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Abstract: This paper is an extension of work originally presented to pHealth 2019—16th International
Conference on Wearable, Micro and Nano Technologies for Personalized Health. To provide an
efficient decision support, it is necessary to integrate clinical decision support systems (CDSSs) in
information systems routinely operated by healthcare professionals, such as hospital information
systems (HISs), or by patients deploying their personal health records (PHR). CDSSs should be
able to use the semantics and the clinical context of the data imported from other systems and data
repositories. A CDSS platform was developed as a set of separate microservices. In this context,
we implemented the core components of a CDSS platform, namely its communication services
and logical inference components. A fast healthcare interoperability resources (FHIR)-based CDSS
platform addresses the ease of access to clinical decision support services by providing standard-based
interfaces and workflows. This type of CDSS may be able to improve the quality of care for doctors
who are using HIS without CDSS features. The HL7 FHIR interoperability standards provide a
platform usable by all HISs that are FHIR enabled. The platform has been implemented and is now
productive, with a rule-based engine processing around 50,000 transactions a day with more than
400 decision support models and a Bayes Engine processing around 2000 transactions a day with
128 Bayesian diagnostics models.
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1. Introduction

This paper is an extension of work originally presented to pHealth 2019—16th International
Conference on Wearable, Micro & Nano technologies for Personalized Health [1].

Decision support systems (DSSs) are currently being implemented to solve a high variety of
clinical and environmental tasks. Successful implementation of a decision support system requires
efficient planning strategies, a common understanding of decisions support goals, performance, and
usability. This can increase acceptance and make the overall project successful [2]. The tasks that can
be efficiently solved by decision support systems vary from the implementation of urban climate action
plans [3] and support of road planning to the diagnosis of rare diseases [4].

Health care industry is increasingly becoming a knowledge-based community, connecting different
providers, decreasing administrative costs, and improving quality and continuity of care. This creates
challenges and opportunities for clinical decision support systems (CDSSs) that facilitate health care
procedures in knowledge-based settings [5]. A CDSS is any computer program designed to help make
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clinical decisions [6,7]. This definition demonstrates the variety and evolution of clinical decision
support from small, focused applications to large-scale platforms capable of storing and managing
medical data to assist doctors and patients by delivering recommendations [8,9].

To provide efficient decision support, it is necessary to integrate CDSSs in information systems
routinely operated by healthcare professionals, such as hospital information systems (HIS), or by
patients deploying their personal health records (PHRs) [10]. CDSSs should be able to use the semantics
and the clinical context of the data that were imported from other systems and data repositories [11–13].

Semantic interoperability becomes a key issue when it comes to communication between
heterogeneous information systems [14]. One of the ways to connect different information systems is
to build a platform that processes standard-based medical data and provides unified interfaces. Using
clinical data exchange standards such as openEHR [15], CEN/ISO EN13606 [16–18], HL7 CDA [19],
and fast healthcare interoperability resources (FHIR) [14] can provide data-level interoperability. These
standards specify common electronic health record (EHR) data structures [20] and are widely used in
clinical decision support systems [21,22]. One of the latest formats of EHR data specifications is the
FHIR standard that provides data elements (“resources”) and an application programming interface
(API) to retrieve and exchange electronic health records [23].

The current medical software ecosystem can be characterized by its high innovation needs,
disturbing interactions between systems and hampering semantic interoperability [24]. To avoid such
problems, developers can cluster software applications into small, easily supportable functional units
that can be changed on demand without affecting other pieces of software. This approach is commonly
referred to as microservice architecture [25].

Specifying standard interfaces, CDS Hooks (https://cds-hooks.org), provides a hook-based pattern
for automatically invoking CDSS functions within routine clinical workflows [26]. This specification
natively supports HL7 FHIR R4 to simplify the data flow, enabling easy integration of HISs and
CDSS services.

The experience shows that most of the CDSSs are standalone implementations focused on one
clinical condition or workflow [27–29]. However, the implementation of sophisticated clinical decision
support platforms that are capable of providing a full spectrum of clinical decision support functionality
to various medical information systems is still missing. There is a persistent need for high-quality,
effective platforms that will unify design, development, presentation, implementation, evaluation, and
maintenance of all types of clinical decision support capabilities for clinicians, patients [30], and other
stakeholders [31]. We advance existing experiences in implementing CDS platforms [32] by adding
standard-based data interfaces and structures to deliver decision support features to different health
care ecosystems.

The goal of this research is to develop an FHIR-based microservice platform that integrates HISs
and CDSSs into a unified information space.

2. Methods

2.1. Platform Architecture

Structurally, a CDSS platform was developed as a set of separate services, that is, nodes
distributed in groups. Microservices communicate with each other asynchronously using the REST
communication protocol.

2.2. Services

All the services operate through public contracts represented in FHIR JSON format, providing
the unique resource identifier (URI) of the resources. Services utilize two interaction models: remote
procedure call (RPC) and event-based interaction. Logs are sent to the central log service with a unique
transaction ID.

https://cds-hooks.org
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A model of the services is shown in Figure 1. Business API endpoints allow sending service-specific
requests, for example, to return specific artifacts or terminology from the knowledge base.

The Event API endpoint (e.g., HTTP/event) allows an external service to send event requests.
So the service knows the status of other services of the platform.

The Health Check API endpoint (e.g., HTTP/health) returns the health status of the service to its
handler to provide continual monitoring. The API endpoint handler performs various checks, such as

• the status of the connections to the infrastructure services used by the service instance;
• the status of the host, for example, disk space;
• application-specific logic.

Business Logic is the main part of the service that is responsible for the implementation of the feature the
service is designed for, for example, the logic of loading facts from the database into an inference engine.

Event Store and Business Logic Store are responsible for managing and saving data related to the
corresponding process of the service.

Other Service Client is responsible for active communication with other services of the platform,
for example, sending the events and the results of the work.
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Each service has an independent release cycle, so the public interfaces support versioning to
provide consistent operation of the system.

2.3. Clinical Modelling

The CDSS platform requires designing a set of FHIR profiles suitable for the decision support. We
used Forge (https://fhir.furore.com/forge/), the official HL7®FHIR® profile editor, a desktop application
for profile modelling and validation. We used Logical Observation Identifiers Names and Codes
(LOINC) [33] and Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT) [34] codes
to define the semantics of the medical concepts.

A “Patient” was used as the main resource of the platform. To provide semantic interoperability,
the platform supports the following FHIR R4 [35] resources as input and output data:

1. CarePlan
2. MedicationRequest
3. ActivityDefinition

https://fhir.furore.com/forge/
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4. DetectedIssue
5. RiskAssessment
6. Questionnaire
7. QuestionnaireResponse
8. ResearchDefinition
9. PlanDefinition
10. Goal
11. Observation
12. Condition
13. FamilyMemberHistory
14. DiagnosticReport
15. Group
16. RequestGroup
17. AllergyIntolerance
18. Immunization
19. Procedure
20. Encounter
21. Appointment

2.4. Rule Engine

We accomplished extraction and conceptualization of the inference rules by manual formalization
of clinical guidelines. We identified three types of inference rules: the definition, operation rule, and
aggregation rule:

Definition is an atomic domain concept consisting of a nomenclature and a code.
Operation Rule (OP) is an operational inference rule that deals with a Definition that determines

reference intervals for a Definition. For example,

• Definition_1. Value >1. Definition_2. Value = 0
• Operation Rule has the following structure:

# Definition ID
# Nomenclature
# Code
# Name
# Operation
# Value

AggregateRule is an Aggregation Rule (AG) that performs logical operations on Operation Rules.
Aggregation Rules are built upon the IF-THEN paradigm, with the conditional combination of criteria
(OPs) in the IF part and the suggested Artifacts in the THEN part. For example: if (Op1 and op2) or
(op3 and op4) then Artifact.

An Artifact is a piece of a free-text recommendation that shall be included in the report as the
result of the decision support. The system supports the following types of artifacts:

• Scale is used for the results of evaluation scales, questionnaires (as a coded value of the result or
as a number);

• Risk is used to determine if there is a risk of any disease or condition;
• Diagnosis is used to evaluate the possible diagnosis based on laboratory or instrumental studies;
• DiagnosticReport is used for coded logic groups to interpret clinical observations;
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• ReferralRequest is used to recommend specialist appointment and routing of patients;
• ProcedureRequest is used to recommend instrumental examinations;
• DiagnosticRequest is used to recommend laboratory tests;
• Description is used to describe the conclusions drawn (e.g., an explanation of the identified risk

level);
• Recommendation is used for free text recommendations;
• BehaviorRecommendation is used for coded lifestyle recommendations.

When a specific FHIR instance of a patient’s case reaches a decision support system, patient data
is first checked to match the formal definition of FHIR. Then, the data instances are registered in the
fact database. Later, they are analyzed for the existence of a concept of a Definition object for every
fact. The concepts that have corresponding Definitions are used for logical inference, where engine
services create an inference sequence to generate a JSON file with artifacts to be included in the report.
The resulting service creates a human-readable document based on the inference.

Depending on the input data, the Rule Engine can be used for different purposes:

• Calculation of risks of disease;
• Interpretation and monitoring of clinical observations;
• Analysis of medical services provided to a patient for compliance with the standards of the

insurance company;
• Treatment plan management;
• Analysis of prescriptions for drug interactions and contraindications for prescribing.

The Rule Engine includes the services presented in Figure 2.

• FHIR Adapter: the service converts data from the FHIR format into the internal Rule Engine
format. This service also provides the possibility of Rule Engine invocation according to the CDS
Hooks specification.

• Rule API: the service performs internal routing and saves processed data for further analysis.
• Filter: the service is responsible for filtering the data to the actual state, applicable to the mechanism

of logical output.
• Rule Engine: the service is responsible for the logical inference mechanism based on the rules.
• Formatter: the service is responsible for formatting the results of logical inference.
• Api.KnowledgeService: the knowledge service is responsible for CRUD operations with the

graphical knowledge base. Is used by the Rule Engine to search for rules, artifacts, and definitions.
• Api.FactService: fact service is responsible for preserving and providing facts at all stages

of inference.
• Api.JobStatusService: the status service is responsible for creating new tasks and saving statuses.
• Api.ErrorService: the error service is responsible for saving and reporting errors that occur during

the inference process.
• Api.ResultService: the result service is responsible for saving and providing the results obtained

by the Rule Engine inference.
• TerminologyService is responsible for the storage and provision of medical terminology.
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The Rule Engine is based on production rules that are logical expressions represented in the form
of a graph. An example of a graph model of rules for assessing the risk of type 2 diabetes is shown in
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Rule Editor

The rule editor has an intuitive interface that allows creating logical expressions (Figures 4–6).
Conditions in logical expressions include comparison of actual values with the references and

absolute values (Figure 4).
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2.5. Bayes Engine

A Bayes Engine is a DSS system based on Bayesian Logic. Bayesian Statistics allow a system to
make conclusions about the presence of pathology in the patient in the conditions of high uncertainty.
Bayes Engine models enable to carry out initial patient interview, guide the patient to the right doctor,
and to assist the doctor in making a preliminary diagnosis. Models are developed by expert physicians
on the basis of generally accepted clinical guidelines and scientific publications with a high level
of evidence.

Bayes Engine services were implemented using

1. C# + .net core 2.2 for the core logic;
2. asp.net core 2.2—for the web interface;
3. Infer.NET (ML.net)—a framework for running Bayesian inference in graphical models. In our

case it was used for probabilistic programming.
4. PostgreSQL 11 for data storage.

Bayes Engine includes the following services (Figure 7):

• FHIR Adapter: the service converts data from the FHIR format into the internal Bayes Engine
format. Furthermore, this service provides the possibility of Rule Engine invocation according to
the CDS Hooks specification.

• Bayes API: the service performs internal routing and stores processed data for further analysis;
• Interpretation Service: the service performs data processing before calculation on

Bayesian networks;
• Knowledge Service: the service stores Bayesian models created by experts and collects probabilities

used for calculations;
• Inference Engine: the service performs inference on the basis of Bayesian models;
• Qbot: the service validates inference results and models with experts in the learning mode;
• Model Manager: supports model management in the Knowledge Service (CRUD on models).
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The process of creating diagnostic Bayesian models includes the following steps:

1. Creating a model prototype;
2. Model structure validation by experts;
3. Improvement of the model structure;
4. Definition of probabilities;
5. Validation of the model by experts using real validated clinical cases.

The Bayesian network editor is used to create diagnostic models. A model is a graph with nodes
representing diagnoses, risk factors, symptoms, objective signs, as well as laboratory and instrumental
data. Edges between the nodes indicate cause–effect relationships and correlations. All nodes are
coded using international classifiers (LOINC and SNOMED CT).

2.6. CDS Hooks

For the integration of the CDS Hooks API into the CDSS platform, we utilized the latest version of
the specification of CDS Hooks (1.0 STU).

To ensure interoperability, the CDS Manager service is included in the CDSS platform to perform
the following tasks:

1. Store a directory of available CDSS services on the platform, provide registration, and allow the
client application to configure which CDSS to use for specific needs.

2. Provide proxying calls from the client to the selected CDSS and collect usage statistics.

The process and components of interaction between HISs and the CDS manager are shown in
Figures 8 and 9.
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To implement the CDS Hooks, we consequently implemented three main features:

1. RESTful interface based on the CDS Hooks specification. This included support of the defined
format of the RESTful body and the return of the CDS results as cards;

2. A FHIR platform adaptor was adjusted to support individual FHIR connection for each
EHR session;

3. Implementation of the data points required by the CDS Hooks API. This included the management
of hooks and the data points that needed to be pre-fetched by the calling HIS.

3. Results

3.1. Rule Engine

A Rule Engine is an inference system based on production rules. It receives patient-related
observations as an input and returns conclusions about the patient’s condition with recommendations
for further actions. The rules that are incorporated into the system are referenced by clinical guidelines
and scientific publications with a high level of evidence.

In total, we have modelled 365 nodes of laboratory test components, 5084 nodes of inference rules,
49,932 nodes, and 3072 blocks of text for medical certificates.

We have developed interpretation algorithms for the following 11 groups of codes of the
International Statistical Classification of Diseases and Related Health Problems (ICD-10):

N30 Cystitis
N04 Nephrotic syndrome
N10 Acute pyelonephritis
K75 Other inflammatory liver diseases
K71 Toxic liver disease
K81 Cholecystitis
K85 Acute pancreatitis
E05 Thyrotoxicosis
D50 Iron deficiency anemia
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D72 Other disorders of white blood cells
N41 Inflammatory diseases of prostate.

3.2. Bayes Engine

An example of model structure is presented in Figure 10.
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Bayes Engine Workflow Example

The example below shows the Bayesian calculations for the diagnostics of respiratory diseases.
Figures 12–16 demonstrate the process of how the Bayesian engine calculates probabilities of pneumonia
and acute respiratory disease after receiving new symptoms. The figures describe for each step the
recalculation of probabilities of Pneumonia and Acute respiratory disease when introducing new facts:
presence of chill, right-sided chest pain, and color of a sputum.

Int. J. Environ. Res. Public Health 2020, 17, x 12 of 18 

 

Bayes Engine Workflow Example 

The example below shows the Bayesian calculations for the diagnostics of respiratory diseases. 
Figures 12–16 demonstrate the process of how the Bayesian engine calculates probabilities of 
pneumonia and acute respiratory disease after receiving new symptoms. The figures describe for 
each step the recalculation of probabilities of Pneumonia and Acute respiratory disease when 
introducing new facts: presence of chill, right-sided chest pain, and color of a sputum.  

 

 

Figure 12. Initial state of a Bayesian network.  

 

Figure 12. Initial state of a Bayesian network.



Int. J. Environ. Res. Public Health 2020, 17, 73 13 of 18

Int. J. Environ. Res. Public Health 2020, 17, x 13 of 18 

 

 

Figure 13. Probability table for a chill symptom. 

 
Figure 14. Service has received data on the presence of chill. 

Figure 13. Probability table for a chill symptom.

Int. J. Environ. Res. Public Health 2020, 17, x 13 of 18 

 

 

Figure 13. Probability table for a chill symptom. 

 
Figure 14. Service has received data on the presence of chill. Figure 14. Service has received data on the presence of chill.



Int. J. Environ. Res. Public Health 2020, 17, 73 14 of 18
Int. J. Environ. Res. Public Health 2020, 17, x 14 of 18 

 

 

Figure 15. Service has received data that the patient has a chest pain on the right side during cough. 

 
Figure 16. Service has received data that the patient has rusty sputum coming off. 

4. Discussion 

In this paper, we focused on the development of the core components of a CDSS platform, that 
is, its communication services and logical inference components. The most valuable characteristic of 
the proposed platform is the compatibility and interoperability of its services, facilitating the 

Figure 15. Service has received data that the patient has a chest pain on the right side during cough.

Int. J. Environ. Res. Public Health 2020, 17, x 14 of 18 

 

 

Figure 15. Service has received data that the patient has a chest pain on the right side during cough. 

 
Figure 16. Service has received data that the patient has rusty sputum coming off. 

4. Discussion 

In this paper, we focused on the development of the core components of a CDSS platform, that 
is, its communication services and logical inference components. The most valuable characteristic of 
the proposed platform is the compatibility and interoperability of its services, facilitating the 

Figure 16. Service has received data that the patient has rusty sputum coming off.

4. Discussion

In this paper, we focused on the development of the core components of a CDSS platform, that is,
its communication services and logical inference components. The most valuable characteristic of the
proposed platform is the compatibility and interoperability of its services, facilitating the development
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of a transparent and pluggable CDSS system. CDSS systems can be implemented as standalone CDSS
solutions or be integrated into a clinical workflow operated by an HIS.

Our research advances the state of the art in semantically interoperable clinical decision support
systems. The previously developed FHIR-based CDSSs [36–38] focused on one particular decision
support task. Our platform allows definition of multiple purpose decision support models, provided
that they (a) use FHIR resources as a data source and (b) are based on production rules or Bayesian
Logic. In comparison with the CDSSs developed based on other standards for medical data exchange,
such as openEHR [39], the proposed platform does not require modelling of specific data sets for each
task and can process standard FHIR resources instead.

4.1. Architecture

Each type of a decision support task in the platform has its own microservice to allow a continued
delivery of new features and decision support models. All interaction between services is processed by a
common API gateway, which supports versioning. This approach allows distinguishing responsibilities
between services and performing parallel development of the services by different dedicated teams.

4.2. Implications and Future Use

The results of the presented research have a valuable impact on design and implementation of
large-scale clinical decision support systems. It is very important to make clinical decision support
systems valid and easily acceptable by users. To accomplish this, we recommend to run a pilot
application of the decision support system by the experts to verify and validate the rules to increase
the system’s reliability and acceptance.

A FHIR-based CDSS platform addresses the ease of access to the clinical decision support
services by providing standard-based interfaces and workflows. This type of CDSS may be able
to improve the quality of care for doctors who use HISs without CDSS features. The HL7 FHIR
interoperability standards make this platform usable by all HISs that are capable of integrating with
the HL7 FHIR standard.

4.3. Operation

At the moment, the platform processes about 15,000 orders a day with foreseen 50,000 orders
a day. The system is able store up to 50 million orders, with the average of five tests in each one to
provide the capacity for the next 7 years of operation.

During the operation of the platform, we discovered the similar weak points of the developed
micro-service-based system as reported by other micro-service-based decision support systems [40–42].
Operation complexity has increased due to the introduction of service discovery, service backup, and
automatic restore. Maintenance also became complicated due to complex logging systems, where
each service produces its own logs. We observed a relatively moderate, but nevertheless observable
slowdown of transaction handling due to the distributed processing.

5. Conclusions

In this paper, we proposed a cloud-based interoperable multipurpose CDSS platform system
that makes use of semantic technologies based on the HL7 FHIR standard. We implemented two
types of knowledge modeling formalisms in the platform, namely production rules and Bayesian
Logic. A flexible knowledge editor supports clinical experts implementing decision support models
for any purpose based on the provided formalisms. The platform is capable of provision of decision
support services for any FHIR-enabled HIS with standard CDS Hooks interfaces. It makes access to
CDS services easier and promotes their use in routine clinical professes to improve efficiency and
efficacy of health care. The platform was implemented and is now productive, processing around
50,000 transactions a day with more than 400 decision support models.
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