot of RMSsporadic

matrix as a function of the RMSchernobyl
matrix for the learning tumors and the RMSsporadic

class as a function of the
RMSchernobyl

class of the considered testing tumor. The RMS values of the training tumors fall into two distinct groups (sporadic PTC, triangle and post-
Chernobyl PTC, square). A, B, C: examples of correctly classified tumors, PTC25, S404 and PTC19, respectively. D: outlier classification of the PTC18 tumor.
doi:10.1371/journal.pone.0023581.g003
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PCA prediction and clustering of PTC/FTA, post-
Chernobyl and breast tumors

To compare the EMts_2PCA performance with that a classic

PCA, we used the final signature from the EMts stage to classify all

tumors of each series with a conventional PCA (Figure S3G–I).

It can be seen that the three learning sets of the three series of

tumors are well separated into two groups. Regarding the

prediction of the testing PTC/FTA, breast and post-Chernobyl

tumors, PCA correctly predicted 22 of 28 tumors, 11 of 22 and 5

of 13 tumors, respectively (Table 2D; Figure S3G–I), all remaining

Figure 4. RMS classification of the testing tumors: sporadic and post-radiotherapy breast cancer. Testing tumor (sporadic breast cancers
(control22 and control10)) and post-radiotherapy breast cancer (BfHL53 and BfHL31) (dot) classification considering all eigenvectors (validation space)
in the RMS computation. Scatter plot of RMSsporadic

matrix as a function of the RMSpost-radiotherapy
matrix for the learning tumors and the RMSsporadic

class as
a function of the RMSpost-radiotherapy

class of the considered testing tumor. The RMS values of the training tumors fall into two distinct groups (control
sporadic breast tumors, square and post-radiotherapy breast tumors, triangle). A, B: examples of correctly classified tumors, BfHL53 and control22,
respectively. C, D: outlier classification of the BfHL31 and the control10, respectively. BfHl65 and Control26 are the two learning tumors that delineate
their respective validation space.
doi:10.1371/journal.pone.0023581.g004

Table 1. Efficiency of the blind classification of the three series of tumors by EMts_2PCA.

EMts_2PCAP prediction Score of the classifier

Groups Well False ? RPE GPE

FTAs 15 0 0 1 1

PTCs 13 0 0

Radiation-induced breast tumors 11 0 1 1 0.9

Sporadic breast tumors 9 0 1

Post-Chernobyl thyroid PTCs 5 0 1 1 0.92

Sporadic thyroid PTCs 6 0 1

RPE was defined by the number of correctly classified tumors divided by the number of predicted tumors (either correctly or incorrectly predicted) and GPE was defined
by the number of correctly classified tumors divided by the total number of tumors (correctly classified, misclassified or unclassified). ?: unclassified; FTA: follicular
thyroid adenoma; PTC: papillary thyroid carcinoma.
doi:10.1371/journal.pone.0023581.t001

Signature on Small Series of Rare Cancers
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tumors being unclassified. Regarding the clustering of all tumors,

(whether learning or training), all series were well clustered into

their respective subgroups (Figure S3G–I).

Comparison of the performances of the EMts_2PCA
method with the different tested classifiers

The barcode and TSP methods (using the first top scoring pair)

are poorly adapted to tumor prediction and classification when

using small learning set of tumors, as illustrated by the low RPE

and GPE scores (Table 2A–B; Table S5).

Regarding tumor clustering, PCA and EMts_2PCA were the

more efficient for all three series (Tables 1 and 2D; Table S5). The

TSP method (using all top scoring pairs) well clustered PTC/FTA

and breast tumors, but was less effective with the smaller post-

Chernobyl series (Table 2C; Table S5).

Regarding the predictive classification, the TSP method (using

all top-scoring pairs) and PCA gave high RPE scores, in the range

of those obtained with EMts_2PCA (Tables 1, 2C–D). However,

the GPE scores of the TSP method, by using all TSPs, and of PCA

were rather low because of the high proportion of unclassified

tumors (Table 2C–D). In comparison, the higher GPE scores of

EMts_2PCA (for the three series) indicated that EMts_2PCA

correctly predicts tumor classification with a higher frequency

(Table 1).

Discussion

The aim of this work was to develop a two-stage approach,

based on transcriptomic analysis, to search for a specific signature

discriminating two subgroups in small series of biological samples

(EMts stage). Once the signature was found, it was then used to

Table 2. Efficiency of the blind classification of the three series of tumors.

A Bar code Prediction Score of the classifier

Groups Well False ? RPE GPE

FTAs 6 5 4 0.68 0.53

PTCs 9 2 2

Radiation-induced breast tumors / / / / /

Sporadic breast tumors / / /

Post-Chernobyl thyroid PTCs / / / / /

Sporadic thyroid PTCs / / /

B First top-scoring pair Prediction Score of the classifier

Groups Well False ? RPE GPE

FTAs 5 4 6 0.5 0.35

PTCs 5 6 2

Radiation-induced breast tumors 6 5 1 0.68 0.59

Sporadic breast tumors 7 1 2

Post-Chernobyl thyroid PTCs 2 2 2 0.6 0.46

Sporadic thyroid PTCs 4 2 1

C Top-scoring pairs Prediction Score of the classifier

Groups Well False ? RPE GPE

FTAs 7 1 7 0.93 0.50

PTCs 7 0 6

Radiation-induced breast tumors 6 0 6 1 0.50

Sporadic breast tumors 5 0 5

Post-Chernobyl thyroid PTCs 1 1 4 0.83 0.38

Sporadic thyroid PTCs 4 0 3

D PCA Prediction Score of the classifier

Groups Well False ? RPE GPE

FTAs 10 0 5 1 0.76

PTCs 12 0 1

Radiation-induced breast tumors 5 0 7 1 0.50

Sporadic breast tumors 6 0 4

Post-Chernobyl thyroid PTCs 4 0 2 1 0.38

Sporadic thyroid PTCs 1 0 6

Efficiency of the blind classification prediction of the three testing series of tumors by the gene expression bar code (A), by the first top-scoring pair (B), by the top-
scoring pairs (C) or by PCA (D). RPE: relative prediction efficiency, GPE: general prediction efficiency (see Data S1).
doi:10.1371/journal.pone.0023581.t002
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blindly diagnose new samples case by case (2sPCA stage). For this

purpose, a few methods already exist [6,10,14,15], but they can be

inaccurate in the case of small series with high sample hetero-

geneity or if the gene expression signature is masked. As an

example, support vector machine classification, generalized partial

least-square, random forest classification, significant analysis of

microarray, voting machine, hierarchical clustering, bootstrap-

ping… were applied to the set of sporadic PTCs and post-

Chernobyl PTCs, and were inefficient in finding a stable signature

able to classify the tumors [11,12]. However, the authors of these

studies used an arbitrary signature, related to the human lympho-

cyte stress response, to classify a set of 26 tumors [12,18]. Although

these signatures misclassified some tumors, one may suspect the

existence in the gene expression profiles of masked discriminating

information, which was not found by the classic methods. The

strategy presented in this paper was applied to this series of 26

tumors. In contrast to the results obtained with the classic methods

used in the publications of Detours et al. [12], the EMts_2PCA

method identified a molecular signature using a subset of 13

tumors (Table S3), and this signature was robust enough to classify

unambiguously 12 of the 13 remaining tumors in either the

sporadic PTC or post-Chernobyl PTC subgroup. The thirteenth

tumor (a sporadic PTC) clustered between the two subgroups and

could not be classified, but it was not misclassified as radiation-

induced (Table 1; Table S2B).

As shown by using the data set of Detours et al., the use of an

EM algorithm, combined with small combinations (5 vs. 5 tumors)

with less than 50% tumor overlap, allowed high-probability selec-

tion of candidate marker genes taking into account the hetero-

geneity of gene expression within each subgroup of tumors. This

point is important, since failure to take this heterogeneity into

account reduces the probability that a selected gene is relevant for

classifying new tumors, and also potentially eliminates the selection

of numerous relevant genes. These two limitations are stronger

when there are few tumors in the learning set, as the number of

genes selected by chance increases. The alternative of increasing

the number of tumors in the learning set to the detriment of the

validation reduces the robustness of the validation. A solution

often employed is to increase the size of the training set artificially

by isolating by permutation each tumor and classifying it using the

signature defined with the remaining tumors [9]. This solution

could be problematic in establishing a relevant signature appli-

cable to new tumors, since it may exclude the heterogeneity of

expression between the tumors when the overlap is too great from

one permutation to another [9]. Moreover, increasing the number

of learning tumors in the expression matrices, a strategy often

employed, could reduce the probability of finding genes whose

expression is similar (in absolute value and sign) between the

tumors of a given subgroup if the method does not take advantage

of the heterogeneity.

One way to overcome too large an overlap between matrices

is to use a random selection of tumors in the learning group

(bootstrapping) to find sets of genes able to classify the remaining

tumors [19]. A gene is kept in the final stable signature if it is

present in most of the signatures that classify a tumor correctly.

However, not all the classifying sets of genes are necessarily found,

and the extreme spatial localization of the tumors of certain

random selections can lead to sets of genes that do not discriminate

tumors of median localization [20–22]. The impossibility of

finding a robust final signature can therefore result from an

insufficient exploration of the space. Consequently, failure to find

a robust signature does not necessarily mean that there is none. To

increase the probability of finding a robust signature, a gene must

not be selected solely as a function of the number of candidate

signatures in which it has been found, but essentially on the basis

of its capacity to play a part in classifying tumors. The training step

introduced in our method is more appropriate for evaluating the

capacity of each gene to classify a tumor through its frequency of

occurrence in the training matrices.

The critical point now is to identify among the candidate genes

those with the greatest potential to classify new tumors. For this,

we define a relevance factor (Material and Methods: Search for the

final signature, Compilation) calculated from each training tumor

classification. For each gene, we thus obtain an objective criterion

for assessing the probability that it will classify a tumor not used for

its selection. However, selection of genes, despite heterogeneity in

their expression within a given subgroup, does result in scattering

of the tumors in the N-dimensional space defined by the selected

genes. This scatter around a mean position, or entropy, increases

with the number of tumors. Mathematical treatments, such as cen-

tering and normalization of the matrices, also modify the entropy

and therefore the relative positions of the tumors. This happens

not only as a function of the composition of the combinations, but

also of the tumors to be classified. To minimize entropy and to

compare centered and normalized expressions between all the

combinations, the expressions of all tumors (in the learning and

validation sets) are standardized. The standardized expression

values projected into the validation space lead to constant distri-

bution of the learning tumors, allowing the relative positioning in

the validation space of new tumors to be classified. This stan-

dardization strategy was applied with success on data from

microarray of same technology. However, the mix of data from

microarrays with different technologies could increase the entropy

of the results because of potential differences in the background

noise and/or scale range of the measurements.

After the first result obtained with the post-Chernobyl dataset,

which underlined the high potential of our strategy for case-by-case

blind diagnosis of small series of radiation-induced thyroid tumors

(Table 1), this strategy was applied to another series of breast cancer

tumors, either sporadic or induced after radiotherapy, already

analyzed and for which the authors classified the tumors with 5

errors using the SAM method [13]. A discriminating 44-gene

signature was identified from a learning/training set of 20 tumors

(Table S4). This signature correctly classified 20 of 22 independent

testing tumors and misclassified no tumor, since the 2 remaining

tumors clustered between the two groups (Table 1; Table S2C).

These data showed again that, as for the methods used for post-

Chernobyl tumor classification, the EMts_2PCA method was more

efficient than SAM. Finally, the EMts_2PCA method was also

applied to the two most frequent histological types of thyroid tumors

(FTA and PTC), which are studied in the laboratory [8] and for

which there are numerous data in the literature [8,19,23–25]. This

method was used to define a discriminating 227-gene signature from

a learning/training set of 26 tumors (Table S1). This signature

correctly blindly diagnosed the histology of 28 independent testing

tumors (Table 1; Figure 2; Table S2A). To validate the biological

relevance of the signature obtained with this new method, we first

checked its overlap with 50 published thyroid tumor transcriptomic

analyses. Among the genes that have been shown to differentiate

histological subtypes of thyroid tumors and/or to be associated with

the expression of thyroid oncogenes (RET/PTC isoforms or

BRAFV600E), 78 genes overlapped with the present signature

(Table S1). Notably, 39 genes in this overlap have already been

identified in signatures discriminating malignant thyroid tumors

(PTC, follicular variant of PTC and/or follicular carcinomas), from

benign thyroid tumors (FTA, hyperplastic nodules). Genes identified

in the signature were relevant to molecular mechanisms associated

with thyroid physiology or thyroid tumorigenesis (data S2).
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The validity of a transcriptomic signature could be a matter of

discussion according to the size of the series of tumors, but it is

important to make a distinction between the size of the series used

for the learning and the testing [26]. In any case, the robustness of

a gene signature should be evaluated only on the score of the

classification and on the number of tumors used in the testing set.

Our strategy blindly predicted 28 FTA and PTC thyroid tumors,

22 sporadic and post-radiotherapy breast tumors and 13 post-

Chernobyl and sporadic PTCs with a sensitivity of 1, 0.9 and 0.86,

respectively, and a specificity of 1 for the three series (data S1),

which are good scores as compared with published data [12,

13,26]. It should be mentioned that the number of blindly

classified tumors in our study is in the range of the number of

tumors used for the blind validation in other studies [26–28].

To complete the positioning of the EMts_2PCA method, we

compared its performance in classifying the three series of tumors

with three other methods of tumor classification: the gene expres-

sion bar code method [14], the top-scoring pair (TSP) classifier

method [15] and the PCA method [16]. In order to compare the

different methods in terms of overall classification, without defini-

tion of a reference group (as required for sensitivity and specificity

calculation), we defined RPE and GPE evaluators, which indicate

the reliability and the effectiveness of a method in providing a

prediction, respectively. These evaluators are tools used to assess

the performance of classification methods without choosing a

positive test as a reference, and can be used when the test is based

on more than two categories.

The bar code appeared to be the less robust method for

analyzing small series of samples as shown by the RPE and GPE

scores (Table 2A; Table S5): it only classified/predicted the PTC/

FTA series, but with errors. The bar code method is rather well

adapted to large series of samples [29], and/or to samples that

could be discriminated by first-order information, as illustrated by

the near perfect classification of normal versus cancer [14], and of

benign FTA versus malignant PTC tumors in the present work.

One explanation could be that either the first-order information

and/or the high number of tumors in each learning group con-

verges toward a better estimation of the code of each gene, and

thus toward a better estimation of the bar codes of the tumors,

which leads to successful tumor classification. When the number of

learning tumors decreased, the proportion of stochastic measures

of gene expression increased, and thus the gene codes are biased

by noise or chance. To avoid a selection of genes presenting a

sporadic expression in the final signature, the EMts_2PCA method

evaluates, in the training step, the capacity of the genes to classify

the training tumors. Moreover, the EMts_2PCA method maxi-

mizes the signal on which the classification is focused (for example,

FTA/PTC), even if this signal is not first order, and minimizes the

other signals from potential confounding factors (for example,

etiology, age, grade). For that, specific attention was paid to the

choice of the learning set of tumors in order to build permutation

matrices such that each half-learning matrix is homogeneous only

for the criteria of classification and heterogeneous regarding the

confounding factors (Material and Methods: Learning step/Search

for set of candidate genes). This strategy leads to the selection of

the genes informative for the sought criteria. Moreover, the stage

of compilation and standardization of gene expression (Material

and Methods: Search for the final signature) maximizes the

discrimination.

Regarding the TSP classifier, as illustrated in (Figure S2 and

S3A–F), both the first top-scoring pair and the top-scoring pairs

efficiently separate the three learning sets of tumors into two

groups (Table S5). If only the first top-scoring pair is considered,

tumor prediction ability decreased greatly with low RPE and GPE

scores (Table 2B). By contrast, if all top-scoring pairs are used, the

predictive classification is rather good, as illustrated by the good

RPE scores, which are lower but close to those obtained with

EMts_2PCA, the GPE scores being, however, relatively low

(Tables 1 and 2C; Figure S3D–F). Overall, top-scoring pairs gave

good results when a tumor is classified within a group, but many

tumors are unclassified. Consequently, even if the use of top-

scoring pairs is robust in searching for genes able to cluster small

series of samples, the prediction is less efficient than that of

EMts_2PCA. One explanation could be that TSP classifier gene

selection includes neither the training step nor the maximization of

the information on which the classification is focused. In that

context, to compare the performances of the final signature versus

the gene selection using the top-scoring pairs, and to confirm the

gain of the standardization and normalization steps, we used the

final signature with conventional PCA, instead of the 2PCA stage,

for the classification of the three series of testing tumors. For

predictive classification using conventional PCA, the final sig-

nature gives similar (breast series) or better (PTC/FTA and post-

Chernobyl series) performances than top-scoring pairs of genes.

However, the performances are always worse than those ob-

tained with the 2PCA stage (Table 2C–D; Figure S3D–I). So,

EMts_2PCA is more appropriate in finding a signature in small

series of samples, the compilation and standardization steps in-

creasing the power of the signature in discriminating the two

groups. However, when dealing with large series of samples, the

use of the top-scoring pairs of genes is robust enough to identify a

set of discriminating genes and thus minimizes the need for a

training step. Moreover, as compared with a classic PCA method,

which requires an arbitrary decision of the experimenter to assign

a tumor to one group or another, EMts_2PCA permits an auto-

matic and objective training tumor group attribution, according to

the RMS scores (Material and Methods: Methods of classification

by Two-step PCA and aid to classification), thus decreasing the

number of unclassified tumors (Tables 1, 2D).

Interestingly, when comparing the three different methods,

gene expression bar code, TSP and EMts_2PCA, the number of

selected genes in the signature ranged from a pair of genes (TSP) (if

a unique pair of genes presents the highest frequency), nearly

all genes (bar code), to from a few dozen to a few hundred

(EMts_2PCA and TSP). We considered that the impact of the

number of genes should be separately discussed as a function of the

aim of the analysis, either tumor clustering or tumor prediction. As

illustrated in the present work, TSP always permitted clustering of

the learning tumors of the three series, whatever the number of

pairs of genes (from one to a few hundred) (Figure S2, S3A–F and

Table S5). Regarding the prediction, it was not efficient for the

three series when the first pair of genes was applied, but became

efficient when all the selected top-scoring pairs were used. It

should be noted that the number of genes pairs selected by TSP

was higher in the smaller learning sets, but the RPE and GPE

scores were high whatever the number of selected pairs of genes.

Regarding the tumor prediction, no one can prejudge the number

or exact selection of the genes that may be necessary for an

accurate predictive classification, and this is obviously very de-

pendent on the homogeneity/heterogeneity of the series of tumors.

For example, TSP, which gives high scores for tumor prediction,

does not search for the minimal number of genes necessary for

tumor prediction, but selects all pairs of genes presenting indi-

vidually a high score for tumor classification, without estimation of

the global potential of the selection of genes for tumor prediction

[15]. In this context, the EMts_2PCA method does not arbitrarily

fix the minimal number of genes that should be included in a

signature, but selects, through the training matrices, the genes with
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higher potential for predictive classification according to the rule:

‘‘at least one training tumor should be correctly classified and

none should be misclassified’’ (Material and Methods: Training

step with internal cross-validation and Compilation). With the

EMts_2PCA method, no relation could be made between the

number of learning tumors, the number of genes in the final

signature and the performance in predictive classification, which is

mainly dependent on the series of tumors.

In conclusion, the EMts_2PCA method is a strategy especially

dedicated to identification, in small series of samples, of a gene

expression signature discriminating subgroups of tumors, which

can be applied to predict the classification of prospective tumors

for diagnostic purposes. This strategy includes a standardization

process to maximize the signal on which the classification is

focused and defines a validation space permitting precise relative

positioning of prospective tumors case by case. Importantly, this

strategy allows an increasingly accurate and robust definition of

the populated area of the validation space, as the number of

diagnosed tumors increases, leading to a better diagnostic tool. This

strategy was successfully used to blindly classify a set of thyroid

cancers for which a biologically relevant signature was found and

two series of post-radiotherapy and post-Chernobyl tumors for

which we identified a molecular signature presenting higher scores

in terms of sensitivity and specificity than those reached with the

most commonly used methods of tumor classification.

Materials and Methods

Tissue samples
Fifty-four tumor samples (28 follicular thyroid adenomas (FTAs)

and 26 papillary thyroid carcinomas (PTCs)) were obtained from

the Gustave Roussy Institute and from the human BioBank in

Nice (Cancéropole PACA and CRB INSERM, CHU Nice)

[30,31]. 13 FTAs and 13 PTCs were used as a learning/training

set, and the remaining tumors were used as independent tumors in

a testing set. Tissues were harvested immediately on arrival at the

pathology suite, placed in liquid nitrogen and stored at 280uC
until used. Pathological diagnoses were performed according to

WHO guidelines.

Patients hospitalized at the Pasteur Hospital (Department of

Otorhinolaryngology, Nice, France) gave their signed agreement

to participate in the study. The protocol was approved by the local

ethics committee of the University of Nice (‘‘Comité de Protection

des Personnes’’ and the DRCVI of the CHU of Nice) and by the

French Ministry of Research (NuDC-2008-391 and NuAC-2008-

83). Written Informed consent was obtained from all patients of

the Institut Gustave Roussy and the study was performed in

accordance with protocols previously approved by the ethics

committee of Bicêtre and by the institutional review board of

Institut Gustave Roussy.

RNA extraction, labeling and hybridization
RNA samples were prepared and hybridized as described in

[31,32]. All samples were hybridized on human 25 K 50–52 mer

oligo microarrays (Resogen Program, RNG/MCR, Evry), [33].

Each tumor sample was co-hybridized with a common pool of

amplified normal thyroid, used as reference, and all hybridizations

were duplicated in dye-swap.

Microarray analysis
After hybridization, each spot was defined automatically using

image-analysis spot-tracking software (US patent 10/173,672; CA

2,389,901). Fluorescence intensity values for both dyes (Alexa

FluorH 555 and Alexa FluorH 647) and local background-subtracted

values for individual spots were obtained using an EM algorithm

(US patent 10/173,672; CA 2,389,901). Data normalization was

performed as described previously [8]. Microarray data were

generated in a MIAME compliant format and raw data were

deposited in the Array Express database (Accession number E-

MEXP-2335).

Published thyroid and breast data
The whole procedure was also applied to previously published

datasets, generated in a MIAME compliant format.

The thyroid dataset (Accession number GSE3950) was pre-

viously analyzed to identify gene expression profiles in sporadic

and post-Chernobyl PTCs [12]. The initial matrix was composed

of 14 sporadic PTCs, 12 post-Chernobyl PTCs and 12 429 genes.

Due to missing data, 7898 of the 12 429 genes were analyzed in

the present study. A learning/training set of 7 sporadic and 6 post-

Chernobyl PTCs was built to avoid any bias due to age at diag-

nosis or sex of the patients or to genetic alterations in the tumors,

the remaining tumors (7 sporadic PTCs and 6 post-Chernobyl

PTCs) being used as a testing set.

The breast tumor dataset (accession number E-NCMF-30) was

previously analyzed to identify gene expression profiles in sporadic

and post-radiotherapy breast tumors [13]. The initial matrix was

composed of 20 sporadic tumors, 22 post-radiotherapy tumors and

34 975 probes. A learning/training set of 10 sporadic and 10 post-

radiotherapy tumors was built, to avoid any bias due to grade or to

genetic alterations in the tumors. The remaining tumors (10

sporadic and 12 post-radiotherapy tumors) were used as a testing

set.

Description of tumor samples, microarray hybridization and

processing were reported in the respective publications.

Method: Process of learning/training with internal cross-
validation

This is a new two-stage strategy for tumor classification called

EMts_2PCA, which comprises:

1) a first stage, named EMts, composed of 3 steps: learning,

training, and search for a final signature,

2) a classification stage, called 2PCA.

The method was developed using GCC language and for the

moment is not ready for use. Further time is needed for this, but

we are fully willing to analyze data on request.

The method is presented taking the FTA/PTC series as an

example.

Learning step/Search for set of candidate genes. The

learning set included two subgroups of distinct histology (13 FTAs

and 13 PTCs). To avoid bias between subgroups in the gene

selection, the tumors of each subgroup were chosen to be com-

parable between the subgroups in terms of gender and age of

patients at tumor diagnosis. The learning tumors were chosen to be

similar between the two groups for all parameters other than the

classification focus parameter.

The learning/training process is based on the analysis of

combinatorial matrices of 10 tumors composed of 5 tumors of one

group (half-matrix) and 5 tumors of the other group. For each

histological subgroup, all the half-matrices of a combination of 5 in

13 were built. The FTA and PTC series included tumors of two

different etiologies: sporadic or radiation-induced. To avoid intra-

subgroup bias due to the etiology, all half-matrices containing only

tumors with the same etiology were eliminated. Finally, we kept

only the half-matrices that differed by more than 50% in

histological composition. These selected half-matrices were used
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to build all possible combinatorial 5-FTA half-matrices versus 5-

PTC half-matrices. Considering all these rules for keeping the

matrix and building the learning set, five tumors per half-matrix

were chosen because it is the smaller size of half-matrix for which

each learning tumor is present at least in one of the selected 10-

tumor matrices. In each resulting 10-tumor matrix, a randomized

t-test was applied as a quick filter to discriminate differentially

expressed genes from those belonging to the noise. The cut-off for

considering that a gene is differentially expressed is the p value of

the randomization t-test calculated for a noise model based on all

permutations between the two groups of tumors [17]; a gene is

selected if its p value is less than the cut-off.

Each 10-tumor matrix, filtered by the cut-off, was centered and

normalized. Then, an EM algorithm, based on a melting model

(US patent 10/173,672; CA 2,389,901) [32], was used to search

for differentially expressed genes (opposite ways) to discriminate

the two subgroups in a given 10-tumor matrix [34,35]. The EM

algorithm was applied to each resulting 10-tumor matrix to

calculate a probability, which was derived from the weighted

voting method [6] and from the method described by Chevillard

et al. [8]. For each gene expression value, the EM algorithm

calculated two probabilities Pover and Punder to be over- and under-

expressed (where Pover+Punder. = 1), respectively, taking into account

the overall gene expression values of the matrix. To be eligible as a

candidate gene, a gene 1) must have for each of its expression

levels in each tumor a probability difference defined as

(12|(Punder2Pover)|) less than 0.05, and 2) must have its expression

values always deregulated in the same way (induced or down-

regulated) in a given tumor group and in an opposite way (down-

regulated or induced, respectively) in the other group. Finally,

each 10-tumor matrix was restricted to its own selected candidate

gene to build the training matrices.

Training step with internal cross-validation. Each

training matrix was used to classify by a two-step principal

component analysis (2sPCA) the remaining 16 tumors of the

learning set (training tumors) (Material and Methods: Methods of

classification by Two-step PCA and aid to classification, Classi-

fication of training tumors). Then, rules for tumor classification were

applied. If at least one training tumor was correctly classified and

none was misclassified, the training matrix was retained; otherwise it

was discarded. The operation was renewed for each training matrix.

The process continued if at least 90% of the training tumor

classifications were validated by at least one of the training matrices.

In these conditions, 10% of the tumors may not be validated, but

none must be rejected by the retained training matrices (validated

training matrices).

Method: Search for the final signature
Compilation. The frequency of relevance F(i,j) of each gene

(i) for each tumor (j) represents the frequency at which the gene (i) :

-row (i), and the tumor (j) :-column (j), are found together in a

validated training matrix, weighted by the number of training

tumors correctly classified by this training matrix, such that:

F (i,j)~
X(H)

(h~1)

c(h):g(ih,jh)=
X(H)

(h~1)
c(h):g(jh)

where H represents the total number of validated training

matrices, (ih) and (jh) represent the coordinate of a gene and of a

tumor in a given training matrix corresponding to the same gene

and tumor indexed by (i) and (j) in the frequency F matrix. For

each training matrix, g(ih,jh) = 1 or 0 depending on the gene and

the tumor’s presence or absence, respectively, and g(jh) = 1 or 0

depending on the tumor’s presence or absence. Where c(h) =

number of training tumors correctly classified by the training

matrix (h).

The mean frequency of relevance F(i) of a gene was defined as:

F (i)~
X(p)

(j~1)

F (i,j)=P

representing the average of the row (i) of the matrix F(i,j), with P

the total number of tumors in the learning set.

The mean frequency of relevance F(i) of a gene is the frequency

by which the gene participated successfully in the classification of

the training tumors through all training matrices.

The mean marginal frequency F(j) of a tumor is defined as:

F (j)~
X(N)

(i~1)

F (i,j)=N

representing the average of the column (j) of the matrix F(i,j), with

N the total number of candidate genes considering all training

matrices.

The mean marginal frequency F(j) was the mean frequency with

which any candidate gene successfully participated in the classi-

fication of the training tumors through all training matrices.

The mean of F(j) was defined as:

mF~
X(p)

(j~1)

F (j)=P

The standard deviation of F(j) was defined as:

vF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX(p)

(j~1)
F (j)2=P{mF2

r

with P the number of tumors in the learning set.

A gene (i) was kept for the final signature used to classify the

testing set if F(i)$mF+2vF, where mF+2vF is the threshold from

which the cumulative distribution function is asymptotic to 1 and

thus the threshold where F(i,j) becomes statistically singular.

Standardization. The mean mh(ih) and the module Mh(ih) of

each line of the training matrix were calculated such that:

mh(ih)~
X(ph)

(jh~1)

e(ih,jh)=Ph

and

Mh(ih)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX(ph)

(jh~1)
(e(ih,jh){m(ih))2

r

where each selected training matrix eh comprises in line (ih) the (nh)

candidate genes, and in column (jh) the (ph) tumors.

Each training matrix eh was then completed by the gene

expressions of the corresponding candidate genes of the training

tumors (tumors of the learning set absent from the considered

training matrix) and of the testing tumors, to obtain a matrix e9h of

L = 55 tumors.
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Each line of a matrix e9h was then centered such that:

E
0
(ih,jh)~e0h(ih,jh){mh(ih)

and normalized such that:

E(ih,jh)~E0h(ih,jh)=Mh(ih)

All matrices Eh were compiled in a single matrix in which a

member j(i,j) represented the centered and normalized mean of

the expression Eh (ih,jh) of this same gene Ih and of this same tumor

jh in all matrices Eh:

j(i,j)~
X(H)

(h~1)

c(h)nhEh(ih,jh)=
X(H)

(h~1)

nhc(h)

with i and j the respective coordinates of a gene and of a tumor in

j and ih,jh the respective coordinates of the same gene and of the

same tumor in Eh. The matrix j was restricted to the genes of the

final stable signature.

Methods of classification by Two-step PCA and aid to
classification

Classification of training tumors. The eigenvectors and

eigenvalues of a training matrix were calculated. A Cartesian

coordinate system was defined from the three eigenvectors with

the largest eigenvalues. Then, all tumors of this training matrix

and each corresponding training tumor were projected onto the

Cartesian coordinate system (training space), which specifically

maximized the asymmetry between the training matrix tumors.

The positioning of each training tumor in the Cartesian coordinate

system, compared with the positioning of the training matrix

tumors, enabled the training tumor to be classified as FTA or

PTC.

Classification of testing tumors. The eigenvectors and

eigenvalues were calculated for the matrix j9(i,j) from the j(i,j)

restricted to the learning set tumors. These vectors define a new

space maximizing specifically the asymmetry between the learning

tumors. A new matrix of coordinates Y(i,j) was then calculated for

all tumors of the testing and learning sets by projection of vector

columns (i) of the matrix j(i) onto the eigenvectors. A Cartesian

coordinate system was defined from the three eigenvectors with

the largest eigenvalues (validation space). The location of each

testing tumor in the validation spaces, compared with the location

of the learning tumors, enabled the testing tumor to be classified as

FTA or PTC.

Aid to classification. In the training spaces or validation

spaces, outlier tumors may have a spatial position at the border of

the subgroups, meaning it may be difficult to assign them to one or

another subgroup. To be more discriminatory, we propose to

assess the distances precisely, taking into account more than three

eigenvectors if necessary. To do so, we used a decision-making tool

based on calculation of the root mean square (RMS). The RMS of

a tumor (j), a function of the barycenter of the subgroup g

(g = FTA or PTC) in a given matrix Q(i,j), is defined as

RMSg(j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX(N)

(i~1)
(Q(i,j){Qg(i))2

r

where

Qg(i)~
X(Nth

g )

(j~1th
g )

Q(i,j)=Nth
g

with 1th
g is the first and Nth

g the last tumor of the subgroup g.

Aid to classification of training tumors. For each tumor j

in a given training matrix, both RMSFTA(j)matrix and RMSPTC(j)matrix

were calculated between each training matrix tumor j and the

barycenter of the FTA and PTC subgroups, respectively. To assign a

training tumor k to the FTA or PTC subgroup, RMSFTA(k)class and

RMSPTC(k)class were calculated between the tumor k and the

barycenter of the FTA and PTC subgroups, respectively.

Aid to classification of testing tumors. For each tumor j in

the j9 matrix from the j matrix restricted to the learning set

tumors, both RMSFTA(j)matrix and RMSPTC(j)matrix were calculated

between each j9 matrix tumor j and the barycenter of the FTA

and PTC subgroups, respectively. To assign a testing tumor k to

the FTA or PTC subgroup, the RMSFTA(k)class and RMSPTC(k)class

were calculated between the tumor k and the barycenter of the

FTA and PTC subgroups, respectively.

Classification rules as a function of the RMS. To assign a

tumor k to a given histological subgroup (for instance, FTA

subgroup = given-subgroup and PTC subgroup = other-subgroup,

or inversely), the RMSgiven-subgroup(k)class of the tumor must be

lower than at least one RMSgiven-subgroup(j)matrix of given-subgroup

tumors, taking into account the RMSgiven-subgroup(j)matrix variance.

The classification is attributed if the tumor to be classified is

correctly assigned and no tumor of a given subgroup has an

RMSgiven-subgroup(j)matrix more than the RMSother-subgroup(j)matrix of

one tumor of the other subgroup.

The classification is unattributed if the tumor to be classified is

not assigned to a subgroup, and no tumor of a given subgroup has

an RMSgiven-subgroup(j)matrix more than the RMSother-subgroup(j)matrix

of one tumor of the other subgroup.

The classification is rejected if the tumor to be classified

is misclassified, or if any tumor of a given subgroup has an

RMSgiven-subgroup(j)matrix more than the RMSother-subgroup(j)matrix of

one tumor of the other subgroup.

Selection of eigenvectors to improve the classification
(new validation space)

Eigenvectors with the largest eigenvalues define the directions of

the N-dimensional space that presents the greatest asymmetry (total

variance) between the tumors [36]. However, the greatest

asymmetry between the tumors guarantees neither the homogeneity

in expression levels of tumors of a given subgroup nor the highest

asymmetry between the two subgroups of tumors. Indeed, hetero-

geneity of gene expression can increase asymmetry between the

tumors and thus leads to entropy in the position of tumors of a given

subgroup; this hampers classification of tumors borderline to the

subgroup. The total variance between the tumors can be decom-

posed as the sum of calculated variances between the tumors of each

group (S V_within_group) plus the variance between the centroid of

each group (V_inter_groups). To reduce this entropy, the eigenvec-

tors that jointly define the greatest asymmetries between the two

subgroups of tumors and the best expression level homogeneity

within a given subgroup are selected, using the ClusterIt method [8],

thus maximizing the ratio V_inter-groups/S V_within-group.

Supporting Information

Figure S1 Tumor clustering and prediction using the
barcode method: correlation map between the tumor
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barcodes. The barcode method was applied to the 3 series of

samples: series of thyroid follicular adenomas (FTAs) and thyroid

papillary carcinomas (PTCs) (A), series of sporadic breast cancers

(control) and post-radiotherapy breast cancers (BfHL) (B) and a

series of sporadic PTCs and post-Chernobyl PTCs (C). In each

series, the tumors of the learning set are indicated by full blue or

green dots and corresponding testing samples are indicated by

open blue or green circles as a function of the group in which they

should be classified.

(TIF)

Figure S2 Learning tumor clustering using the first top-
scoring pair. The figure represents the relative positioning of the

learning tumors of the PTC/FTA (A), breast (B) and post-

Chernobyl (C) series of tumors as a function the first top pair of

genes. In each series, learning tumors are indicated as red or blue

dots as a function of the two groups. The black line represents the

decision boundary. FTA: thyroid follicular adenoma, PTC:

thyroid papillary carcinoma.

(TIF)

Figure S3 Classification of the three series of tumors
using the first top-scoring pair of genes, all the top-
scoring pairs and the final signature in a conventional
principal component analysis (PCA). The figure represents

the relative positioning of all samples (learning and testing) of each

series of tumors PTC/FTA (A, D and G), breast tumors (B, E and H)

and post-Chernobyl tumors (C, F and I) as a function of the two

eigenvectors with the highest eigenvalues using the first top-scoring

pair (A, B and C), all the selected top-scoring pairs (D, E and F) and

the final signature (G, H and I). Learning tumors are indicated as

blue squares or gray triangles as a function of the group, and the

corresponding testing tumors (X samples) are indicated as red crosses

or orange dots, respectively. Unclassified tumors are indicated by a

red ring and tumors misclassified by a red arrow. The blue line

represents the frontier between the two groups of samples, when

possible to do so. FTA: thyroid follicular adenoma, PTC: thyroid

papillary carcinoma, S: sporadic breast and thyroid tumors; R: post-

radiotherapy breast cancer or post-Chernobyl PTC.

(TIF)

Table S1 List of genes (final stable signature) discrim-
inating follicular thyroid adenomas (FTAs) from thyroid
papillary carcinomas (PTCs). Differential gene expression

values were calculated in the validation space as the average of log

(PTC gene expression) minus the average of log (FTA gene

expression), with the corresponding p value. References are in-

dicated if genes were already identified in other thyroid-associated

signatures.

(DOC)

Table S2 RMS values. Testing tumors were classified by

considering the RMS in the respective validation spaces (see

Material and Methods: Aid to classification of testing tumors). The

delta RMS threshold is the shortest distance between the two

RMS scatter plots of the learning tumor minus the sum of the

standard deviation to the barycenter of each RMA scatter plot. A:

Thyroid tumors series (FTA vs PTC). B: Post-Chernobyl series. C:

Post-radiotherapy breast cancer series. FTA: follicular thyroid

adenoma, PTC: papillary thyroid carcinoma, R: radiation-

induced, S: sporadic, ?: unclassified.

(DOC)

Table S3 List of genes (final stable signature) discrim-
inating sporadic thyroid papillary carcinomas from
post-Chernobyl thyroid papillary carcinomas. The signa-

ture was determined from a published dataset retrieved from the

GEO database (http://www.ncbi.nlm.nih.gov/geo, accession num-

ber GSE3950). Differential gene expression values were calculated

in the validation space as the average of log (post-Chernobyl PTC

gene expression) minus the average of log (sporadic PTC gene

expression), with the corresponding p value.

(DOC)

Table S4 List of genes (final stable signature) discrim-
inating sporadic breast cancers from post-radiotherapy
breast cancers. The signature was determined from a published

dataset retrieved from the ArrayExpress database (http://www.ebi.

ac.uk/microarray-as/ae, accession number E-NCMF-30). Differ-

ential gene expression values were calculated in the validation space

as the average of log (control breast tumor gene expression) minus

the average of log (radiation-induced breast tumor gene expression),

with the corresponding p value.

(DOC)

Table S5 Results of clustering obtained for the three
series of tumors with the different methods. Data are

given in terms of either the classification of learning tumors alone

or all tumors (learning and testing). Yes: indicates that the learning

set/all tumors were well clustered into two groups. No: indicates

that the learning set/all tumors were not well clustered into two

groups. FTA: follicular thyroid adenoma; PTC: papillary thyroid

carcinoma, R: radiation-induced tumors; S: sporadic tumors; n

(number of gene pairs) = 30, 55 and 860 for FTA/PTC, breast

tumors and post-Chernobyl series, respectively. *Only one error.

(DOC)

Data S1 Performance of the classifier.

(DOC)

Data S2 Analysis of the signature discriminating thy-
roid follicular adenomas from thyroid papillary carci-
nomas.

(DOC)
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