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We present pyOsiriX, a plugin built for the already popular dicom viewer OsiriX that provides users the
ability to extend the functionality of OsiriX through simple Python scripts. This approach allows users to
integrate the many cutting-edge scientific/image-processing libraries created for Python into a powerful
DICOM visualisation package that is intuitive to use and already familiar to many clinical researchers.
Using pyOsiriX we hope to bridge the apparent gap between basic imaging scientists and clinical practice
in a research setting and thus accelerate the development of advanced clinical image processing. We
provide arguments for the use of Python as a robust scripting language for incorporation into larger
software solutions, outline the structure of pyOsiriX and how it may be used to extend the functionality
of OsiriX, and we provide three case studies that exemplify its utility.

For our first case study we use pyOsiriX to provide a tool for smooth histogram display of voxel values
within a user-defined region of interest (ROI) in OsiriX. We used a kernel density estimation (KDE)
method available in Python using the scikit-learn library, where the total number of lines of Python code
required to generate this tool was 22. Our second example presents a scheme for segmentation of the
skeleton from CT datasets. We have demonstrated that good segmentation can be achieved for two
example CT studies by using a combination of Python libraries including scikit-learn, scikit-image,
SimpleITK and matplotlib. Furthermore, this segmentation method was incorporated into an automatic
analysis of quantitative PET-CT in a patient with bone metastases from primary prostate cancer. This
enabled repeatable statistical evaluation of PET uptake values for each lesion, before and after treatment,
providing estaimes maximum and median standardised uptake values (SUVmax and SUVmed respectively).
Following treatment we observed a reduction in lesion volume, SUVmax and SUVmed for all lesions, in
agreement with a reduction in concurrent measures of serum prostate-specific antigen (PSA).
Crown Copyright & 2015 Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A search for the keyword ‘Imaging’ in PubMed reveals that the
number of medical imaging related articles published in 2014
exceeds 66,000 and that this number has been increasing over
recent years. One major contributor is likely to be the increased
utility of clinical and preclinical studies, which include magnetic
resonance imaging (MRI), computed tomography (CT), diagnostic
ultrasound (US) and positron emission tomography (PET) amongst
others. Imaging provides a major advantage over other diagnostic
techniques, as it is non-invasive and can provide in-vivo mea-
surements of the biological properties of human tissue that can be
monitored over time.
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Imaging has revolutionized the standard for patient care and
research in many fields of medicine including oncology [1–10],
cardiology [11–16] and cognitive sciences [17–20]. This increased
reliance on imaging has evolved through technological innova-
tions, enabling better diagnostic accuracy, faster acquisition times
and lower costs. Furthermore, advances in computer hardware and
storage now allow large patient datasets to be archived (e.g. up to
several gigabytes per examination), which can be pipelined for
advanced processing to enhance diagnostic performance. We
predict that this trend will continue with further developments in
multi-modal imaging [21–26], quantitative imaging [10,27–31]
and radiomics/radiogenomics [32–38]. However, the rapid infla-
tion in data volume necessitates the development of rapid and
robust image analysis tools to ensure timely delivery of pertinent
information.

The advent of the Digital Imaging and Communications in
Medicine (DICOM) standard in the 1980’s has provided vendors
with a common and lightweight means to store and distribute
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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medical data [39,40]. This revolution enables images acquired
from different imaging modalities to be centrally accessed for
patient diagnosis, and also to be searched and viewed on inde-
pendent platforms. Most imaging systems now provide their own
DICOM solution, which are also equipped with powerful visuali-
sation tools such as multi-planar reformatting and volume ren-
dering; alongside a comprehensive DICOM management frame-
work. Furthermore, a number of independent alternative com-
mercial DICOM visualisation platforms such as eFilm [41] and Olea
Sphere [42] are also available.

An open-source DICOM imaging solution designed for the Apples

operating system, OsiriX, has gathered considerable interest amongst
the medical community [43–45]. Built heavily using the Mac-native
Objective-C programming language and libraries, it performs many of
the vital medical image viewing tasks outlined above, including 2D/
3D/4D data visualisation, DICOM database management and is able to
act as a ‘Picture Archiving and Communication System’ (PACS) server
for the retrieval of images transferred from other medical devices. It
features an intuitive user-interface (UI) that is easy to use, which
includes tools for defining Regions of Interest (ROIs) and basic image
processing such as smoothing and segmentation. Of particular inter-
est for imaging scientists is an open-source application program
interface (API) that supports the development of custom-built ‘Plu-
gins’ using the Objective-C programming language. At our institution,
we have used this feature extensively to design and develop solutions
for clinical research trials, where a number of novel image processing
algorithms may be tested. These have included a plugin for computed
diffusion weighted MR-imaging (cDWI) to improve the assessment of
skeletal metastasis [27] and the calculation of fat-fraction from fat-
water MRI techniques, amongst others. Although using the OsiriX API
has provided our clinicians with useful clinical tools, this approach is
impractical for research. The development of low-level C-based soft-
ware is too cumbersome for rapid prototyping and lacks the scientific
libraries available to scientific languages such as Matlab, IDL and
Python. In this article we present our solution: pyOsiriX is a plugin
that has been developed with the aim of providing researchers access
to the data and functionality contained within OsiriX by means of
using Python scripts. Using pyOsiriX accelerates the development of
research tools for image processing and provides the availability of
many advanced image processing algorithms through 3rd party Python
libraries: Numpy, Scipy, matplotlib, Scikit-Image, Scikit-Learn and the
Insight Toolkit (ITK) to name but a few [46–51]. Scripts developed
using pyOsiriX can be made immediately available to clinicians for
research within the familiar OsiriX user-interface, thus bridging the
gap between image scientists and clinical practice.
2. Why Python?

Conceived in the late 1980’s, Python is rapidly gaining popu-
larity as a high-level, open-source programming language
amongst many software developers. It was designed with a vision
to produce code that is readable and self-documenting, whilst
retaining an object-oriented programming paradigm that is highly
extensible. Python is a scripting language that relies on an inter-
preter to read and execute commands provided through terminal
instructions or python files (defined by a ‘.py’ extension). Although
the additional step of code interpretation can slow a program’s run
performance when compared with pre-compiled machine-native
code (written for example using C or Cþþ), it is extremely
advantageous for the research programmer. Important reasons for
this are:

� Python interpretation eliminates the need to compile code
every time it is to be run. From the perspective of OsiriX plugins,
this means that plugins do not need to be reinstalled each time
they are altered in debugging. This issue, in the view of the
author, has been a major roadblock in the development of
plugins, which require OsiriX to be restarted many times during
development.

� All memory management is taken care of automatically by the
interpreter. If a variable name is re-used, the old memory
assigned to the variable reference is automatically deallocated.

� The interpreter is able to issue errors to the user without
needing to stop the current runtime making the debug step of
code development much simpler.

� As code written for interpretive languages can be saved as a text
file, this automatically provides an easy way to store, audit and
version-control algorithms in human readable format.

However, if execution time is an issue, Python provides a
straight forward C API that makes it trivial to build Python libraries
comprising native machine code to perform tasks at speed. The C
API also provides the possibility of embedding Python as a
scripting interpreter in another application, a feature that is not
available to other scripting tools such as Matlab and IDL. Fur-
thermore, Python is becoming very competitive as a scientific
programming tool [52,53] thanks to the advent of many free and
open-source scientific libraries including efficient array manip-
ulation using NumPy [46], scientific computing using SciPy [50],
extensive plotting routines with matplotlib [48], advanced image
processing with scikit-image [50], state-of-the-art machine
learning using scikit-learn [49] and Bayesian modelling with PyMC
[54]. Furthermore, Python builds of the Insight Segmentation and
Registration Toolkit (ITK) [51] provide fast and easy access to some
of the most advanced image segmentation and registration algo-
rithms available to the imaging community. As a result of current
developments we speculate that Python will be a major contender
as the programming language of choice in scientific imaging
research.
3. The structure of pyOsiriX

As demonstrated in Fig. 1, pyOsiriX consists of a single Python
module, ‘osirix’, and multiple classes that allow the user to
manipulate the displayed images and regions of interest (ROIs),
whilst also granting access to elements of the OsiriX database
(using the DicomImage, DicomStudy and DicomSeries instances).
With the exception of ROIs, new instances of each class are not
allowed, as this is left to the OsiriX runtime. Rather, they are
accessed using the naming conventions illustrated in Fig. 1. For
example, if a user wishes to have access to the currently active 2D
ViewerController (the primary 2D viewing window in OsiriX), the
following Python syntax would suffice:

Each ViewerController provides access to lists of the contained
DCMPix instances, which in turn are containers for Numpy arrays
of pixel values and other relevant attributes such as the slice
location, the dimensions of the contained image array and the
location of the source file (from which DICOM attributes may be
read using the Python dicom library pyDicom [55]). If a time series
(e.g. obtained in a dynamic imaging study) has been loaded into
the ViewerController (4D mode), the DCMPix list at a specific time



Fig. 1. A diagram illustrating key elements of the pyOsiriX framework. Functions in the top-level module, ‘osirix’ (outlined by a dashed box), can be used to access various
elements in OsiriX, which can in turn be used to explore the data more fully using existing scientific Python libraries.
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frame is referenced as follows:

The Numpy array of pixel values for the currently displayed
DCMPix may be accessed and manipulated for display:

Within each ViewerController, also reside the lists of ROIs at
each slice location (one list per movie frame). In order to access
the currently displayed ROIs, the following code could be used

In designing pyOsiriX, we have ensured a naming convention
as close to that of the underlying OsiriX source code as possible. In
this way it is relatively straight forward for an engineer to translate
any code written as Python scripts into fully native OsiriX plugins
(Objective-C). Although the above exemplar statements are
important for any scientific programmer wishing to use pyOsiriX,
there are many other functions available, which will be fully
documented at the application website [https://sites.google.com/
site/pyosirix/]. Furthermore, by calling Python’s ‘help’ routine on
any of the pyOsiriX classes and functions, the user is presented
with documentation for the object in the form of a familiar Python
‘docstring’ displayed in the interactive terminal (Fig. 2).

http://https://sites.google.com/site/pyosirix/
http://https://sites.google.com/site/pyosirix/


Fig. 2. A screenshot of the pyOsiriX-scripting terminal. This plugin tool can be used
to write and run scripts, provides script templates to aid script development and
also enables the user to permanently install scripts so that the code remains
hidden.
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4. pyOsiriX plugins

Python commands may be entered and executed via a simple
interactive terminal (Fig. 2). This provides users with the ability to
interact with code and the data displayed by OsiriX in real-time
without the compilation steps necessary for native OsriX plugins,
thus reducing programming complexity. Furthermore, if a script
provides functionality that will be used repeatedly, it may be
registered as a pyOsiriX plugin then executed by a button click. If
scripts are to be used in this manner, the developer must provide
header information at the top of the the python file as follows:

The ‘type’ field of the header determines under which group in
which to display the plugin execution button, the ‘name’ provides
the name of the execution button, and the ‘version’ and ‘author’
fields provide lightweight documentation for version-control.
Currently supported ‘types’ include: ImageFilter, ROItool, Dicom-
Tool, DatabaseTool, VRtool and Other. Furthermore, when a plugin
is installed, the results of a secure hash algorithm on the entire
script (SHA-2) are stored on an Apple

s

keychain so that mod-
ifications to the original source can be detected. This retains the
open-source nature of the python script whilst ensuring that there
are consistency checks for it to run.
5. Case studies

To demonstrate the utility of pyOsiriX we present three clini-
cally motivated examples for analysis of X-ray computed tomo-
graphy (CT) imaging and its combination with positron emission
tomography (PET).

5.1. Kernel density estimation of ROI statistics

Our first example is relatively trivial in terms of its application, but
it does highlight several important aspects of pyOsiriX that support its
utility. The problem, simply stated, is as follows: Given several ROIs
drawn in the currently displayed image of a ViewerController, plot the
histogram of voxel values. Although, OsiriX does already provide a
basic histogram tool, it lacks several features including: no x-axis or y-
axis labels, no ability to change the plot colour and no functionality to
save the resultant image. Furthermore, it uses the conventional
number counting definition of a histogram by plotting along the y-
axis the number of voxels whose values are between certain ranges.
In-fact, this form of distribution may be considered a special case of
Kernel Density Estimation (KDE), also know as Parzen windowing
[56,57]. Briefly, this technique is a non-parametric estimation method
for determining the probability density function of a dataset through
a normalised summation of ‘kernels’, K, with bandwidth h each
centred about a single datum xi.

f h xð Þ ¼ 1
Nh

XN

i ¼ 1

K
x� xi
h

� �

A commonly used kernel is the Gaussian function, which has the
advantage that the resulting PDF is smooth. Although this algorithm is
straight forward to implement in principle, a full calculation is
extremely inefficient and has O(MN) complexity where N is the
number of data and M is the number of PDF positions that require
calculation. A much more efficient implementation utilises the
inherent sparsity of the data to turn the problem into O(MþN) time
[58]. Thankfully, this functionality is already implemented in Python
through the scikit-learn package [49]. We use this implementation
along with several pyOsiriX methods and the matplotlib package to
produce kernel density estimates of PDFs for a group of ROIs. The
Python script for this functionality is provided as Supplementary
material: KernelDensity.py. Note that the total number of lines of code
needed to perform this task is 40 (not including comments), which
could in principle be shortened were it not for the want of clarity. A
demonstration of this tool is presented in Fig. 3, where it is compared
to the result from the in-built histogram functionality of OsiriX using
the PANORAMIX CT dataset provided on the OsiriX website [59]. It is
clear that with relatively little written code, it is possible to produce
very similar results to those provided by OsiriX. Moreover, the Kernel
Density plot is smoother and the plot window displays the necessary
axis values: CT values (Hounsfield Unit) along the x-axis and prob-
ability density along the y-axis. The widget functionality available in
matplotlib [48] also prides the user with a simple interface that they
may use to investigate different smoothing bandwidths. Furthermore,
the resulting plot is interactive in the sense that the user is able to
zoom into specific areas and also save an image of the results. This
example made use of the matplotlib [48] and scikit-learn [49]
packages, which are freely available and open-source.

5.1.1. Segmentation of the axial skeleton in CT
In this example we segment the skeleton from whole-body CT

datasets. Other authors have visited this well-known problem many
times in the past and there are now a wide variety of techniques that
provide a solution [60–63]. Nonetheless, we demonstrate that good
segmentation can be achieved using a combination of Python libraries
with easy implementation in OsiriX for visualisation. By inspecting
the example axial CT image shown in Fig. 3, it is observed that a
number of imaging features must be accounted for when imple-
menting a segmentation strategy for bone. Firstly, imaging noise
(assumed to be Gaussian for large signal to noise ratio, SNR [64]) can
result in a noisy segmentation result and so must be adequately
modelled and accounted for in any algorithm. Second, CT imaging
artefacts are visible as ‘streaking’ throughout the image and occur as a
result of the reconstruction from under-sampled X-ray projections.
The presence of any external objects, such as the scanner couch, pose



Original CT image

OsiriX
Histogram tool

pyOsiriX
KDE tool

Fig. 3. Top: an axial chest CT with a ROI (in green) drawn manually to outline the body. Left: a histogram of Hounsfield unit (HU) values generated using the in-built OsiriX
histogram tool. Right: a kernel density plot of the sane data using the kernel density estimation tool written as a pyOsiriX script. It is clear that the KDE histogram can provide
a much smoother interpretation of the probability density function for the CT data. The addition of a slider for choosing the bandwidth of the kernel density estimation
provides the user with the ability to modify the level of histogram smoothing. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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a problem for any automatic segmentation schemes, and bone is
composed of many tissue types including cortical bone, red and yel-
low marrows and vasculature, all of which will have varying CT
values. Our proposed algorithm consists of a number of image fil-
tering and segmentation steps that, in isolation, would be time con-
suming to develop from scratch in native Objective-C. However, by
utilising general-purpose scientific Python libraries that already
implement many of the required steps (referenced below), algorithm
development is drastically reduced. Our approach, designed to cope
with CT images acquired at different pixel resolutions, has a total 66
lines of Python code (ignoring all comments). Furthermore, we note
that utility of Python libraries such as Numpy can vastly improves the
efficiency of computation due to extensive optimisation during
development [46]. Our algorithm is present below, where numbers
correspond to those illustrated in Fig. 4. The full Python code is pro-
vided as Supplementary material SkeletalSegmentationCT.py.

1. GMM Analysis. From the results in Fig. 3, it is evident that the CT
signal can be grouped into several distinct classes correspond-
ing to different tissue types. Two peaks in the CT histogram are
visibly centred on values of approximately from �100 to �50
(adipose tissue) and 0–100 (soft tissues). Furthermore, there is
another peak around �700 that represents air, and is easily
ignored by thresholding the image above -500. This histogram
is modelled as a 3-class Gaussian Mixture Model (GMM) using
the scikit-learn package by initialising Gaussian classes at – 100
(fat), 0 (water) and 500 (other) and then optimising the fit using
the expectation maximisation algorithm [49].

2. Body mask creation. To ensure no external objects are included
in the segmentation a mask of the patient body is created by
thresholding the entire image above HU¼�700 and then
removing thin objects from the resulting mask through mor-
phological opening and closing operations using the scikit-
image package [50].

3. Image smoothing. To reduce the effect of noise on the segmen-
tation result an anisotropic-diffusion smoothing filter is applied
to the images using the SimpleITK Python package [65]. Briefly,
this algorithm applies a non-linear, shift-variant smoothing
kernel to the image that retains sharp signal boundaries, whilst
smoothing areas of consistent signal intensity. Two parameters
that can be tuned in this algorithm are the conductance of the
filter (a conductance of 0 allows no smoothing across any
boundary) and the number of iterations. Here, these are set to
1.0 and 10 respectively.

4. Bone classification. Using the GMM trained from step 1 and the
body mask created from step 2, the smoothed image from step
3 is classified into each of the three possible categories: ‘water’,
‘fat’ and ‘other’. Those pixels classified as ‘other’ and have
HU40 are attributed to be regions of bone.

5. Segmentation improvements. After bone classification, any holes
contained entirely within the bone mask and smaller than
20 cm2 are filled and any independent region smaller than



Fig. 4. A workflow schematic demonstrating the image process steps used for a simple skeleton segmentation algorithm using CT data. A 3-class Gaussian Mixture Model
(GMM) is fitted to the entre CT volume (1) and applied to a smoothed version of the images (3) using a morphologically smoothed body mask (2) to ensure the scanner bed is
not included. The resulting segmentation (4) is improved by removing holes within the bone and removing regions less than a specified size (5).
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0.5 cm2 are removed. This step is performed using the region
labelling algorithm available to scikit-image.

This algorithm was also tested on the KESKRONIX and PHENIX
CT angiography datasets available from the OsiriX website [59].
The results are presented in Fig. 5 and Fig. 6 respectively. Although
both cases demonstrate inclusion of some larger blood vessels in
the segmentation, it should be highlighted that both datasets are
post contrast administration and so vessels appear hyperintense
compared with standard CT. Otherwise, very good skeleton seg-
mentation has been achieved in both cases. Performing such
segmentation in OsiriX has the additional benefit that user mod-
ification of the resulting ROIs can be performed with ease using
the many ROI modification tools already available to OsiriX.
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Furthermore, ROIs can easily be saved as a ‘.roi_series’ file and
transferred from one study to another after image registration,
thus facilitating multi-modal imaging analysis. Segmentation of
these datasets took approximately 1–5 minutes (depending on
input CT resolution) on a 1.7 GHz machine with 8 GB of RAM
(MacBook Air).

5.1.2. Segmentation of metastatic disease using 18F-fluoride PET-CT
imaging

For our final case we demonstrate how pyOsiriX may be used to
analyse multi-modal imaging datasets. 18F-fluoride was described
as an agent for imaging bone over 50 years ago [66]. However, it is
only recently that radiolabelled fluoride has gathered momentum
as a reliable and sensitive tracer, largely due to the developments
in positron emission tomography (PET) technologies and dual-
modality PET-CT scanners [67–70]. The application of 18F-PET-CT
imaging to the assessment of metastatic prostate cancer is parti-
cularly attractive as response in this patient cohort is typically
regarded to be non-measurable [71]. A recent study has demon-
strated that the assessment of changes in the maximum standar-
dised uptake value (SUVmax) calculated within ROIs in 18F-PET-CT
could provide a quantitative biomarker of disease response [68].
Our aim was to provide an automatic segmentation of suspect
lesions on 18F-PET-CT, thus reducing the potential for measure-
ment error from unrepeatable ROI definitions. Fig. 7 illustrates our
segmentation scheme: Skeletal segmentation of the concurrent CT
data was achieved using the algorithm described in the preceding
section (CT images were resampled to the same voxel resolution as
for PET using OsiriX). The intersection of the skeletal segmentation
Fig. 5. Automatic segmentation of CT angiogram in the pelvis. Top: segmentation results,
bone. However, the use of a CT contrast agent has also resulted in segmentation of some
segmentation results shown as a 3D surface-rendered display (right) overlaid on a maxi
figure legend, the reader is referred to the web version of this article.)
with a mask generated from thresholding the SUV images (SUV
415) provided the final PET segmentation; region labelling using
scikit-learn provided separate ROIs for each spatially distinct
lesion. Using this method we could automatically estimate chan-
ges in tumour volume, SUVmax and median SUV following treat-
ment for each lesion independently. In an exemplar patient case
(metastatic prostate cancer) we observed a reduction in all indices
following treatment (Fig. 7), which was in agreement with a
concurrent reduction in serum prostate-specific antigen (PSA)
levels following therapy.
6. Discussion

In this article we present pyOsiriX, a simple yet powerful addition
to the already popular OsiriX software package, allowing users to
extend its functionality by using Python scripting. We envisage that
pyOsiriX will quickly accelerate the transition of novel and relatively
complex image processing algorithms from simple prototypes into
robust image analysis tools for medical research. Clinical and scientific
researchers will able to apply many cutting-edge scientific libraries
that Python already provides to imaging data, and rapidly translate
these for viewing using the many excellent tools available in OsiriX. In
this article we have demonstrated three examples of the use of
pyOsiriX in order to provide evidence that scripting the code of
pyOsiriX can vastly reduce the number of steps required to perform
complex image analysis tasks. In the first we generate kernel density
estimates for histograms of voxel values contained within user-
prescribed regions of interest (ROIs). This tool provides a smooth
displayed axially using a yellow brush ROI, demonstrate excellent delineation of the
blood vessels (red arrow), which have similar CT density values to bones. Bottom:

mum intensity projection (left). (For interpretation of the references to color in this



Fig. 6. Automatic segmentation of Head CT dataset. Top: segmentation results, displayed axially using a yellow brush ROI, demonstrate excellent delineation of the bone.
However, the use of a CT contrast agent has also caused segmentation of some blood vessels (red arrow). On occasion, imperfect bone segmentation was achieved (blue
arrow). However, the clinician easily corrects for this using the ROI manipulation tools in OsiriX. Bottom: Segmentation results shown as a 3D surface (right) overlain on a
maximum intensity projection (left). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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distribution with which the user may visually interrogate the number
of classes that may be present in the image, which may then be
related to the biological properties of the tissue evaluated. For our
second example we demonstrate the utility of pyOsiriX for providing
fast skeletal segmentation from body CT scans. By using existing
Python libraries including scikit-learn, scikit-image, SimpleITK and
matplotlib, we were able to rapidly implement an automatic CT
segmentation scheme and volume render our results in OsiriX. Our
process provided good segmentation of the bones on two example
datasets freely available from the OsiriX website, with processing time
on the order of one-two minutes depending on image resolution and
field-of-view. Lastly, we have demonstrated that skeletal segmenta-
tion of CT can provide automatic delineation of suspect malignancies
in 18F-radiolabelled fluoride PET-CT exams. This technique allowed us
to export statistics of standardised uptake value (SUV) and lesion
volume for each metastatic site: In an exemplar patient case with
metastatic prostate cancer a reduction in mean SUV, median SUV and
lesion volume was observed following treatment, in agreement with
a concurrent reduction in serum PSA levels. All segmentation results
were easily visualised using the excellent visualisation tools available
in OsiriX, and could be managed using the OsiriX dicom database and
stored on file.

We note that other powerful platforms for imaging research
exist including MesVisLab [72] and 3DSlicer [73,74]. However, we
believe that the strength of pyOsiriX lies in its combination with
OsiriX and bringing research tools onto an imaging viewing and
analysis platform that is familiar to both imaging scientist and
clinician. This will greatly facilitate collaboration between both
disciplines and promote faster development of advanced clinical
imaging methodologies.
We are undertaking a number of steps to facilitate and promote
the development of pyOsiriX. First, we aim to ensure pyOsiriX as
an open-source framework so that it can be supported and driven
by the medical imaging community. Second, we wish pyOsiriX to
be a stand-alone solution, and this will require integration of new
open-source Python imaging libraries when they become avail-
able. Third, although a Python scripting terminal is provided, its
current usage is basic and does not yet implement several script-
ing aids that can be useful for code development. In future we
hope to include several debugging utilities such as breakpoints
and function stepping routines.

Using pyOsiriX, we anticipate that clinicians and imaging sci-
entists will be able to visually explore and interact with quanti-
tative imaging data through the rich visualisation suite provided
by OsiriX and develop robust image analysis tools using the many
available Python libraries. We hope that these tools will bridge the
apparent gap between these fields by incorporating fundamental
imaging research into a framework and interface that is familiar to
both. Ultimately we perceive that this will accelerate the devel-
opment of advanced segmentation, registration and numerical
analysis of medical imaging data into a robust clinical solution,
supporting the application of techniques such as radiomics,
radiogenomics and multi-modal, quantitative imaging.
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(SUV415) to automatically define ROIs around regions of high fluoride uptake in the bone (right). Bottom: using a region labelling algorithm of the final PET segmentation
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respectively) and also estimates of lesion volume (Vol). A clear reduction in each of these parameters following treatment suggests patient response.
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