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Circle of Willis (CoW) is the most critical collateral pathway that supports the redistribution of blood supply in the brain. 3e
variation of CoW is closely correlated with cerebral hemodynamic and cerebral vessel-related diseases. But what is responsible for
CoW variation remains unclear. Moreover, the visual evaluation for CoW variation is highly time-consuming. In the present
study, based on the computer tomography angiography (CTA) dataset from 255 patients, the correlation between the CoW
variations with age, gender, and cerebral or cervical artery stenosis was investigated. A multitask convolutional neural network
(CNN) was used to segment cerebral arteries automatically. 3e results showed the prevalence of variation of the anterior
communicating artery (Aco) was higher in the normal senior group than in the normal young group and in females than in males.
3e changes in the prevalence of variations of individual segments were not demonstrated in the population with stenosis of the
afferent and efferent arteries, so the critical factors for variation are related to genetic or physiological factors rather than
pathological lesions. Using the multitask CNN model, complete cerebral and cervical arteries could be segmented and
reconstructed in 120 seconds, and an average Dice coefficient of 78.2% was achieved. 3e segmentation accuracy for pre-
communicating part of anterior cerebral artery and posterior cerebral artery, the posterior communicating arteries, and Aco in
CoW was 100%, 99.2%, 94%, and 69%, respectively. Artificial intelligence (AI) can be considered as an adjunct tool for detecting
the CoW, particularly related to reducing workload and improving the accuracy of the visual evaluation. 3e study will serve as a
basis for the following research to determine an individual’s risk of stroke with the aid of AI.

1. Introduction

Circle of Willis (CoW) is the most important collateral
pathway to allow blood communication between the con-
tralateral cerebral hemisphere and carotid-basilar artery,

depending on the integrity of the anterior and posterior
parts of the CoW. However, there are more than 20 types of
variations in the CoW found commonly across populations.
What is responsible for CoW variation remains unclear. Still,
some researchers have demonstrated the relationships with
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cerebral and cervical diseases, such as cerebral ischemic
stroke, aneurism, and white matter lesions [1–4]. Dissection
was the initial avenue for CoW research, though now ad-
vanced mini- and noninvasive imaging techniques are used,
including computer tomography angiography (CTA),
magnetic resonance angiography (MRA), digital subtraction
angiography (DSA), and transcranial Doppler ultrasonic.
3ese techniques allow for in vivo observations of the CoW,
enabling CoW research in both larger and more specific
populations. MRA is a popular technique for being non-
invasive and does not utilize iodine or ionizing radiation
exposure. Still, MRA tends to overestimate the variation and
stenosis, which is attributable to slow or turbulent flow in the
stenosis lumen or thin segment [5]. CTA is a faster, more
accurate examination than MRA, primarily since it can
provide detailed information regarding the configuration of
the CoW and the extracranial and intracranial arteries with
one-stop scanning. In the study, using CTA data, the cor-
relation between the variation in the CoW and factors, such
as age, gender, and the stenosis of afferent or efferent ar-
teries, were evaluated. At the same time, it was noted that
visual evaluation for CoW variation would be highly time-
consuming, likely taking more than 1 hour to delineate a
complete cerebral and cervical artery, which is not im-
practical in clinical application. In recent years, computer-
aided diagnosis has drawn much attention with the devel-
opment of computer technologies, such as big data [6, 7] and
deep learning [8]. It brings excellent progress in disease
classification [9], anomaly detection [10, 11], and medical
image segmentation [12, 13]. Automatic segmentation of
cerebral vessels is required to perform automatic analysis of
CoW variation. However, it is still challenging to segment
cerebral arteries automatically due to the inhomogeneous
intensity, complex topological shapes, vessel abnormality,
and other complex features [14, 15]. Conventional methods
segment vessels are based on low-level features with low
accuracy and efficiency [16]. Here, we proposed a multitask
CNN-based-cerebral artery segmentation method and val-
idated its performance in our clinical datasets. 3e study will
serve as a basis for the following research to determine an
individual’s risk of stroke with the aid of artificial intelli-
gence (AI).

2. Materials and Methods

2.1. Subjects. 3e study was approved by our institutional
review board, and written informed consent was waived by
the IRB due to the retrospective nature of the study. Between
2009 and 2019, the data from 15000 patients were retro-
spectively investigated, and CTA of cerebral or cervical
arteries were analyzed by two independent radiologists.
Some data were excluded if patients had encephalorrhagia,
aneurysms, malignant tumors, and other diseases involving
the arteries in the neck or the quality of images was not
enough to analyze. Patients were selected and divided into
six groups according to the age and the severity of cerebral or
cervical artery stenosis: the young normal group (Yn), aged
21–35 years without stenosis of an artery; the senior normal
group (Sn), aged 55–76 years without stenosis of an artery;

the mild-moderate stenosis in afferent arteries group (AMs),
withmild ormoderate stenosis of the common carotid artery
(CCA), internal carotid artery (ICA), or basilar artery (BA)
but without simultaneous severe stenosis of bilateral ver-
tebral artery (VA); the severe stenosis in afferent arteries
group (ASs), with severe stenosis of the CCA, ICA, BA, or
both VA; the severe stenosis of efferent arteries group (ESs),
with severe stenosis of postcommunicating parts of an
anterior cerebral artery, middle cerebral artery, or posterior
cerebral artery (pACA, pMCA, or pPCA); and the control
group of efferent arteries (Ec), with normal post-
communicating parts and normal or middle stenosis of
afferent arteries.

2.2. CT and CT Angiography. Using the scanner (Brilliance
iCT 256, Philips Healthcare), cerebral and cervical CTA
examinations were performed from the aortic arch, and the
parameters were the field of view� 220mm, tube volta-
ge� 120 kVp, tube current� 300mAs, and the slice thick-
ness� 1mm. Bolus tracking technique was used with a 20ml
saline bolus followed by 50ml Iohexol (Omnipaque 350, GE
Healthcare) and a 20ml saline bolus with a 5ml/s injection
rate. With the help of the postprocession workstation
(IntelliSpace Portal), these arteries were reconstructed and
evaluated. Final decisions were made on the thin section
images.

2.3. Assessment of the CoW and Arteries Stenosis. Each
segment of the CoW was classified as “normal” or “varia-
tion.” 3e segment that could not be visualized in CTA
images was defined as a variation. It should be noted that due
to a lack of consensus for the definition of hypoplasia, the
precommunicating part of the anterior cerebral artery (A1),
precommunicating part of the posterior cerebral artery (P1),
or posterior communicating arteries (Pco) with diameters
over 70% thinner than contralateral segments were also
classified as “variation.” Even though it was not shown
clearly, the anterior communicating artery (Aco) should be
classified as “normal” in case of the bilateral ACAs being
fused. 3en, the entire CoWs, both anterior and posterior
parts, were considered separately and classified as complete
(all segments normal) and incomplete (any of the segments
exhibiting a variation).

3e degree of arterial stenosis, including CCA, ICA, BA,
VA, andmajor branches of cerebral arteries, was determined
according to the criteria established by the North American
Symptomatic Carotid Endarterectomy Trial (NASCET) and
categorized into “normal,” “mild stenosis” (≤29%), “mod-
erate stenosis” (≥30% and ˂70%), and “severe stenosis”
(≥70%).

2.4. Statistical Methods. Each subject was assessed by two
independent radiologists (R1 with 17 years of experience in
vascular imaging; R2 with 5 years of experience). In case of
discrepancy, an agreement was reached by consensus.
GraphPad Prism version 5.1 and SPSS 20.0 were used for
statistical analysis. Comparisons between groups were
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conducted using the t-test or chi-square test where appro-
priate, with P< 0.05 considered statistically significant. All
the tests were not corrected for multiple comparisons.

2.5. Datasets and Preprocessing. 30 CTA datasets were se-
lected and manually delineated as ground truth using the
Mimics V17. We divided them into a training group (24
cases) and a validation group (6 cases). Furthermore, we
collected another 61 datasets as a testing group. Isotropic
resampling was firstly adopted to generate datasets with the
same spacing of 0.5mm in the x-y-z directions. 3en,
thresholding was used to exclude the interference of
background voxels with an intensity lower than 0 or higher
than 2000.

2.6. �e Proposed Model. A multitask CNN model was
proposed, and its architecture is shown in Figure 1.

Multitask models have been proven their effects in
different deep learning tasks [17]. We adopted the multitask
idea to propose a multitask CNN for cerebral vessel seg-
mentation. We formatted the CTA image as a weighted
summation of the background and foreground (vessels). 3e
weight map could be considered as the segmentation
probability. 3e proposed model has one input and three
output heads to simultaneously reconstruct the background,
foreground, and weight map. We constructed a recon-
struction loss to evaluate the dissimilarity between the input
image and output reconstruction image, which is the
weighted summation of background and foreground image.
We also added a segmentation loss to evaluate the difference

between the weight map and vessel ground truth segmen-
tation. 3e summation of reconstruction loss and seg-
mentation loss is used as the multitask loss function to
optimize the proposed model.

3e proposed network adopted an encoder-decoder
structure with multihead output. An atrous spatial pyramid
pooling (ASPP) module was used to merge multiscale high-
level features to enhance the recognition power of small-
sized objects. 3e multihead output consisted of two re-
construction outputs and a segmentation output, which
were used to compute the multitask loss function. 3e
multitask loss function was helpful to produce a model with
higher generalization ability.

3e model adopted an encoder-decoder structure. 3e
encoder network employed 4-level convolutions with a
kernel size of 3 and max-pooling to extract high-level fea-
tures.3e extracted high-level features were sent to an atrous
spatial pyramid pooling to concatenate multiscale features
generated by global average pooling and parallel convolution
with dilation rates of 1, 2, 4, and 8. 3en, a decoder network
was used to recover spatial information by upsampling
operations and skipping connections, which concatenate
low-level features and high-level features together. Finally,
three branches were connected to generate 3 different
outputs, including the segmentation probability map O, the
reconstructed foreground F, and the background B. Two
tasks were involved in the model: the reconstruction task
and the segmentation task. We then built a multitask loss
function for model optimization as follows:
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where I and S are training image and respecting ground
truth, N is the number of training images, and θ represents
the model parameters. 3e first term is the reconstruction
loss, which computes the mean squared error between the
input and the reconstructed images. 3e reconstructed
image is a weighted summation of the foreground F and the
background B with probability O as weights. 3e second
term computes the Dice loss between ground truth S and
probability map O to evaluate the loss of segmentation.

During training, axial slices of 288× 288 were extracted
from CTA training images and augmented by rotation and
flipping. We used Adam optimizer with an initial learning
rate of 0.0001.3emodel is trained by 50 epochs with a batch
size of 32.

2.7. Model Evaluation. 3e Dice coefficient (DC) was
employed as the metric to evaluate the segmentation ac-
curacy of the model on the validation group. 3e 61 datasets
of the testing group were segmented by the model, and the
segmentation accuracy was evaluated in the labelled images.

3. Results and Discussion

3.1.GeneralCharacteristics and thePrevalence ofVariations of
CoW. 255 cases were included (160 males, mean age 57± 17
years, range 21–84 years). 3e characteristics are shown in
Table 1, classified by age and degree of stenosis. Of these,
some cases from “afferent +mild stenosis” and “affer-
ent +moderate stenosis” were categorized into an “AMs”
group, and some cases from “young + normal,”
“senior + normal,” and “afferent +mild stenosis” were cat-
egorized into an “Ec” group.

Figure 2 demonstrates the prevalence of variations of
CoW reported by the previous and present imaging-mo-
dality studies [18].

3.2.Variations of Individual Segments and theCompleteness of
the CoW in Different Populations. 3e prevalence of the
variations of the individual segments and the completeness
of CoW is demonstrated in Table 2. Sex has been matched
between Yn and Sn. 3e prevalence of variation of Aco and
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incompleteness of the anterior part of the CoW was sig-
nificantly higher in Sn than in Yn (P � 0.046 and 0.009,
respectively). Age has been matched between males and
females, and the prevalence of the variation of Aco and
incompleteness of the anterior part of the CoW was higher
in females than in males (P � 0.024 and 0.044, respectively).
Both sex and age had been matched among Sn, AMs, and
Ass, and between ESs and Ec. Patients with stenosis of the
afferent and efferent arteries did not exhibit a significant
change in the prevalence of variation of individual segments
and the incompleteness of the CoW.

3.3. Results from the Proposed Deep Learning Model

3.3.1. DC Evaluates the Overlap between the Prediction O and
Ground Truth F

DC �
2∗ |O∗F|

|O| +|F|
. (2)

A greater DC value (close to 1) means better segmen-
tation. DC will be 0 if the prediction and ground truth have
no overlap.3e complete cerebral and cervical arteries could
be segmented and reconstructed in 120 s, and an average DC
of 78.2% was achieved by the proposed multitask model. We
also trained a single-task U-Net model for comparison,
which only involved the segmentation task without recon-
struction. 3e average DC of the single-task model was
74.3%, nearly 4% lower than the proposedmodel.3e results
indicate that multitask learning can help enhance feature
discrimination and improve generalization ability. Figure 3
shows the segmentation results of the proposed multitask
model and single-task model. 3e results suggest that the
proposed model can generate better segmentation in thinner
vessel areas with less noise than a single-task model.

3.3.2. �e Accuracy of the Model Visually Evaluated by
Experts. Using the proposed model and head-neck CTA
data, the segmentation accuracy for P1 was determined to be
perfect at 100%, and A1 and Pco were 99.2% and 94%,
respectively, while for Aco, the accuracy significantly de-
creased to 69% (Figure 4).
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Figure 1: 3e architecture of the proposed multitask segmentation method.

Table 1: Characteristics of patients.

Group Cases Age (y)
(mean± SD) Male (%)

Young + normal 53 30± 4 68
Senior + normal 41 61± 5 34
Afferent +mild stenosis 55 71± 6 56
Afferent +moderate stenosis 24 67± 6 67
Afferent + severe stenosis 34 68± 9 76
Efferent + severe stenosis 48 51± 13 77
Patients were categorized according to age and the severity of cerebral
carotid artery stenosis. “Young + normal” refers to patients aged 21–35
years without stenosis of an artery; “senior + normal” refers to patients aged
55–76 years without stenosis of an artery; “afferent” refers to the arteries
including CCA, ICA, BA, and VA. “Efferent” refers to the arteries, including
the postcommunicating parts of ACA, MCA, and PCA. 3e degree of
stenosis of arteries was determined according to the criteria of NASCETand
categorized into “normal,” “mild” (≤29%), “moderate” (≥30% and ˂70%),
and “severe” (≥70%).
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3.4.Discussion. Compared with the Aco and anterior part of
the CoW, the higher prevalence of Pco variation and in-
completeness of posterior circle were demonstrated in both
young and senior normal populations. It may be correlated
with their functional significance. Aco is considered the
most important collateral pathway and helps retain blood

flow in the cerebral hemispheres [19]. 3us, its absence or
hypoplasia will be more costly in cerebrovascular events Pco.
However, the prevalence of Pco variation reported from the
imaging study was different from the dissection study. Using
imaging methods, the prevalence of hypoplasia of the Pco
ranges from 23% to 41%, and the prevalence of absence of

AcoA1

ICA

Pco85%-96% 29%-76% 84%-98%

8%-25%0%-6%

22%-48%

pPCA

pACA

P1

BA

Posterior Circle

Anterior Circle

2.5%-35% 47%-78%

Previous Present

Prevalence of Incompleteness In CoW

1%-10% 11%-24%

1%-22% 32%-59%

Previous Present

Prevalence Of Absence In Individual Segments

pMCA

Figure 2: Schematic drawing labelled with the prevalence of absence of each segment of the Cow and incompleteness of the anterior and
posterior circle from the present and previous imaging-modality studies. pACA: postcommunicating part of an anterior cerebral artery; A1:
precommunicating part of an anterior cerebral artery; Aco: anterior communicating artery; pMCA: postcommunicating part of a middle
cerebral artery; ICA: internal carotid artery; Pco: posterior communicating arteries; P1: precommunicating part of a posterior cerebral
artery; pPCA: postcommunicating part of a posterior cerebral artery; BA: basilar artery.

Table 2: Prevalence of variation in individual segments and incompleteness in the CoW.

Group Cases Ages (y) Male (%)
Variation (%) Incompleteness of CoW (%)

Aco A1 Pco P1 Entirety Anterior part Posterior part
Group 1 divided according to age
Yn 53 30± 4 68 36∗ 11 85 25 98 47∗ 96
Sn 27 63± 5 48 59∗ 22 96 15 100 78∗ 96
Group 2 divided according to sex
Male 40 42± 15 100 30∗ 10 93 18 100 40∗ 98
Female 40 48± 15 0 55∗ 18 90 23 95 63∗ 93
Group 3 divided according to afferent arteries stenosis
AMs 41 66± 6 61 49 12 95 10 98 61 98
ASs 27 67± 9 74 48 22 93 19 100 67 96
Group 4 divided according to efferent arteries stenosis
ESs 50 51± 13 78 32 24 88 8 94 52 84
Ec 65 53± 16 68 40 17 86 20 97 56 94
Group 1: sex has been matched between Yn and Sn. ∗3e prevalence of variation of Aco and incompleteness of the anterior part of the CoW was significantly
higher in Sn than in Yn (P � 0.046 and 0.009, respectively). Yn: young normal group (Yn), those aged 21–35 years without stenosis of an artery. Sn: senior
normal group (Sn), those aged 55–76 years without stenosis of an artery. Group 2: age has been matched between males and females. ∗3e prevalence of the
variation of Aco and the incompleteness of the anterior part of the CoWwas higher in females than inmales (P � 0.024 and 0.044, respectively). Group 3: both
the age and sex had beenmatched among Sn, AMs, and ASs. Patients with stenosis of the afferent arteries did not exhibit a significant change in the prevalence
of variation of individual segments and the incompleteness of the CoW. AMs: mild-moderate stenosis group in afferent arteries group with mild-moderate
stenosis of CCA, ICA, or BA but without simultaneous severe stenosis of VA. ASs: severe stenosis in afferent arteries group, those with severe stenosis of CAA,
ICA, BA, or bilateral VA. Group 4: both the age and sex had beenmatched.3ere was a lower prevalence of variation of P1 segment and incompleteness of the
posterior part in ESs than in Ec with no significant difference (P � 0.072 and 0.087, respectively). ESs: severe stenosis of efferent arteries group with severe
stenosis of postcommunicating parts of ACA, MCA, or PCA, and normal or middle stenosis of afferent arteries. Ec: control group of ESs, those with normal
postcommunicating parts and normal or middle stenosis of afferent arteries.
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(a) (b) (c)

Figure 3: Results of segmentation and reconstruction. (a) One axial CTA slice labelled manually by an experienced radiologist and 3D
meshes of ground truth. (b) One axial CTA slice segmented by the proposedmodel and the 3Dmeshes. (c) One axial CTA slice segmented by
the single-task model and the 3D meshes. Comparison with a single-task model (c); more details, which were highlighted in an oval in (b),
can be shown using the proposed multitask model.

semented original

(a)

segmented original

(b)

semented original

(c)

segmented original

(d)

Figure 4: Wrong segmentation based on the proposed model for CoW. (a) Close bilateral ACA was wrongly delineated together and
considered as Aco, which is a most common error. (b) Right A1 was not completely delineated. (c) Right Pco was not delineated. (d) Another
vessel was wrongly delineated as Pco.
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the Pco ranges from 22% to 48% while in dissection, the
hypoplasia of the Pco has a prevalence of 23–70% and is
absent 0%–14% of the time. A higher prevalence of absence
in imaging studies may be related to a lower spatial reso-
lution of this technique. 3e maximum spatial resolution of
CTA is 0.14mm, while in dissection, the arteries with di-
ameters less than 0.1mm can be observed [20, 21].

We also demonstrated that the values of the prevalence of
variation and incompleteness were generally more prominent
than those reported in the literature.3is could be attributed to
several factors. 3e definition of “variation” was different
between studies. In our study, the variation was defined as
nonvisualization in CTA images or diameters over 70% thinner
than contralateral segments, which might include both absence
and hypoplasia observed in previous studies. Moreover, racial
differences could partly contribute to the high prevalence [22].
Compared to Westerners and Japanese populations, a higher
prevalence of an incomplete posterior portion of the CoW has
been reported in the Chinese populations [23].

A major finding is that neither the stenosis of afferent
arteries nor the stenosis of efferent arteries affects the con-
figuration of the CoW. Dissection is not suitable for such
research directed at the association of the CoW with diseases
because it is hard to differentiate healthy individuals from
patients, so in vivo imaging techniques have been employed to
facilitate such studies. Waaijer et al. found that a compromised
anterior circle segment was detected more frequently in pa-
tients with symptomatic carotid artery stenosis than in controls
[24]. Hartkamp found a higher percentage of complete CoW in
patients (55%) with ICA stenosis than in normal (36%) [25].
Varga assessed the CoW of 544 patients with severe stenosis of
the ICA and suggested that ICA stenosis was the only inde-
pendent predictor of CoW configuration [3]. 3e differences
between our results and previous reports may be due to the age
and sex of the subjects. To date, most studies suggest that the
variations or anomalies demonstrated in the fetal period
continue into postnatal life and age-related segment changes
only arise if lesions occur.

Moreover, no significant gender differences in the
prevalence of variations have been observed in almost all
studies [5, 23, 26, 27].3ematching of age or sex was seldom
performed in previous studies that investigated the influence
of stenosis on CoW variation. Our results demonstrate a
significant association between CoW variation and age or
gender and suggest that possible biases arise unless the age
and gender are matched among groups. Moreover, the
possible reasons for these variations are suggested. Two
factors are thought to play important roles: gene and he-
modynamics. 3e latter is related to the degeneration of
embryo arteries, the functional significance of vascular
segments, neck movement, and the presence of pathological
lesions [19, 26, 28]. In Vasovic’s words, it is “a theoretical
model in prenatal and postnatal developmental phases” [29].
Our result suggests that crucial factors for variation favor
genetic and physiological factors over hemodynamics
changes resulting from pathological lesions. However, al-
though differences were not statistically significant, there
was a noted tendency toward a lower prevalence of variation
of the P1 in patients with severe stenosis of efferent arteries,

so a larger sample size is necessary to verify the opinion.
Another limitation is that the data of this study were col-
lected from only one institution, and the results need more
verification in other institutions.

It was exciting that, with the help of a deep learning model,
CoW could be quickly segmented and reconstructed with high
DC. In contrast, it would take an experienced radiologist more
than 1 hour to manually delineate complete cerebral and
cervical arteries. 3e performance of the model was perfect for
segmenting P1, A1, and Pco, but it should be improved in Aco.
3e vessel would not be accurately discriminated and seg-
mented if its diameter was less than 3mm, and the absence of
Aco would not be recognized if bilateral ACA were too close.
Even more noteworthy was that the visual-evaluation results
from 7 cases were revised and improved with the aid of AI. So,
the deep learning-based method can increase the efficiency of
brain vessel segmentation and improve the accuracy of visual
evaluation by a radiologist.

However, the segmentation performance is still suffering
from the following limitations. (1) Only limited labelled
datasets are used for model optimization, leading to low
generalization ability. Future work would include semi-
supervised segmentation models that employ limited la-
belled datasets and more unlabelled datasets for training
[30, 31]. (2) 3e proposed model performs worse in detail,
particularly discriminating between closely associated ves-
sels and small-sized vessels, which is a typical problem in
other medical image analysis tasks [32].

4. Conclusions

3e study suggests that key factors for variation of CoW
favor genetic and physiological factors over hemodynamics
changes resulting from pathological lesions. A multitask
CNN model is developed to segment CoW automatically,
and its performance is validated in the diagnosis of the
variation. It can be considered an adjunct tool for investi-
gating the variation, particularly related to reducing
workload and improving the accuracy of the visual
evaluation.
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