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Abstract: To date, for the diagnosis of dentofacial dysmorphosis, we have relied almost entirely on
reference points, planes, and angles. This is time consuming, and it is also greatly influenced by the
skill level of the practitioner. To solve this problem, we wanted to know if deep neural networks could
predict postoperative results of orthognathic surgery without relying on reference points, planes,
and angles. We use three-dimensional point cloud data of the skull of 269 patients. The proposed
method has two main stages for prediction. In step 1, the skull is divided into six parts through the
segmentation network. In step 2, three-dimensional transformation parameters are predicted through
the alignment network. The ground truth values of transformation parameters are calculated through
the iterative closest points (ICP), which align the preoperative part of skull to the corresponding
postoperative part of skull. We compare pointnet, pointnet++ and pointconv for the feature extractor
of the alignment network. Moreover, we design a new loss function, which considers the distance
error of transformed points for a better accuracy. The accuracy, mean intersection over union (mIoU),
and dice coefficient (DC) of the first segmentation network, which divides the upper and lower
part of skull, are 0.9998, 0.9994, and 0.9998, respectively. For the second segmentation network,
which divides the lower part of skull into 5 parts, they were 0.9949, 0.9900, 0.9949, respectively.
The mean absolute error of transverse, anterior–posterior, and vertical distance of part 2 (maxilla)
are 0.765 mm, 1.455 mm, and 1.392 mm, respectively. For part 3 (mandible), they were 1.069 mm,
1.831 mm, and 1.375 mm, respectively, and for part 4 (chin), they were 1.913 mm, 2.340 mm, and
1.257 mm, respectively. From this study, postoperative results can now be easily predicted by simply
entering the point cloud data of computed tomography.

Keywords: deep learning; dentofacial deformities; orthognathic surgery; CT X-ray

1. Introduction

Dentofacial dysmorphosis is characterized by retrognathism, prognathism, and asym-
metry [1–3]. Various orthognathic surgery techniques have been applied for treatment [4,5].
An accurate and stereoscopic diagnosis of the patient’s current condition is required prior
to operation [6]. Until now, orthognathic surgery has mainly depended on linear and
angular measurements for the diagnosis and planning of therapeutic procedures [6–8].
These measurements rely on the identification of several landmarks on cephalometric
images, which are then applied to define the measurements. This is not only complicated
and cumbersome, but it also takes a long time because it is greatly affected by proficiency.
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Deep learning has developed rapidly in recent years, making it possible to automati-
cally extract information in the medical field from diagnoses using medical imaging and
pattern analysis [9–15]. Deep neural networks (DNNs), a type of deep learning, have been
widely applied to medical images because of their high performance in detection, classifica-
tion, and segmentation [16–20]. It can reduce the labor of experts while detecting image
information that may be missed by humans. Deep learning research related to the diagnosis
and planning of dentofacial dysmorphosis is being actively conducted [21–23]. However,
most have focused only on finding reference points, planes, and angles using conventional
methods [21–23]. This may have been due to their failure to grasp the true nature of DNNs.
Hence, we propose a method that better fits DNN characteristics. In this study, the authors
introduced the prediction of postoperative results for orthognathic surgery that are not
bound by points, planes, and angles.

The present method is used to predict postoperative orthognathic surgery using a
DNN trained with actual three-dimensional (3D) point cloud data. In contrast to a previous
study using artificially generated 3D point cloud data [24], the present method considers
actual pre- and postoperative surgery data for training. In doing so, the present method
resolved three main issues.

The first issue is related to the generation of training data from actual pre- and post-
operative surgery data. In this study, we attempted to learn from actual data, not from
simulation data that arbitrarily caused skull deformations in previous studies [24]. How-
ever, there is a problem when trying to generate training data from actual data: the point
cloud of pre- and postoperative computed tomography (CT) data does not match one-to-
one. Thus, the displacement of each point cannot be defined. Therefore, training data
cannot be generated. To solve this problem, we segment the point cloud by consider-
ing osteotomized segments and matching the segmented parts to each part after surgery.
The iterative closest point (ICP) method was used to match the preoperative point cloud
to the postoperative point cloud. After matching, six transformation parameters were
calculated and used as labels for the training data. Through the proposed training data
generation method, it is possible to use actual pre- and postoperative point cloud data
during training.

The second issue relates to the architecture of the DNN. The present method divides
the skull into six parts and predicts the 3D deformation parameters for each. To do this,
it is necessary to define a network to learn the transformation parameters of each part.
Orthognathic surgery was performed considering the overall shape of the skull. Therefore,
when only the divided part is used as input, the features of the transformation to be learned
cannot appear; therefore, the reference point cloud should be input. In this study, features
were extracted by inputting the entire point cloud of the preoperative skull and the divided
part into the feature extractor. Each extracted feature is then merged through concatenation,
and, finally, the deformation parameters of each part are predicted through a fully connected
layer. Additionally, the accuracies according to the feature extractors for irregular point
cloud data proposed in the previous studies, such as pointnet [25], pointnet++ [26], and
pointconv [27], were compared to construct a network with higher accuracy.

The third issue is related to the loss function for higher accuracy. When using the
network described in the second issue, two types of point cloud data are input, and
six transformation parameters are predicted. The purpose of the network is to accurately
predict the six transformation parameters. Therefore, the mean absolute error (MAE)
of the six transformation parameters between prediction and ground truth should be
minimized. However, when learning with only the MAE of the transformation parameters,
the information given to the DNN is limited, and the learning efficiency tends to decrease.
To solve this issue, we defined a 3D functional transformation layer that uses divided point
cloud data and predicted transformation parameters. By using the transformation layer, the
predicted transformed point cloud coordinates are output, and the MAE can be calculated
by comparing them to the ground truth coordinates. Finally, the loss function is defined
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by using the sum of the MAE of the transformation parameters and coordinates, and it is
confirmed that the accuracy can be improved.

Therefore, the contributions of this study can be described as follows:

1. A new postoperative prediction method using the point coordinate information of
real 3D CT data for orthognathic surgery is proposed.

2. A new training data generation method for training postoperative predictive networks
is proposed.

3. A new architecture and loss function for DNNs of higher accuracy are provided.
4. In the case of the previous method, it was not possible to train using real pre- and

postoperative data, but the method proposed in this study enables training using real
pre- and postoperative data.

The remainder of this paper is organized as follows. First, the method for generating
training data, alignment network, and loss function is described in detail. Thereafter, the
results obtained using the proposed method are described. Accuracies based on the feature
extractor and loss function are discussed. Finally, we summarize and discuss our findings.

2. Materials and Methods
2.1. Raw Data Acquisition

In this study, 269 participants at Wonkwang University, Daejeon Dental Hospital, were
included. All were native Koreans. The patients’ chief complaints were retrognathism,
prognathism, and asymmetry. Accordingly, CT images were taken for analysis before and
one week after surgery. The inclusion criteria were as follows: age between 18 and 29 years,
complete dentition apart from third molars, and the patient’s agreement with 3D CT of
the head. Apart from cases with congenital deformities, such as cleft lip, cleft palate, and
hemifacial microsomia, only patients with developmental dysmorphosis were included.
All patients underwent preoperative CT after completion of preoperative orthodontic
treatment. There was no case of teeth extraction for orthodontic treatment. A single surgeon
diagnosed all cases, and two operated on all cases in the same way. LeFort I osteotomy was
performed on the maxilla, vertical ramus osteotomy, or sagittal split ramus osteotomy of
the mandible, and genioplasty on the chin. This study was approved by the Institutional
Review Board of Wonkwang University Daejeon Dental Hospital (W2109/002-001).

A SOMATOM Definition Dual Source CT (DSCT; Siemens, Forchhelm, Germany)
was used to conduct a 3D analysis under the following imaging conditions: scanning
time, 1 s; 100 kV; field of view, 20.8 cm; 76 mAs; and 0.5 mm thickness. For accurate
evaluation, individuals were asked to maintain a centric occlusion and remain still. All CT
cross-sections were saved in the Digital Imaging Communications in Medicine format.

2.2. Ground Truth Rigid Transformation Parameter Calculation

To train the alignment network, the ground truth values of the six rigid transformation
parameters are needed. In this study, the ICP used for point cloud alignment was used to
obtain this value. ICP finds a rigid body transformation where the source points best match
the reference, while the reference points are fixed. The ICP finds a rigid body transformation
by iteratively minimizing the error metric, expressed as the distance between the reference
point cloud and the source point cloud. ICP was first proposed by Chen and Medioni and
Besl and McKay, and various ICP variants have been proposed to improve the performance.

The ICP is implemented in an open-source environment, such as Meshlab, CloudCom-
pare, or Point Cloud Library. In this study, alignment was performed using CloudCompare
2.11.3 (Anoia). As the actual preoperative and postoperative skulls are not aligned with
each other, and the coordinates of the minimum point are all different. To solve this problem,
in step 1, the pre- and postoperative skull were first translated so that the minimum values
of each coordinate were zero. Subsequently, the entire preoperative skull was aligned
based on the cranium (part 1) of the postoperative skull. In step 2, the rigid transformation
parameters were calculated by aligning preoperative parts 2–4 with the corresponding
postoperative parts. In this study, the RMS difference and final overlap values were set to
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1 × 10−20 and 100%, respectively, for the convergence criteria. Using the process described
above, transformation parameters for pre- and postoperative data of a total of 269 patients
were calculated and used as ground truth values.

2.3. Data Normalization

To train the proposed network, the data were normalized. After calculating the rigid
transformation parameters for all patients, the maximum value, ymax, and minimum value,
ymin, of each parameter were obtained. With this value, the label value was normalized, as
shown in (1):

yi ←
yi − ymin

ymax − ymin
, i = 1, · · · , 269 (1)

The point cloud coordinates of all patients were also normalized, as shown in (2),
using the maximum value, pmax, among all patients and used as input.

pi ←
pi

pmax
, i = 1, · · · , 269 (2)

Note that before being input into the transformation layer of the proposed network,
the transformation parameter values and input coordinate values were unnormalized
and used.

2.4. Input Point Generation for Segmentation and Alignment Network

The number of point clouds in the actual patient data was different for each patient.
In this study, a certain number of points were input into the segmentation and alignment
networks. In the case of segmentation, all point cloud data of patients were divided into
2048 points in order, and input data were generated by setting the batch size to 64. In the
case of the alignment network, three networks were trained for parts 2–4. In the case of
part 1 used as a reference, 16,384 points were input for all alignment networks, and 8192,
16,384, and 2048 points were input for parts 2, 3, and 4, respectively. For the alignment
network, the input points were randomly selected from each part.

2.5. Three-Dimensional Postoperative Prediction Method

The proposed DNN is divided into two main stages, as shown in Figure 1. The role of
the first network is to segment the patient’s skull by learning the actual osteotomy area.
The divided parts in the first network were used as inputs for the second network. The role
of the second network is to learn the actual patient’s surgical results and align each part.
The alignment network is the core method proposed in this study, and it serves to align
each part based on the cranium, which does not change after surgery. Subsequently, the
loss function for training the proposed network is explained.
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2.6. Point Segmentation Network for the Jaw Part Division

Orthognathic surgery involves cutting the jaw and aligning the osteotomized segments.
Therefore, the DNN also predicts surgical outcomes in a procedure, such as that of actual
surgery. This subsection describes the first process: the jaw segmentation network. The jaw
point cloud is segmented using a segmentation network to create each part used as an
input to the alignment network. The osteotomized segments of the patient considered in
this study were slightly different, depending on the condition of the patient’s jaw. To divide
each part through deep learning, the osteotomized area must be generalized so that all
patient data were checked. Therefore, the surgical method was generalized. As shown in
Figure 1, the network was configured to divide the skulls of all patients into six parts.

There is a large difference in the number of points, depending on the segmented
skull part. For the cranium (Figure 1, part 1), which occupies the largest part, there were
cases in which the number of points was almost 100 times larger than that of parts 5 and
6, which had the smallest number of points. To increase the accuracy of the DNN, it is
important to reduce the data imbalance among parts. Therefore, in this study, the skull
was divided sequentially by dividing the cranium (part 1) and the other lower parts. After
the first segmentation, the lower parts were separated into five parts using the second
segmentation network.

There are many networks for point cloud segmentation. In this study, pointnet and
pointconv are used as the first segmentation network and second segmentation network,
respectively. These networks are a DNN that uses point data composed of x (transverse),
y (anterior–posterior), and z (vertical) coordinates in an irregular format rather than a
regular one, such as an image. Pointnet is a network designed to satisfy the permutation
invariant, in which the result, according to the input order of points, does not change.
The rigid motion invariant that the result according to the rigid body transformation of
the point also does not change. Pointconv is a density re-weighted convolution based
on pointnet++ that improved pointnet. It is able to fully approximate the 3D continuous
convolution on any set of 3D points.

2.7. The 3D Point Alignment Network for Jaw Alignment Prediction

The points segmented through the segmentation network are used as inputs to the
alignment network, which is the core method of this study. The alignment network
presented in this study learns 3D rigid-body transformation parameters. The 3D points can
be rigidly transformed by methods, such as a transformation matrix, Euler angle, and axis
and angle. In the case of the Euler angle and axis and angle methods, the transformation of
a rigid body can be expressed using a total of six parameters: three related to rotation and
three related to translation. In the case of the Euler angle method, the parameter values
vary according to the order of the rotation axes; therefore, in this study, the network was
designed to learn the parameters expressed using the axis and angle method.

The structure of the point alignment network is shown in Figure 2. For the global
feature extraction, pointnet, pointnet++, pointconv, and others can be used. In the proposed
network, the points of a whole part and a part requiring alignment are used as the reference
input and aligned input, respectively. Subsequently, a feature extraction was performed for
each part. The features of each input were then combined through concatenation and input
into a multilayer perceptron (MLP). In the MLP, six rigid body transformation parameter
values were calculated as the output, as shown in Figure 2. Additionally, the six rigid body
transformation parameter values were input into the 3D functional transformation layer
alongside the points of the part that needed alignment, so that the rigid-body transformed
points were also calculated. In the 3D transformation layer, the final transformed point, p′,
was calculated by adding pt representing the x, y, and z translation values to the rotated
point, as shown in (3):

p′ = p cos θ + (a× p) sin θ + a(a·p)(1− cos θ) + pt (3)
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2.8. Loss Function for Training of Point Alignment Network

The point alignment network described in the previous section learns the 3D transfor-
mation parameter values of the part through deep regression. Therefore, the MAE is used
as the first loss function to match the transformation parameter value with the ground truth
value as much as possible. Additionally, the mean value of distance error (DE) between
points of a part is set as the second loss so that the coordinates transformed using the
predicted transformation parameter value match the coordinates transformed through the
ground truth value. By adding two loss functions, the final loss function is defined as
shown in (4):

Loss = α∑6

i=1
|yi − yi|+∑pn

j=1

∣∣∣p′j − pj

∣∣∣ (4)

where yi, p′j, and pj are the ground truth values of the six rigid transformation parame-
ters, predicted transformed points, and ground truth transformed points, respectively.
Moreover, α and pn are the weights for the first loss and the number of points to be
transformed, respectively. Each loss value is complementary to the other. If the first
loss value is minimized and matches the ground truth value, the second loss value
becomes zero. However, in the training process dealing with real data, the loss value
rarely becomes zero. In the case of the first loss function, it is possible to have the same
loss value, even if the values of each transformation parameter differ. Therefore, the
second loss function was defined to train the coordinates between points to be smaller,
even if the value of the first loss function was the same. In this study, the value of α was
set to 10.

3. Results

To validate the accuracy of the proposed procedures, the training and testing data
were apportioned randomly by 0.8 and 0.2, respectively. For training, Adam was used
as the optimizer. The learning rate was fixed at 0.001 for training the segmentation and
alignment networks, and the number of epochs for training was set to 500. The segmenta-
tion network and alignment network are trained separately and validated by using test
data. The performance measures of the segmentation network and alignment network are
described in the following subsections.

3.1. Performance of Segmentation Network

The accuracy of the segmentation network was measured using an accuracy, mean
intersection over union (mIoU) and dice coefficient (DC). As shown in the Table 1,
segmentation network 1 using pointnet and segmentation network 2 using pointconv
had the highest accuracy among the three segmentation networks, respectively. In the
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case of segmentation network 1, which divided the upper and lower parts, the highest
accuracy, mIoU and DC were 0.9998, 0.9994, and 0.9998, respectively; the confusion
matrix is expressed in Table 2. In the case of segmentation network 2, which divides the
lower part into five segments, the highest accuracy, mIoU and DC were 0.9949, 0.9900,
0.9949, respectively; the confusion matrix is presented in Table 3. The misclassified
points were mainly points between adjacent parts that were acceptable for postoperative
skeletal prediction.

Table 1. Performance evaluation for segmentation network.

SEGMENTATION NETWORK 1 SEGMENTATION NETWORK 2

Pointnet Pointnet++ Pointconv Pointnet Pointnet++ Pointconv

Accuracy 0.9998 0.9904 0.9981 0.9787 0.9842 0.9949
mIoU 0.9994 0.9668 0.9933 0.9532 0.9699 0.9900

DC 0.9998 0.9904 0.9981 0.9787 0.9842 0.9949
mIoU: mean intersection over union. DC: dice coefficient.

Table 2. Confusion matrix of segmentation network 1 dividing upper and lower part of skull
using pointnet.

PREDICTION
Upper Part Lower Part

Ground Truth
Upper part 54,694,819 7003

Lower part 3602 10,912,496

Table 3. Confusion matrix of segmentation network 2 dividing lower part of skull using pointconv.

PREDICTION

Part 2 Part 3 Part 4 Part 5 Part 6

Ground Truth

Part 2 2,902,629 13,040 16 131 0
Part 3 17,098 5,769,107 5962 0 697
Part 4 0 15,552 854,748 26 0
Part 5 482 2185 7 671,104 12
Part 6 0 24 5 0 597,479

3.2. Performance of Alignment Network

The performance of the alignment network was measured using two metrics. The first
is the accuracy of the transform parameter, which was calculated using (5) for each patient
as the absolute error between the true label value and the prediction value.

|yi − yi|, i = 1, · · · , 6 (5)

The second metric is the average value of the absolute error of the transformed point
coordinates between the prediction and the true labels. The metric was calculated for each
patient as follows, using (6):

∑pn

j=1

∣∣∣p′j − pj

∣∣∣/pn (6)

The first metric was calculated for each patient belonging to the test data, and the box
plot is shown in left side of Figure 3, where (a), (b), and (c) show the absolute error of the
transformation parameters of parts 2, 3, and 4, respectively. The second metric was also
calculated for each patient belonging to the validation data, and a box plot for each part is
shown in right side of Figure 3. As shown in the graph, the alignment network using point-
net++ as a feature extractor had the highest accuracy among the three feature extractors.
When the distance error loss was used, the error of the transformation parameter tended
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to increase slightly; however, the distance error tended to decrease. The average error of
the six transformation parameters and the average error of the transformation coordinates
using pointnet++ as a feature extractor and distance error loss are listed in Tables 4 and 5,
respectively. Moreover, to check the issue related with overfitting, we divided the training
data and test data in a ratio of 5:5 and performed an experiment on the alignment network
of part 2. As a result, it was confirmed that overfitting did not occur, showing a similar level
of accuracy as when the data were split by 8:2. Additionally, the preoperative and predicted
postoperative skulls are shown in Figure 4 by randomly selecting two patients. The left and
right figures represent the preoperative and predicted postoperative skulls, respectively.
The true transformed postoperative skull is expressed transparently in green. In Figure 4,
parts 2, 3, and 4 moved similarly to the actual postoperative results. This experiment
confirmed that the proposed method is effective in predicting the postoperative results of
orthognathic surgery.
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Table 4. Mean absolute error of transformation parameters using pointnet++ as feature extractor and
distance error loss for training. Note that y1–y6 are the six rigid transformation parameters defined
by axis and angle.

y1 y2 y3 y4 y5 y6

part 2 0.0803 0.0832 0.0822 0.0538 0.0838 0.0666
part 3 0.0609 0.0515 0.0656 0.0399 0.0595 0.0675
part 4 0.0733 0.0843 0.0722 0.0580 0.0760 0.0964

Table 5. Mean absolute error of transformed points using pointnet++ as a feature extractor and
distance error loss for training where x, y, and z are transverse, anterior–posterior, and vertical
distance error, respectively.

x (mm) y (mm) z (mm)

part 2 0.765 1.455 1.392
part 3 1.069 1.831 1.375
part 4 1.913 2.340 1.257

4. Discussion

Deep learning studies are also being conducted for the diagnosis and planning of
dentofacial dysmorphosis [21–24]. However, most adhere to the classic method using
points, planes, and angles [21–23]. Among these, Xiao et al. estimated reference bony-
shape models for orthognathic surgical planning using 3D point-cloud deep learning [24].
In contrast to the previous study predicting the displacement of a point using artificially
generated training data, the present method predicted the transformation matrix from
actual surgery data. Because of this difference, the method of training data generation
was completely different, and actual pre- and postoperative surgery data were considered.
To predict postoperative surgery results, the present method has two main networks:
the segmentation network that divides the skull into six main parts, and the alignment
network for predicting the transformation parameters of each. The efficacy of the present
method was confirmed by applying it to actual patients’ surgery data.

As a result of this study, the mean absolute error of transformed points showed a value
smaller than 2.34 mm in x (transverse), y (anterior–posterior), and z (vertical) (Table 5).
It was suggested that accurate prediction is possible in maxilla (part 2), mandible (part 3),
and chin (part 4). Figure 4 shows the case of randomly selecting two patients. In each, the
left represents preoperative and the right represents postoperative. The actual patient’s
condition was expressed in transparent green. Then, colors were assigned to parts 2
(red), 3 (red violet), and 4 (purple), respectively. As a result, as shown in Figure 4, it was
confirmed that parts 2, 3, and 4 moved very similarly to the actual post-operative.

For this study, we used only postoperative CT data from two surgeons. In addition,
all surgeries were performed through the same diagnostic and surgical methods. As is well
known, the preferred diagnosis and surgical method differs, depending on the surgeon.
Therefore, if the data of several surgeons were collected, the number of samples could
be increased, but it would have been more difficult for DNN to accurately predict the
surgical outcome. First of all, this study confirmed that DNN can accurately predict 3D
postoperative results. We think that if we can collect data from several surgeons and
conduct research in the future, we will be able to get better results.

Despite hard tissue changes being important in orthognathic surgery, especially for
surgery planning, soft tissues are equally important to assess the final results of the surgery.
The model in this study only predicted hard tissue changes, not soft tissue changes. On the
other hand, recently Ma et al. introduced a learning-based framework to speed up the
simulation of postoperative facial appearances [28]. Specifically, they introduced a facial
shape change prediction network (FSC-Net) to learn the nonlinear mapping from bony
shape changes to facial shape changes. Combining the study of Ma et al. with ours of this
study, it is expected to create a model that can be easily used in actual clinical practice.
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5. Conclusions

Even for an experienced oral and maxillofacial surgeon, it is almost impossible to
intuitively predict the postoperative results of orthognathic surgery. Therefore, we have
thus far relied entirely on classical analysis based on points, planes, and angles. This is time
consuming. In addition, it is also greatly influenced by the skill level of the practitioner.
Even studies using 3D DNN were mostly focused on points, planes, and angles. We found
in this study that DNN can predict postoperative results of orthognathic surgery without
relying on reference points, planes, and angles. In addition, the results of this study were
accurate enough for immediate clinical application. From this study, postoperative results
can now be easily predicted by simply entering the point cloud data of CT.
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