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Summary
Background Infants born extremely preterm (<28 weeks’ gestation) are at high risk of neurodevelopmental impair-
ment (NDI) with 50% of survivors showing moderate or severe NDI when at 2 years of age. We sought to develop
novel models by which to predict neurodevelopmental outcomes, hypothesizing that combining baseline charac-
teristics at birth with medical care and environmental exposures would produce the most accurate model.

Methods Using a prospective database of 692 infants from the Preterm Epo Neuroprotection (PENUT) Trial, which
was carried out between December 2013 and September 2016, we developed three predictive algorithms of increasing
complexity using a Bayesian Additive Regression Trees (BART) machine learning approach to predict both NDI and
continuous Bayley Scales of Infant and Toddler Development 3rd ed subscales at 2 year follow-up using: 1) the 5
variables used in the National Institute of Child Health and Human Development (NICHD) Extremely Preterm
Birth Outcomes Tool, 2) 21 variables associated with outcomes in extremely preterm (EP) infants, and 3) a
hypothesis-free approach using 133 potential variables available for infants in the PENUT database.

Findings The NICHD 5-variable model predicted 3–4% of the variance in the Bayley subscale scores, and predicted
NDI with an area under the receiver operator curve (AUROC, 95% CI) of 0.62 (0.56–0.69). Accuracy increased to
12–20% of variance explained and an AUROC of 0.77 (0.72–0.83) when using the 21 pre-selected clinical
variables. Hypothesis-free variable selection using BART resulted in models that explained 20–31% of Bayley
subscale scores and AUROC of 0.87 (0.83–0.91) for severe NDI, with good calibration across the range of
outcome predictions. However, even with the most accurate models, the average prediction error for the Bayley
subscale predictions was around 14–15 points, leading to wide prediction intervals. Higher total transfusion
volume was the most important predictor of severe NDI and lower Bayley scores across all subscales.

InterpretationWhile the machine learning BART approach meaningfully improved predictive accuracy above a widely
used prediction tool (NICHD) as well as a model utilizing NDI-associated clinical characteristics, the average error
remained approximately 1 standard deviation on either side of the true value. Although dichotomous NDI
prediction using BART was more accurate than has been previously reported, and certain clinical variables such
as transfusion exposure were meaningfully predictive of outcomes, our results emphasize the fact that the field is
still not able to accurately predict the results of complex long-term assessments such as Bayley subscales in
infants born EP even when using rich datasets and advanced analytic methods. This highlights the ongoing need
for long-term follow-up of all EP infants.
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Research in context

Evidence before this study
Neurodevelopmental impairment (NDI) remains more
prevalent in extremely preterm (EP) survivors than their term-
born peers, with an increased risk of developmental delay,
cerebral palsy, deafness, blindness as well as behavioral and
psychological disorders, all of which impact independent
functioning. Predicting outcomes of EP infants has become
increasingly important for both clinicians and parents as
survival improves. Recent summaries of the literature have
identified dozens of prediction algorithms; however, these
generally ignore socioeconomic factors and do not account
for non-linear relationships or interactions between variables.
For example, the most widely used prediction tool, the
National Institute of Child Health and Human Development
(NICHD) Extremely Preterm Birth Outcomes Tool, uses only
five simple variables available at birth (sex, gestational age,
birthweight, singleton pregnancy, and antenatal steroid
exposure) and focuses largely on risk of mortality and a
dichotomous NDI outcome.

Added value of this study
We attempted to overcome limitations of previous outcome
prediction models using multiple methods. We predicted
outcomes as both dichotomous severe NDI as well as
continuous outcome in complex outcome assessments. Our
machine learning approach, BART, allows for non-linear
associations between predictors and outcome, and our

network analyses consider how all the variables are associated
with one-another before examining which variables are
significantly associated with the outcome. We used 10-fold
cross-validation for all predictions, and all models were
assessed with multiple methods, including assessment of
discrimination and calibration. Prediction variables also
included basic information on socioeconomic factors and the
home environment. As a result, predictions were
meaningfully improved relative to prior strategies although
continuous outcome prediction retained a relatively large
range of individual prediction uncertainty.

Implications of all the available evidence
By using advanced analytic methods and a range of clinical
and demographic predictor variables, most of which could be
easily abstracted from medical records, outcome prediction in
EP survivors becomes more accurate. These approaches could
be used to significantly improve upon current outcome
prediction tools. Though meaningful dichotomous NDI
prediction may become possible, predicting complex
continuous neurodevelopmental outcomes remains a
challenge. Several in-hospital factors that clinicians may be
able to use to improve in-hospital care and NDI risk prediction
were identified, but a dominant effect of the home and wider
environment on long-term outcome is also becoming
increasingly clear and is supported by our data.
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Introduction
Over 10% of babies born in the U.S. are preterm (<37
weeks’ gestation), and over 95% of those survive.1,2

Short-term outcomes of babies born extremely pre-
term (EP, <28 weeks’ gestation) have improved over the
past decades, with more infants surviving to hospital
discharge without experiencing intraventricular hemor-
rhage (IVH), necrotizing enterocolitis (NEC), broncho-
pulmonary dysplasia (BPD), severe retinopathy of
prematurity (ROP), or sepsis.3–5 However, this decrease
in short-term morbidities has not translated to im-
provements in neurodevelopmental outcomes for EP
infants. In a recent study of 10,877 infants born at 22–28
weeks of gestation, of the 2458 surviving infants born at
22–26 weeks of gestation who were followed-up at 2
years corrected age (CA), 49% had no or mild neuro-
developmental impairment (NDI), 29% had moderate,
and 21% had severe NDI.6 A recent study of temporal
trends also suggested that the number of EP infants
surviving with major disabilities has remained relatively
stable for the last 30 years.7

The presence of one or more morbidities (IVH, NEC,
BPD, ROP and sepsis) has been associated with NDI, as
has low gestational age (GA), male sex, and low birth
weight or being small for gestational age (SGA).8,9 Using
data collected for the Preterm Erythropoietin (Epo)
Neuroprotection Trial (PENUT), we recently published
additional clinical factors associated with lower Bayley
Scales of Infant and Toddler Development 3rd ed. (BSID-
III) scores at 22–30 months CA: more packed red blood
cell (pRBC) transfusions,10 lower iron supplementation,11

longer duration of sedation with opioids or benzodiaze-
pines,12 and longer duration of dexamethasone treat-
ment.13 How these complications of prematurity and
treatment decisions interact to affect 2-year outcomes is
not well understood. Dozens of outcome prediction al-
gorithms have also been identified in the literature;
however, these generally ignore socioeconomic factors,
do not account for non-linear relationships or in-
teractions between variables, and generally develop and
validate their predictive models in the same infants.14

The PENUT Trial enrolled 936 EP infants born at 24-
0/7 to 27-6/7 weeks’ gestation with follow up assess-
ments done at 2-years CA. Using the PENUT database,
we now develop and cross-validate predictive models try
to improve our ability to predict neurodevelopmental
outcomes by applying two novel statistical modelling
approaches - graphical network analysis and machine
www.thelancet.com Vol 56 February, 2023
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learning using Bayesian Additive Regression Trees
(BART). These approaches consider whether individual
variables interact with one another and identify which
factors have the most effect on cognitive, motor, and
language BSID-III scores. We were particularly inter-
ested in modifiable factors that might change physician/
caretaker behavior as well as demographic and other
factors that might identify infants at greater risk of NDI.
Methods
Data source and study population
All infants enrolled in the PENUT Trial (NCT
#01378273) who survived and were assessed for long-
term developmental outcome were eligible for this
study.15 The PENUT Trial was approved by an institu-
tional review board (IRB) at each site. Parental consent
was obtained prior to infant enrollment. We collected
data about maternal characteristics, pregnancy, and de-
livery, as well as infant characteristics including expo-
sure to medications and comorbidities during their
NICU stay. At 20–33 months CA, infants were evaluated
by certified examiners who assessed cognitive, motor,
and language development with the BSID-lll. All BSID-
III subscales were scaled based on the age which the
assessment was performed, as is standard for the BSID-
III. The population of interest consisted of infants who
received at least one BSID-lll subscale assessment. This
study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) and
Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis (TRIPOD)
reporting guidelines. Completed STROBE and TRIPOD
checklists are included in the supplementary material.
Statistical analysis
Demographic data
We used descriptive statistics to describe the de-
mographic and baseline maternal and infant character-
istics of the n = 692 included infants who had complete
data for at least one BSID-III subscale, separated by
those who did or did not have severe NDI (Table 1). Of
these infants, n = 625 (90.3%) were assessed at pre-
specified PENUT assessment timepoint of 22–26
months CA,15 with a further n = 67 also included who
were assessed at 20–33 months CA. In PENUT, severe
NDI was defined as the presence of severe cerebral palsy
or a BSID-III composite motor score or composite
cognitive score of less than 70.15

Graphical network analysis
To examine the relationships between variables known
to be associated with long-term outcome, as well as their
net effect on each of the of the BSID-III subscales, we
used graphical network analysis. Graphical network
analysis involves extracting significant relationships
www.thelancet.com Vol 56 February, 2023
from a precision matrix of inter-related variables, which
allows for the identification of important relationships
after taking into account how all the other variables are
related. When temporal relationships are known, this
method can also allow for the identification of likely
causal pathways that may include multiple nodes. To
determine significant relationships in the network we
used the method described by Williams and Rast.16 The
precision matrix was constructed using a maximum
likelihood estimation (MLE) method and significant re-
lationships were determined using Fisher Z-trans-
formed 95% confidence intervals, which results in stable
networks in scenarios where the number of predictors is
fewer than the number of observations.16

The MLE methodology was applied using 21 pre-
dictors previously identified as being potentially inde-
pendently associated with outcomes in EP infants.
These variables were based on the five variables used in
the NICHD EP Outcomes Prediction Tool – GA in
weeks, birthweight, sex, prenatal steroids, and single vs
multiple gestation pregnancy. However, we specified
SGA rather than birthweight and at least 2+ doses of
steroids, as these appear to be independently associated
with outcomes. We also included sick appearance at
birth, lowest hematocrit during admission, cumulative
pRBC transfusion volume, total oral iron dose from
birth to 36 weeks postmenstrual age (PMA), 5 min
Apgar score <5, spontaneous intestinal perforation
(SIP), pulmonary hemorrhage, culture proven symp-
tomatic sepsis, Bell’s stage 2b or 3 NEC,17 grade III or IV
IVH,18 severe ROP (stage ≥3), severe BPD (supple-
mental oxygen requirement at 36 weeks PMA), pro-
longed exposure (>7 days) to opioids and/or
benzodiazepines,12 prolonged exposure (>14 days) to
dexamethasone,13 and maternal education (as a three-
level variable of high school or less, some college, or
Bachelor’s degree or higher). Epo treatment in PENUT
was also included as it is known to interact with iron
status and transfusion requirements.10,11 Of the 21
included variables, three variables had at least one infant
missing data (n = 2–4 per variable). These were all bi-
nary variables (SGA, sick appearance at birth, 5 min
Apgar <5), which were imputed by assuming that the
factor was not present (e.g., “no” to yes/no questions).
Significant associations in the resulting precision
matrices were depicted as interconnected network dia-
grams using the ggraph, igraph, and qgraph libraries in
R (Version 4.1.2, Foundation for Statistical Computing,
Vienna, Austria).19

To complement the graphical network analysis, for
each BSID-III subscale we constructed a linear gener-
alized estimating equation (GEE) regression model us-
ing robust standard errors and an independence
covariance structure using the same 21 predictors as
used in the networks.20 The GEE model structure was
used to account for potential correlation of outcomes for
same-birth siblings. From each BSID-III subscale
3
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Normal-to-moderate NDI Severe NDI

Total included Infants, n (% of total) 614 78

Maternal and demographic characteristics

Gestational age at birth, mean (SD) 25.6 (1.1) 25.1 (1.1)

Birth weight (g), mean (SD) 824 (187) 746 (175)

Small for gestational age, n (%) 74 (12.1) 19 (24.4)

Maternal education, n (%)

High school or less 193 (31.4) 28 (35.9)

Some college 192 (31.3) 20 (25.6)

College degree or greater 166 (27.0) 20 (25.6)

Unknown or not reported 63 (10.3) 10 (12.8)

Clinical characteristics

Culture-positive Sepsis, n (%) 37 (6.0) 8 (10.3)

Severe NEC, n (%) 27 (4.4) 8 (10.3)

Grade III-IV IVH, n (%) 46 (7.5) 32 (41.0)

Severe BPD, n (%) 386 (62.9) 61 (78.2)

Received treatment with Epo, n (%) 45 (7.3) 14 (17.9)

Lowest Hematocrit over entire hospital course (%), mean (SD) 27.2 (5.1) 25.3 (3.8)

Lowest Ferritin over entire hospital course, mean (SD) 137 (139) 201 (191)

Transfusions and iron

Infants who received prbc transfusion during NICU hospitalization, n (%) 491 (80.0) 73 (93.6)

Total transfusion volume in transfused infants (mL), mean (SD) 73 (74) 126 (97)

Infants who received oral iron, n (%) 613 (99.8) 77 (98.7)

Total oral iron dose (mg) in exposed, mean (SD) 641 (426) 663 (420)

Prolonged medication exposure

>14 Days Dexamethasone, n (%) 44 (7.2) 13 (16.7)

>7 Days Opioids/Benzodiazepines, n (%) 297 (48.4) 65 (83.3)

Follow-up characteristics

Infants who completed BSID subscale, n (%)

Cognitive 614 (100) 78 (100)

Motor 603 (98.2) 77 (98.7)

Language 600 (97.7) 77 (98.7)

Mean (SD) BSID III Scores

Cognitive 94.1 (13.2) 66.8 (12.4)

Motor 94.0 (12.9) 59.2 (11.0)

Language 91.0 (15.6) 65.3 (15.2)

Table 1: Maternal and infant characteristics separated by severe neurodevelopmental impairment (NDI) at follow-up.
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model, the partial R2 for each predictor was extracted
using the rsq library in R, and the partial R2 and -log10
(p-value) for each predictor was plotted in Prism version
9 (GraphPad software). The partial R2 was used to infer
the percent variance in the BSID-III subscale explained
by each individual variable. For both the network
analysis and GEE models, only infants who had data
available for the BSID-III subscale of interest were
included.

Outcome prediction using BART
To determine whether we could use PENUT data to
reliably predict long-term neurodevelopmental out-
comes in EP infants, we tested three predictive algo-
rithms of increasing complexity: 1) using the five
variables from the NICHD Extremely Preterm Birth
Outcomes Tool, 2) using the 21 variables described in
the network analysis section above, and 3) a hypothesis-
free approach using all the potential variables available
in the PENUT database in addition to the 21 network
variables. Prediction models were constructed for
cognitive, motor, and language BSID-III components as
continuous variables as well as for severe NDI as a
dichotomous outcome as defined by the original
PENUT Trial.15

We performed hypothesis-free variable selection us-
ing the bartMachine package in R.21 The predictor pool
consisted of 133 variables including 57 baseline de-
mographic and clinical features present in the first 24 h
after birth, 55 clinical measurement variables that were
measured once per subject throughout the child’s hos-
pital stay, 11 types of medication data, and 19 types of
laboratory measurement data, along with GA (in days)
and treatment assignment (placebo/Epo). The full list of
www.thelancet.com Vol 56 February, 2023
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variables is provided in Supplemental Table S1,
including degree of missingness. Of these potential
predictors, 79 had complete observations and 54
predictors exhibited missing values (maximum 55%
missingness). Missingness was documented in two
ways. For certain categorical and binary predictors, the
documenting physician listed the information as “un-
known” or “not reported”. Other variables, including
continuous predictors, were completely missing in the
dataset. For the algorithm using the five NICHD vari-
ables, no data were missing. For the 21 pre-specified
network predictors and 133 potential predictors
screened by BART, categorical/binary variables docu-
mented as “unknown” or “not reported” were assigned
the most common category (e.g., English for maternal
language) or were assumed to not be present (e.g., “no”
for yes/no binary predictors). Completely missing cate-
gorical or continuous variables were imputed using the
mode or median value, respectively. We used this
approach as it would be most likely to translate to a
future prediction scenario where missing binary pre-
dictors would be assumed to not be present, categorical
predictors would default to the most common category,
and continuous predictors would default to the median
value.

Potential predictors for each outcome were selected
by BART using 10-fold cross-validation by permutation,
with n = 100 permutation samples, and n = 50 trees for
prediction in the held-out sample. The goal of variable
selection was to identify a parsimonious prediction
model, therefore n = 20 trees were used per permutation
to force predictors to compete for inclusion in the
model. We selected predictors whose variable inclusion
proportion exceeded its local null threshold, which was
defined as the 95th percentile of its permutation distri-
bution. After variable selection we fit BART models
using selected predictors for each outcome on the entire
dataset to generate pre-validated predictions using 10-
fold cross-validation. In practice, this means that we
split the data into 90% training and 10% validation
subsets a total of 10 times. This allows each infant to be
included in a single validation fold as well as 9 training
folds. As a result, we can achieve a prediction for each
infant without overfitting to the data while maintaining
predictive accuracy.22 We followed the recommenda-
tions by Chipman et al.,21 and the default number of 250
burn-in Gibbs samples and 1000 post-burn-in samples.
We also defaulted all predictors to be equally important
a priori.

We plotted true BSID-III scores against predicted
scores for all subjects for each of the three levels of al-
gorithm complexity to evaluate prediction error defined
as the mean squared error (MSE). Locally estimated
scatterplot smoothing (LOESS) curves were used in
calibration plots to show how well a given average pre-
diction compared to the actual observed values across
www.thelancet.com Vol 56 February, 2023
the entire range of BSID-III scores. We further plotted
the partial dependence (PD) of a subset of predictors for
each score to examine the effect of changing a predictor
after controlling for other predictors. The PD function
of a predictor23 gives the average value of the outcome,
with 95% credible interval, showing how the average
prediction changes across values of a predictor while
other predictors remain the same. For improved visu-
alization, PD objects from bartMachine were converted
into ggplot objects using the pdplotGG function (avail-
able from https://github.com/CHEST-Lab/BART_
Covid-19/blob/master/pdPlotGG.R). To allow for more
interpretable PD plots for important categorical pre-
dictors, models were re-run using these variables as
continuous predictors to generate PD plots only. For
dichotomous severe NDI prediction, receiver operator
characteristic (ROC) curves were plotted in addition to
calibration plots for each model to examine the pre-
dicted probability compared to observed average proba-
bility of severe NDI. For each NDI prediction model, a
predicted probability cut-off for NDI was selected that
maximized the sum of sensitivity and specificity using
the cutpointr library in R. This cut-off was used to
determine the sensitivity and specificity of the models
for predicting severe NDI.

Sensitivity analyses were performed to ensure that
our approach to missingness did not affect our ability to
predict outcomes. In these analyses, missing data were
assumed to be not missing at random. As such, miss-
ingness was included as an attribute in variable selec-
tion and prediction to potentially improve predictive
accuracy. Variables documented as “unknown” or “not
reported” for categorical or binary outcomes were
included as a separate category. Completely missing
data were left as “NA” in the dataset and BART was
instructed to use missingness as an attribute, as sug-
gested by Twala, Jones, and Hand.22 To ensure that the
wide follow-up window did not affect our results, a
second sensitivity analysis was performed including
only the 625 infants who were assessed in the pre-
specified PENUT follow-up window of 22–26 months
CA.15

Role of the funding source
The funder had no role in the study design, data
collection, data analysis, finding interpretation, or the
writing of the manuscript. TRW, BAC, and SL had
access to the data. All authors took the decision to
submit the study results for publication.
Results
Maternal and neonatal data at the time of enrollment,
clinical information derived from their hospital course,
and BSID-III subscale outcomes are displayed in
Table 1, separated by NDI status.
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Network predictors directly associated with BSID
component scores
Fig. 1A shows the graphical network of BSID-III
cognitive score using the 21 pre-defined variables ex-
pected to be associated with long-term outcome. Strong
relationships between many of the predictors are
evident, with fewer directly influencing the BSID-III
score. After considering how all the variables were
related, maternal education had a strong positive asso-
ciation with cognition, while male sex, severe IVH
(grade 3–4), and severe BPD were negatively associated.
In a fully adjusted GEE model, maternal education,
male sex, severe IVH, SGA, 5 min Apgar <5, and total
oral iron prior to 36 weeks PMA were significantly
associated with cognitive score. Fig. 1B shows the
percent variance of cognitive score explained by each of
the 21 predictors (partial R-squared values), with
maternal education, severe IVH, male sex, SGA, 5 min
Apgar <5, and oral iron up to 36 weeks PMA each
predicting 2.5%, 2.2%, 1.9%, 1.0%, 0.9%, and 0.9% of
the variance in cognitive score, respectively.

Fig. 2A shows the network analysis for the motor
component of the BSID-III. After considering how all
the variables were related in the network, severe IVH,
sick appearance at birth, severe BPD, SGA, total trans-
fusion volume, 5 min Apgar score <5, >14 days exposure
to dexamethasone, Epo treatment, and male sex were all
A B

M

Fig. 1: Network analysis of BSID-III Cognition Score. (A) Graphical ne
variables from the PENUT dataset expected to be associated with lon
shows the strength of association, and the color shows the directionality;
a positive association. After considering how all the variables were related,
while male sex, severe IVH (grade 3–4), and severe BPD were negatively as
severe IVH, SGA, 5 min Apgar <5, and total oral iron prior to 36 weeks PM
GEE model (B), maternal education, severe IVH, male sex, SGA, 5 min Apg
with cognitive score. The left y-axis (bars) depicts partial R2 values in orde
orange bars depict a positive association with cognition score and blue ba
sex, SGA, 5 min Apgar <5, and oral iron up to 36 weeks PMA each pr
cognitive score, respectively. The right y-axis (diamonds) depicts -log10 (p
dotted horizontal line indicate p-values <0.05.
negatively associated with motor score, with a positive
association between maternal education and motor
score. In a fully adjusted GEE model, severe IVH, sick
appearance at birth, severe BPD, SGA, total transfusion
volume, 5 min Apgar score <5, >14 days exposure to
dexamethasone, Epo treatment, and male sex treatment
were significantly associated with motor score, with
each predicting 4.7%, 1.7%, 1.6%, 1.3%, 1.2%, 1.2%,
0.9%, 0.8%, and 0.6% of the variance in motor score,
respectively (Fig. 2B).

Fig. 3A shows the network analysis for BSID-III
language score. There is a strong positive relationship
between maternal education and language scores, with
additional positive association between lowest hemato-
crit and language score. Variables significantly nega-
tively associated with the language score were male sex,
Epo treatment, SGA, total transfusion volume, 5 min
Apgar <5. In a fully adjusted GEE model, maternal ed-
ucation, male sex, Epo treatment, SGA, and 5 min
Apgar <5 were significantly associated with language,
with each predicting 4.5%, 1.8%, 1.5%, 0.9%, and 0.6%
of the variance in language score, respectively (Fig. 3B).

Important interactions/relationships between predictors
Graphical network analyses allow us to visualize
important relationships between patient clinical char-
acteristics and treatments (Figs. 1A–3A). For example,
ate
rnal 

Educa
tio

n 

Sev
ere

 IV
H 

Male
 Sex

SGA 

5 m
in Agpgar 

<5

Oral
 Iro

n by 3
6 W

ee
ks

To
tal

 Tr
an

sfu
sio

n Volume

Sev
ere

 ROP 

>1
4 D

ay
s D

ex
am

eth
as

one

Sev
ere

 NEC

Sick
 Appea

ran
ce

Epo Tr
ea

tm
en

t

Sev
ere

 BPD 
 SIP 

Sep
sis

Multip
le 

Ges
tat

ion

Complet
e P

ren
ata

l S
ter

oids

Pulm
onary

 Hem
orrh

ag
e

Lowes
t H

em
ato

cri
t

Ges
tat

ional 
Age

>7
 Day

s O
pioids/B

en
zo

s
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

1

2

3

4

5

6

7

Predictor

Pa
rti

al
 R

2

BSID-III Cognition Score

Partial R2

-log10(p value)

-log10(p-value)

twork analyses of BSID-III cognitive score using the 21 pre-defined
g-term outcome. Line (edge) thickness between variables (nodes)
green-blue lines depict a negative association, orange-red lines depict
maternal education had a strong positive association with cognition,
sociated. In a fully adjusted GEE model, maternal education, male sex,
A were significantly associated with cognitive score. In a fully adjusted
ar <5, and oral iron up to 36 weeks PMA were significantly associated
r of size of effect. For variables significantly associated with outcome,
rs depict a negative association. Maternal education, severe IVH, male
edicted 2.5%, 2.2%, 1.9%, 1.0%, 0.9%, and 0.9% of the variance in
-value), with the dotted line at p = 0.05. As such, diamonds above the

www.thelancet.com Vol 56 February, 2023

www.thelancet.com/digital-health


A B

Sev
ere

 IV
H

Sick
 Appea

ran
ce

Sev
ere

 BPD 
SGA 

To
tal

 Tr
an

sfu
sio

n Volume

5 m
in Agpgar 

<5

>1
4 D

ay
s D

ex
am

eth
as

one

Epo Tr
ea

tm
en

t

Male
 Sex

Mate
rnal 

Educa
tio

n 

Oral
 Iro

n by 3
6 W

ee
ks SIP 

>7
 Day

s O
pioids/B

en
zo

s

Sev
ere

 ROP 

Pulm
onary

 Hem
orrh

ag
e

Lowes
t H

em
ato

cri
t

Multip
le 

Ges
tat

ion

Ges
tat

ional 
Age

Complet
e P

ren
ata

l S
ter

oids

Sev
ere

 NEC
Sep

sis
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

1

2

3

4

5

6

7

Predictor

Pa
rti

al
 R

2

BSID-III Motor Score

Partial R2

-log10(p value)

-log10(p-value)

Fig. 2: Network analysis of BSID-III Motor Score. (A) Graphical network analyses of BSID-III motor score using the 21 pre-defined variables
from the PENUT dataset expected to be associated with long-term outcome. Line (edge) thickness between variables (nodes) shows the
strength of association, and the color shows the directionality; green-blue lines depict a negative association, orange-red lines depict a positive
association. After considering how all the variables were related in the network, severe IVH, sick appearance at birth, severe BPD, SGA, total
transfusion volume, 5 min Apgar score <5, >14 days exposure to dexamethasone, Epo treatment, and male sex were all negatively associated
with motor score. Greater maternal education was associated with higher motor score. In a fully adjusted GEE model (B), severe IVH, sick
appearance at birth, severe BPD, SGA, total transfusion volume, 5 min Apgar score <5, >14 days exposure to dexamethasone, Epo treatment,
and male sex treatment were significantly associated with motor score. The left y-axis (bars) depicts partial R2 values in order of size of effect.
For variables significantly associated with outcome, orange bars depict a positive association with motor score and blue bars depict a negative
association. Severe IVH, sick appearance at birth, severe BPD, SGA, total transfusion volume, 5 min Apgar score <5, >14 days exposure to
dexamethasone, Epo treatment, and male sex treatment each predicted 4.7%, 1.7%, 1.6%, 1.3%, 1.2%, 1.2%, 0.9%, 0.8%, and 0.6% of the
variance in motor score, respectively. The right y-axis (diamonds) depicts -log10 (p-value), with the dotted line at p = 0.05. As such, diamonds
above the dotted horizontal line indicate p-values <0.05.
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across all network analyses Epo treatment is signifi-
cantly negatively associated with transfusion volume
while being positively associated with lowest hematocrit.
In order of the magnitude of the association, total
transfusion volume is also positively associated with
severe NEC, SIP, prolonged exposure to opioids and
benzodiazepines, and severe BPD, while being nega-
tively associated with oral iron administration. Sick
appearance at birth is positively associated with culture-
positive sepsis during hospitalization and >7 days of
opioids/benzodiazepines. Higher GA is also associated
with lower likelihood of having a 5 min Apgar score <5,
lower likelihood of being exposed to >7 days of opioids/
benzodiazepines, a higher lowest hematocrit, lower total
transfusion volume, and lower incidence of ROP.
However, GA was not independently associated with
any of the Bayley subscales.
BSID-III prediction models
Fig. 4 shows true cognitive, motor, and language
component BSID-III scores (Y axis) plotted against the
predicted scores (X axis) using A) NICHD Extremely
Preterm Birth Outcomes Tool variables, B) the 21 pre-
selected variables, and C) predictors selected using
BART in a hypothesis-free manner. As prediction
www.thelancet.com Vol 56 February, 2023
improves, the dots align with the diagonal line, which
indicates when the predicted score is the same as the
actual score. We used mean squared error (MSE) to
assess how far on average a prediction is from the actual
value, to assess the accuracy of each model. The square
root of the MSE gives us an estimate of how many BSID
points on average the prediction is away from the true
score.

NICHD outcome prediction tool variables
Using the five NICHD outcome prediction tool vari-
ables, the MSE of the resulting prediction of BSID-III
subscale scores was 239 for cognitive, 273 for motor,
and 301 for language score (Fig. 4A). The square root of
the MSE associated with these predictions was 16–17
BSID-III points. This means that for any given predic-
tion, the true individual value will on average lie 16–17
points above or below the prediction. As a result of this
large margin of error, only 4.1%, 4.1%, and 3.3% of the
variance in the cognitive, motor, and language scores,
respectively, was explained by this prediction model.

Pre-selected clinical variables
Including the 21 pre-selected predictors to the GA
model resulted in a 25–45 point reduction in MSE.
Resulting MSEs were 213, 229, and 273 with 14.1%,
7
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Fig. 3: Network analysis of BSID-III Language Score. (A) Graphical network analyses of BSID-III language score using the 21 pre-defined
variables from the PENUT dataset expected to be associated with long-term outcome. Line (edge) thickness between variables (nodes)
shows the strength of association, and the color shows the directionality; green-blue lines depict a negative association, orange-red lines depict
a positive association. After considering how all the variables were related in the network, maternal education and lowest hematocrit were
positively correlated with language score Variables significantly negatively associated with the language score were male sex, Epo treatment,
SGA, total transfusion volume, 5 min Apgar <5. In a fully adjusted GEE model (B), maternal education, male sex, Epo treatment, SGA, and 5 min
Apgar <5 were significantly associated with language score. The left y-axis (bars) depicts partial R2 values in order of size of effect. For variables
significantly associated with outcome, orange bars depict a positive association with language score and blue bars depict a negative association.
Maternal education, male sex, Epo treatment, SGA, and 5 min Apgar <5 each predicted 4.5%, 1.8%, 1.5%, 0.9%, and 0.6% of the variance in
language score, respectively. The right y-axis (diamonds) depicts -log10 (p-value), with the dotted line at p = 0.05. As such, diamonds above the
dotted horizontal line indicate p-values <0.05.
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19.6%, and 12.1% of variance explained for cognitive,
motor, and language scores, respectively (Fig. 4B). The
improvement in MSE using these variables compared to
the NICHD variable prediction corresponds to reducing
the average error in the prediction by 1–2 BSID-III
points; the square root of the MSE associated with
these predictions was 15–16 points, or approximately 1
standard deviation (SD) in each of the BSID-III subscale
scores.

BART outcome predictions – cross-validated BART variables
The final variables selected for inclusion in each of the
prediction models are shown in Supplemental Table S1.
Feeding status at discharge, maternal race, diagnosed
hydrocephalus, treatment with vasopressors, and respi-
ratory support after birth were included as variables in
all BSID-III subscale models. Compared to using the 21
pre-selected variables, BART-selected variables pro-
duced predictions with a further 15–45 point reduction
in MSE: 199, 195, and 226 with 19.8%, 31.0%, and
26.8% of variance explained for cognitive, motor, and
language score, respectively (Fig. 4C). Though the
percent of variance explained improved by an absolute
5–15%, the resulting square root of the MSE remained
approximately 1 SD (14–15 BSID-III subscale points).
LOESS curves of the average predicted versus actual
score suggested that the BART variable models using all
potential predictor variables showed a particular
improvement in accuracy at lower scores (<75 points),
particularly for language outcomes.
Importance of individual prediction variables
21 preselected variables
To determine which variables appeared to be most
important for predicting each outcome, variable
importance graphs were constructed which show how
frequently each variable was included in a decision tree
(Fig. S1). PD plots for the top six of the 21 preselected
variables used to predict cognitive, motor, and language
scores are shown in Supplemental Figs. S2–S4.

For cognitive score the two predictors most
frequently included in trees were total transfusion vol-
ume and maternal education (Fig. S1A). Compared to
infants who received <100 mL total transfusion volume,
a total transfusion volume of 200 mL was associated
with an estimated partial effect of −7 cognitive points
(Fig. 5A). Compared to those with an education at high
school level or less, having a bachelor’s degree or greater
was associated with an estimated partial effect of
approximately +5 cognitive points (Fig. 5B). Having a
severe IVH was also associated with a partial effect of
around −6 cognition points (Fig. 5C).

For motor score, the two predictors most frequently
included in trees were total transfusion volume and
severe IVH (Fig. S1B). Compared to infants who
www.thelancet.com Vol 56 February, 2023
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Fig. 4: Calibration plots of pre-validated predictions. Predicted (x-axis) versus actual (y-axis) BSID-III subscale scores based on revalidated
predictions generated from 10-fold cross-validation using A) NICHD Extremely Preterm Birth Outcomes Tool variables, B) the 21 pre-selected
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received <100 mL total transfusion volume, a total
transfusion volume of 200 mL was associated with an
estimated partial effect of −10 motor points (Fig. 5D).
Compared to those with an education at high school
level or less, having a bachelor’s degree or greater was
associated with an estimated partial effect of approxi-
mately +3 motor points (Fig. 5E). Having a severe IVH
was associated with a partial effect of around −10 motor
www.thelancet.com Vol 56 February, 2023
points (Fig. 5F) and being exposed to >14 days of
dexamethasone was associated with a partial effect of
around −4 motor points (Fig. 5G).

For language score, the two predictors most
frequently included in trees were maternal education
and transfusion volume (Fig. S1C). Compared to infants
who received <100 mL total transfusion volume, a total
transfusion volume of 200 mL was associated with an
9
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estimated partial effect of −9 language points (Fig. 5G).
Compared to those with an education at high school
level or less, having a bachelor’s degree or greater was
associated with an estimated partial effect of approxi-
mately +8 language points (Fig. 5H). Compared to
infants who had a lowest hematocrit <30%, having a
lowest hematocrit >32% was associated with a partial
effect of around +5 language points (Fig. 5I).

BART-selected variables
Variable importance for BSID-III predictions using
BART-selected variables is shown in Fig. S5. PD plots
www.thelancet.com Vol 56 February, 2023
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for the top six most included BART variables used to
predict cognitive, motor, and language scores are shown
in Supplemental Figs. S6–S8.

For cognitive score, total transfusion volume, 1 min
Apgar score, and maternal education were the three
variables included in the greatest proportion of trees
(Fig. S2A). However, 1 min Apgar score showed no clear
pattern of partial effect (Fig. S6B). Compared to infants
who received <100 mL total transfusion volume, a total
transfusion volume of 200 mL was associated with an
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estimated partial effect of −6 cognitive points (Fig. 6A).
Increasing levels of maternal education showed a linear
partial effect with a total effect of around +5 cognitive
points in the highest (graduate degree) versus lowest
levels (Fig. 6B). Male sex was associated with a partial
effect of around −3 cognitive points (Fig. 6C).

For motor score, total transfusion volume and
highest direct bilirubin were the two variables included
in the greatest proportion of trees (Fig. S2B). Compared
to infants who received <100 mL total transfusion
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volume, a total transfusion volume of 200 mL was
associated with an estimated partial effect of −9 motor
points (Fig. 6D). Compared to infants with a highest
direct bilirubin <0.5 mg/dL, a highest direct bilirubin
>0.5 mg/dL was associated with a partial effect of
around −4 motor points (Fig. 6E). Hydrocephalus was
associated with a partial effect of around −8 motor
points (Fig. 6F).

For language score, total transfusion volume, highest
direct bilirubin, and male sex were the three variables
that were included in the greatest proportion of trees
(Fig. S2C). Compared to infants who received <100 mL
total transfusion volume, a total transfusion volume of
200 mL was associated with an estimated partial effect
of −8 language points (Fig. 6G). Compared to infants
with a highest direct bilirubin <0.5 mg/dL, a highest
direct bilirubin >0.5 mg/dL was associated with a partial
effect of around −4 language points (Fig. S8B). Maternal
tobacco use during pregnancy was associated with a
partial effect of around −10 language points (Fig. 6H).
Maternal race was also a strong predictor of language
score – compared to infants whose mother did not
identify as white, infants with a mother who identified
as white were predicted to experience a partial effect of
around +7 language points (Fig. 6I).
NDI predictions
Variable importance for predicting severe NDI using
either the 21 network variables or BART-selected vari-
ables is shown in Fig. S9. Using the five NICHD
outcome prediction variables resulted in an AUROC of
0.62 (95% CI 0.56–0.69). When selecting an NDI pre-
diction probability cut-off that maximized the sum of
sensitivity and specificity, the NICHD variable model
displayed 71.8% sensitivity and 56.8% specificity for
predicting severe NDI. The AUROC for predicting se-
vere NDI improved to 0.77 (0.72–0.83) when using the
21 pre-selected network variables (Fig. 7), with an asso-
ciated sensitivity of 70.5% and specificity of 75.6%. Of
these 21 variables, severe IVH and total transfusion
volume were the two variables that were included in the
greatest proportion of trees, followed by SGA, male sex,
>7 days exposure to opioids/benzodiazepines, and se-
vere ROP (Fig. S9A, Fig. S10). As suggested by the
improved accuracy of predicting lower BSID-III scores
using BART-selected variables (Fig. 4), the AUROC for
severe NDI prediction with BART variables was 0.87
(0.83–0.91; Fig. 7). The BART-selected variable model
had a sensitivity of 84.6% and specificity of 72.3% for
predicting severe NDI. Of all the BART variables, total
transfusion volume was included in the greatest number
of trees, with the next most important variables being
male sex, hydrocephalus, and severe IVH (Fig. S9B,
Fig. S11). Prediction using BART-selected variables also
appeared to be well calibrated across the full range of
predicted probability of severe NDI (Fig. S12).
Sensitivity analyses
In the first sensitivity analyses where missingness was
coded as a separate category or used as an attribute
during variable selection and prediction, the variables
selected for the BART prediction models remained
relatively similar (Table S3), with total transfusion vol-
ume remaining the variable included in the greatest
number of trees for predicting all Bayley subscales as
well as severe NDI (Fig. S13). Predictive performance
did not meaningfully change compared to the primary
analyses, with MSEs of 195, 200, and 227 with 21.4%,
29.4%, and 26.6% of variance explained for cognitive,
motor, and language score, respectively (Fig. S14).
The AUROC and 95% confidence interval for NDI
prediction also remained entirely unchanged (0.87;
0.83–0.91, Fig. S17).

In the second sensitivity analysis that only included
infants assessed in the 22–26-month window, the same
predictors were largely selected by BART (Table S4). As
with the other analyses, feeding status at discharge,
electrographic seizures, total transfusion volume, infant
sex, 1 min Apgar, hydrocephalus, white matter injury,
and respiratory support after birth were selected as
predictors for 3–4 of the outcomes. From the BART-
selected variables, predictive performance was again
similar. Final MSEs compared to the primary analysis
were slightly higher - 208, 195, and 240 – with similar
20.6%, 33%, and 25% of variance explained for cogni-
tive, motor, and language scores, respectively (Fig. S14).
The AUROC and 95% confidence interval for NDI
prediction also remained essentially unchanged (0.88;
0.84–0.91, Fig. S17).
Discussion
We present three models by which to predict long-term
outcomes in EP infants, each with increasing complexity
and increasing accuracy. Our baseline prediction model
was based on the five variables used in the NICHD tool,
which represents the best currently available outcome
prediction tool for EP infants. The next set of prediction
variables was selected based on strong biological
premise as well as published literature suggesting
potentially independent associations with long-term
outcomes. The final set of prediction variables was
selected using machine learning in a hypothesis-free
manner from all the potential variables collected in
PENUT. While this approach meaningfully improved
predictive accuracy, the selected variables cannot
necessarily be used to infer anything about biology –

they are merely the variables for which the greatest
signal is seen in the underlying data. It must be noted,
however, that even though variables selected using
BART resulted in notable improvements in MSE and
variance explained by the model, the average individual
prediction error remained large at around 1 SD either
side of the true value. While dichotomous NDI
www.thelancet.com Vol 56 February, 2023
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prediction using BART variables was fairly accurate, and
certain clinical variables such as transfusion exposure
were meaningfully predictive of outcomes, these results
underscore the fact that the field is still not able to
predict complex long-term outcomes of infants born EP
with high accuracy even when using rich datasets and
advanced analytic methods.

When selecting a subset of variables from many
potential predictors, several methods are available.
While linear methods such as stepwise regression,
Lasso, or elastic net regression are commonly used, they
assume an underlying linear relationship and therefore
rarely capture nonlinearities and interactions between
predictors and outcome. In contrast, tree-based methods
are better equipped to approximate complicated and
relationships and interactions.24 Therefore, we used
BART for hypothesis-free predictor selection as well as
for building the final prediction models which,21 as ex-
pected, revealed a number of important non-linear re-
lationships. This was particularly evident for transfusion
volume, which was predictive of all BSID-III subscales
as well as severe NDI, but the association was distinctly
non-linear - decreases in scores were only seen as total
volume increased above approximately 100 mL. This
non-linearity may explain the relatively lower, though
www.thelancet.com Vol 56 February, 2023
still significant, importance of transfusion volume in the
network analyses, where a linear effect was assumed. A
similar non-linear relationship between direct bilirubin
levels and outcomes was seen, where a sharp decline in
predicted motor and language score was seen around a
level of 0.5 mg/dL, but no greater decrease above that.

While non-linear relationships appear to be impor-
tant for maximizing predictive accuracy, we also
employed linear graphical network analyses to allow us
to more easily visualize important relationships between
the various predictor variables. As expected, strong as-
sociations between Epo treatment, lowest hematocrit,
and transfusion volume were seen, demonstrating that
Epo increases erythropoiesis while decreasing trans-
fusion volume. There were also significant associations
between total transfusion volume and lowest hematocrit
as well as severe NEC, SIP, BPD, and >7 days of opioids
or benzodiazepines. The latter suggests that total
transfusion may partly be a proxy for severity of illness,
but we and others have shown an independent effect of
transfusion volume and donor exposure on long-term
outcomes and organ injury.10,25,26 These negative associ-
ations may be related both to the detrimental effects of
anemia as well as oxidative and inflammatory response
to transfusions.27–29 As expected, higher GA was
13
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associated with higher Apgar scores after birth, higher
lowest hematocrit, lower total transfusion volume, less
incidence of prolonged narcotic exposure, and lower
incidence of ROP. However, GA was not independently
associated with any of the Bayley scales, suggesting that
the negative associations between GA and long-term
outcomes in surviving EP infants may be largely medi-
ated by postnatal events.

Different predictors were selected by BART to pre-
dict each component of the BSID-III; however, some
factors were important for all three outcomes, particu-
larly hydrocephalus and feeding status at discharge.
Additional important predictors identified by BART
included diuretic use (cognitive and motor scores),
elevated direct bilirubin (motor and language scores),
male sex (cognitive and language scores and NDI),
elective Caesarean delivery (motor score and binary NDI
outcome), and maternal tobacco use (all three Bayles
subscale scores). Though they do not directly imply
biological associations, these are variables that can
either provide ground for future investigation or are
already understood to have important associations with
outcome. For example, infants with cholestasis may
have experienced a longer duration of parenteral nutri-
tion or may have been exposed to drugs or clinical
illness that affect the liver.

Amongst both the 21 network variables and the
BART-selected variables, maternal socioeconomic and
environmental factors such as race, education, and to-
bacco use were frequently identified as important pre-
dictors of neurodevelopmental outcomes. Amongst the
network variables, maternal education was strongly
associated with higher cognitive and language scores,
but less so for motor scores. In the BART-selected
variables, maternal education was also selected as an
important predictor of cognitive scores, with a linear
benefit seen across the range of reported levels of edu-
cation. In contrast, maternal tobacco use was associated
with 10-point lower language scores. Having a mother
who identified as white was also associated with a partial
effect of around 7 language points. It is impossible to
determine the mechanism of how these variables in-
fluence outcomes based on the prediction models we
have used, but the significant impact of systemic factors
is clear. For example, there are socioeconomic factors
that differentially allow and encourage individuals of
different backgrounds to pursue higher education; these
include finances, the importance placed on education by
family, and systemic inequity expressed as differential
levels of oppression and access to educational opportu-
nities throughout their life. However, we can speculate
that a mother with higher education might talk to her
child using a more complex vocabulary, thus improving
the language abilities of their child. Similarly, tobacco
exposure alone might influence outcomes, or more
likely, the socioeconomic factors that endorse smoking
might be most important. We also cannot rule out
potentially discriminatory aspects of standardized
testing, which have a history of being both racist and
sexist.30–32 Together, these factors reinforce the idea that
the home and systemic environment remain the most
significant determinants of long-term outcome in EP
infants.33

For clinicians working to improve long-term out-
comes of infants by improving care in the NICU,
modifiable factors that were identified by both models
included Epo treatment, oral iron supplementation up
to 36 weeks PMA (but not later), lowest hematocrit,
pRBC transfusions, sedation practices using opioids and
benzodiazepines, and use of postnatal steroids. We
speculate that the negative effect of Epo on language
scores may be due to lower brain iron availability as iron
was used to increase erythropoiesis, though this
requires additional investigation. Whether or not
erythropoiesis-stimulating agents are used, maintaining
iron sufficiency and decreasing cumulative transfusion
volume may improve outcomes. This study further
suggests that limiting sedation and steroid use might be
prudent.

Over the past few years, outcome prediction for EP
infants has become an increasing focus for the field,
both in terms of predicting death as well as long-term
neurodevelopment in survivors. Crilly et al. recently
summarized the field and identified dozens of predic-
tion models and algorithms in the literature based on a
varying array of variables and analytic tools.14 However,
the majority of models focused on dichotomous out-
comes and assumed simple linear associations between
variables and probability of outcome with no interaction
between predictors. Most models were also not validated
in other datasets and only used a single assessment of
accuracy such as AUROC.

We have attempted to overcome some of these limi-
tations. For instance, we used 10-fold cross-validation to
avoid overfitting when generating predictions, and all
models were assessed with multiple methods, including
calibration - the degree to which the predicted outcome
agrees with the average observed outcome across the
entire range of predictions. BART also allows for non-
linear associations between predictors and outcome,
and our network analyses consider how all the variables
are associated with one-another before examining which
variables are significantly associated with the outcome.
By comparison, other machine-learning-based methods
for prediction such as lasso or ridge regression require a
priori determination of potential interactions and inflec-
tion points (knots) in the associations between contin-
uous variables and outcomes through basis expansion,
whereas our tree-based approach does not require addi-
tional engineering of the predictors to examine complex
underlying relationships in the data. Though continuous
outcome prediction remains a significant challenge,
these advanced methods appear to be a step in the right
direction, particularly for predicting NDI.
www.thelancet.com Vol 56 February, 2023
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Our results appear to compare favorably to previous
literature in this area. For instance, Broitman et al.
predicted severe NDI in 2103 extremely low birth weight
(<1000 g) infants using cranial ultrasound and clinical
variables up to discharge. After training a model with
70% of the data, an AUROC of 0.68 was seen for NDI
prediction in the remaining 30%.34 Ambalavanan et al.
also explored several prediction models in nearly 7000
infants from the Neonatal Research Network, with an
AUROC for predicting NDI in survivors of 0.72 when
using data available up to 36 weeks’ PMA.35 When
summarizing the field, Crilly et al. note AUCs of up to
0.84 for predicting NDI; however, these results are from
small cohorts and were likely to suffer from overfitting.14

Therefore, we believe our NDI prediction accuracy with
the BART-variable model (AUROC 0.87; 84.6% sensi-
tivity, 72.3% specificity) is at least as good as what has
been reported previously, but with a higher degree of
external validity as predictions were cross-validated and
we show good calibration across the range of predicted
probabilities of NDI. By comparison to dichotomous
outcome prediction, predicting continuous outcomes
from complex multi-modal assessments such as the
BSID-III subscales has not routinely been attempted.
Though the final predictions from the BART-variable
models retained significant error, predictions markedly
improved when increasing the complexity of the data
and allowing for complex interactions between vari-
ables. It is worth noting that different predictors were
selected by BART for predicting the different outcomes.
Only feeding status at discharge, diagnosed hydro-
cephalus, and total transfusion volume were selected for
all BSID-III subscale models in addition to the severe
NDI prediction. Improvements in prediction with those
models will have been at least partly due to flexibility in
variable selection, suggesting that the use of a fixed
number or selection of predictor variables may
constrain ability to predict a variety of complex out-
comes. However, only 14–17 variables were required to
make these predictions, with little evidence that more
variables would be better. When even greater informa-
tion was available to BART by using missingness as an
attribute, a similar number of selected variables and
predictive accuracy was seen, suggesting that we were
likely to be nearing the limit of the predictive potential
of the available dataset. This is unsurprising, as the
majority of neurodevelopment relevant to the BSID-III
subscales happens in the period after term-equivalent
age, which is when EP infants have usually been dis-
charged. Several studies have shown that the home
environment and socioeconomic and parental factors
have a dominant effect on the long-term outcomes of
preterm infants,36–39 and the PENUT cohort would be
expected to be the same. Therefore, more detailed and
longer-term assessments of the infant’s post-discharge
environment will be critical to improving prediction of
neurodevelopmental outcomes.
www.thelancet.com Vol 56 February, 2023
This study has several limitations. As noted above,
the variables and their associations with outcomes do
not necessarily suggest causation or imply certain bio-
logical effects. For instance, a predictive signal from
maternal SSRI use may be related to the impact of
SSRIs themselves, maternal mental health conditions
that are associated with SSRI use, societal factors that
contribute to maternal mental health outcomes, some
combination of these, or something else entirely. Our
predictions are therefore limited by the nature of the
data, which included maternal medications but not a full
maternal mental health history. This study was also
retrospective in nature, and some data for the selected
variables were missing, creating the potential for selec-
tion bias. However, this was not an issue for the NICHD
and selected BART variables (0% missingness for all),
and minimally affected the 21 network variables. For
missingness in the BART-selected variables, we chose to
assume that binary predictors were not present,
assigned the most common category to categorical pre-
dictors, and used the median value for missing contin-
uous variables. This approach is most likely to translate
to future predictions, for instance using an online
calculator. Importantly, however, using missingness as
an attribute did not improve predictions, which further
supports our relatively conservative approach to miss-
ingness. We also recognize that, while neuro-
developmental assessment at 2 years CA is routine for
long-term outcome determination in large neonatal
clinical trials, NDI at 2 years does not necessarily predict
NDI at a later age. For instance, a recent publication
from the ELGAN (Extremely Low Gestational Age
Newborn) study group found that nearly two-thirds of
those classified as having moderate to severe NDI at 2
years had none to mild NDI at 10 years.40 Furthermore,
assessments of important outcomes such as autism,
executive function, psychiatric symptoms (e.g., attention
deficit, depression, and anxiety), and social and adaptive
function are not feasible until the child is older.40–44 This
underscores the importance of long-term follow up
studies. We must also acknowledge that children lost to
follow-up tend to be from lower SES groups.45 Another
issue may be external validity with respect to the
included population. Exclusion criteria for the PENUT
trial included known life-threatening anomalies, chro-
mosomal anomalies, disseminated intravascular coa-
gulopathy, twin-to-twin transfusion, a hematocrit level
above 65%, hydrops fetalis, or known congenital infec-
tion.15 Therefore, these results may not be applicable to
EP survivors who fit those criteria. More broadly, though
the PENUT study was coordinated through academic
centers, the study was performed in both academic and
non-academic neonatal intensive care units in different
regions of the United States, and our demographic data
shows that the included infants were from fairly diverse
backgrounds.15,46 Our results were also similar when
restricting the follow-up window from 20 to 33 months
15
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CA to a more narrow 22–26 months (approximately 2-
year) CA. Therefore, we believe that the results are
likely to transfer to the majority of the EP population in
the United States up to around three years CA, though
this must be confirmed in future studies. Finally, we
only focused on long-term outcome in survivors, with
survival to assessment being a criterion for inclusion in
the analysis.

In summary, we show that by using advanced analytic
methods and a range of clinical and demographic pre-
dictor variables, most of which could be easily abstracted
from medical records, we were able to meaningfully
improve outcome prediction in EP survivors. Though the
prediction models are not suitable for examining causa-
tion, we did identify a number of predictors that showed
large partial effects on each BSID-III subscale, providing
areas for future investigation as well as potential for
improving clinical care if confirmed in other settings.
For example, total transfusion volume was notably
associated with all outcomes regardless of the variable
selection strategy. However, though dichotomous NDI
prediction using BART variables was fairly accurate,
predicting complex continuous neurodevelopmental
outcomes remains a challenge. Despite this, our ap-
proaches have significantly improved upon current
outcome prediction tools, and we believe the principles
used should form the basis of future work. This includes
i) models that allow for non-linear and complex re-
lationships between variables, ii) the potential for
different variables to predict different outcomes, and iii)
increasing external validity with methods such as cross-
validation and employing multiple assessments of ac-
curacy and calibration.14 In order to further improve
predictive accuracy in the future, these approaches
should be applied to data that includes information about
chronic health conditions and more in-depth details on
the socio-economic and home environment. Some de-
gree of usability must also be taken into account - while a
complex model that requires dozens of predictors may
have low usability or generalizability, a simple tool with
few variables that has poor predictive ability also has
limited utility. It is encouraging that most of the final
variables selected by BART would be expected to be
available for most EP infants and could easily be
abstracted from the electronic medical record as part of
an automated prediction tool. We believe that our results
are an important step in the right direction, but they also
reiterate the importance of the post-discharge environ-
ment on long-term outcome, highlighting the ongoing
need for long-term follow-up of all EP infants.
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