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ABSTRACT

The current version of the Gene Transcription Reg-
ulation Database (GTRD; http://gtrd.biouml.org) con-
tains information about: (i) transcription factor bind-
ing sites (TFBSs) and transcription coactivators
identified by ChIP-seq experiments for Homo sapi-
ens, Mus musculus, Rattus norvegicus, Danio rerio,
Caenorhabditis elegans, Drosophila melanogaster,
Saccharomyces cerevisiae, Schizosaccharomyces
pombe and Arabidopsis thaliana; (ii) regions of open
chromatin and TFBSs (DNase footprints) identified
by DNase-seq; (iii) unmappable regions where TF-
BSs cannot be identified due to repeats; (iv) poten-
tial TFBSs for both human and mouse using posi-
tion weight matrices from the HOCOMOCO database.
Raw ChIP-seq and DNase-seq data were obtained
from ENCODE and SRA, and uniformly processed.
ChIP-seq peaks were called using four different
methods: MACS, SISSRs, GEM and PICS. Moreover,
peaks for the same factor and peak calling method,
albeit using different experiment conditions (cell line,
treatment, etc.), were merged into clusters. To reduce
noise, such clusters for different peak calling meth-
ods were merged into meta-clusters; these were con-
sidered to be non-redundant TFBS sets. Moreover,
extended quality control was applied to all ChIP-seq
data. Web interface to access GTRD was developed
using the BioUML platform. It provides browsing and
displaying information, advanced search possibili-
ties and an integrated genome browser.

INTRODUCTION

Regulation of transcription is a complex process which
includes multiple participants (1,2); the key role here is
played by transcription factors (TF) that are able to recog-
nize and bind with corresponding sites in the genome. The

recognition of transcription factor binding sites (TFBSs) in
genomes has been one of the most heavily researched areas
of modern biology since the introduction of the DNA foot-
print technique in 1978 (1). With the appearance of DNase-
seq technology, this approach has been taken to the next
level; it is now possible to identify the majority of TFBSs for
a number of given conditions (cell line or tissue, treatment,
etc.) using only one DNase-seq experiment (3). However,
this technology only allows researchers to locate potential
regulatory regions in genomes, and it cannot give more de-
tailed information about TF binding. Chromatin immuno-
precipitation followed by sequencing (ChIP-seq) (4) is more
informative and is a widely used method for the identifica-
tion of binding regions for a given TF, this binding can be
either direct or indirect.

Nowadays, >1500 TFs are known for a human (5); it
therefore follows that to identify the TFBSs for all TFs in
a given condition, >1500 ChIP-seq experiments should
be performed. While the number of such experiments
continues to grow, it remains impossible to perform
TF ChIP-seq assays for every TF expressed against all
cell types/tissues under all possible physiological con-
ditions (http://dreamchallenges.org/project/home-open/
encode-dream-in-vivo-transcription-factor-binding-site-
prediction-challenge/).

To close this gap and complement experimental re-
sults, a number of computational approaches have been
developed (6–8). The results of the ‘ENCODE-DREAM
in vivo Transcription Factor Binding Site Prediction
Challenge’ demonstrate that such methods could pro-
vide highly accurate results (https://www.synapse.org/#!
Synapse:syn6131484/wiki/). However, a huge amount of
preparation should be conducted before such methods are
applied: ChIP-seq and DNase-seq data should be systemat-
ically collected, annotated, and uniformly processed. Fur-
thermore, uniformly processed ChIP-seq data from the
GTRD database were used as a basis for the creation of
two state-of-the-art resources for the recognition of TF-
BSs: the HOCOMOCO (9) and BAMM motif databases
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(10). It should be noted that three of the four top teams in
the ‘ENCODE-DREAM in vivo Transcription Factor Bind-
ing Site Prediction Challenge’ have used HOCOMOCO (9).
With uniformly processed DNAse-seq data, the new release
of GTRD database takes a step forward in this direction.

Genome-wide association studies (GWAS) typically re-
veal associations between single-nucleotide polymorphisms
(SNPs) and traits like major human diseases (11). Their re-
sults show that the majority of SNPs revealed are related to
the regulation of gene expression (12) and located in non-
coding regions (13,14). It is believed that such SNPs influ-
ence the affinity of TFs to corresponding binding sites and
their respective information (largely predictive) is collected
within specialized databases (15). However, it seems to be
clear that the effects of SNPs may differ according to cell
type, developmental stage, and other conditions. To obtain
a complete understanding, therefore, more information is
needed about TFBSs and their corresponding regions––for
all cell types, developmental stages, and conditions. Such a
set of TFBSs on a genome-wide scale is called a ‘cistrome’
(16). GTRD meta-clusters can be considered to be the first
draft of a cistrome for nine species. Indeed, several stud-
ies have already used GTRD for this purpose (9,10). Using
the GTRD data, cistromes for human and mouse have also
been built (17).

Development of the GTRD database began in 2011. Its
first version was presented in June 2012 in the ‘From virtual
cell to virtual human and virtual patient’ workshop (http:
//www.biouml.org/vc/gtrd.shtml). The database has under-
gone the following main improvements since the previous
publication (18):

1) The number of uniformly processed ChIP-seq exper-
iments has been increased by more than three times
(17 485 experiments in the current version versus 5078
in the first release).

2) The previous release contained only data for human
and mouse, whereas the current release contains data
for seven new species: Rattus norvegicus, Danio rerio,
Caenorhabditis elegans, Drosophila melanogaster, Sac-
charomyces cerevisiae, Schizosaccharomyces pombe and
Arabidopsis thaliana.

3) Transcription coactivators – previously we collected
ChIP-seq experiments for TFs alone; however, the new
release also includes row and processed data regarding
binding regions for transcriptional coactivators.

4) DNase-seq datasets from ENCODE were processed by
the respective data processing workflow implemented
in GTRD. The processed data were deposited in our
database for further analysis and integration with
ChIP-seq-derived meta-clusters to compose a compre-
hensive map of gene expression regulation in different
living systems.

5) Metadata about cell lines and tissues was
structured into a controlled dictionary, which
was subsequently linked with Cellosaurus
(https://web.expasy.org/cellosaurus/), Cell Ontol-
ogy (http://www.obofoundry.org/ontology/cl.html),
Uberon (http://uberon.github.io/) and Experiment
Factor Ontology (https://www.ebi.ac.uk/efo/).

Figure 1. The content of the GTRD database and its derived informational
resources.

6) The ChIP-seq processing workflow was improved.
Now, it is able to process single-end and paired-end
data, both with and without control.

7) All ChIP-seq data related to TFBSs from ENCODE
(2418 ChIP-seq experiments) and modENCODE (911
ChIP-seq experiments) were imported into GTRD.

8) Mappability tracks were added. However, ChIP-seq
reads cannot be mapped unambiguously into repeat
regions, thus these regions are empty in the GTRD
database. To highlight this to users, we have created
mappability tracks.

9) The HOCOMOCO database was integrated with
GTRD. The current version of the GTRD contains
tracks for TFBSs predicted using the HOCOMOCO
models for human and mouse. Thus, we have a closed
cycle: ChIP-seq data from the GTRD are used to build
the HOCOMOCO models, and these models are then
used to locate TF motifs inside both ChIP-seq peaks
and whole genomes of human and mouse.

10) Quality control––we applied quality control to all
ChIP-seq data in the GTRD database. There were two
types of quality control: standard quality control de-
fined by the ENCODE consortium and our own qual-
ity control based on the comparison of peaks identified
by different peak callers.

11) The web interface was updated to take the aforemen-
tioned changes into account.

The current content of the GTRD database and its de-
rived informational resources are shown in Figure 1.
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MATERIALS AND METHODS

ChIP-seq data

Data collection. Well-known public repositories of ChIP-
seq data like the Sequence Read Archive (SRA; http://
www.ncbi.nlm.nih.gov/sra) (19), ENCODE (https://www.
encodeproject.org; 20) and the Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/; 21) became the
source of data for the GTRD. As a result, two main types
of data have been collected:

1. raw data: in either FASTQ or SRA formats;
2. meta-data describing ChIP-seq experiments: informa-

tion about target TF, cell source, used antibody, exper-
imental conditions, and control experiment.

The GTRD processing pipeline starts with the auto-
matic querying of GEO and ENCODE for ChIP-seq
experimental information. The GEO database contains
ChIP-seq experiment descriptions in human-readable for-
mat, imposing some difficulties during the automatic pro-
cessing of large amounts of data. GEO was queried
for ChIP-seq experiments programmatically using En-
trez Programming Utilities (http://www.ncbi.nlm.nih.gov/
books/NBK25501). Consequently, Entrez discovered GEO
entries were downloaded in the MINiML format, and EN-
CODE and modENCODE were queried using REST API
(www.encodeproject.org). The raw data in FASTQ and
SRA formats were obtained from the ENCODE and SRA
databases, respectively.

Data annotation. We have developed a special programme
that attempts to extract the required meta-data from
any MINiML file obtained from GEO, which provides
the annotator with a choice of possible metadata val-
ues. Each ChIP-seq GEO dataset was processed using
this programme. ENCODE provides much more struc-
tured and clean metadata, and as a result its collec-
tion was wholly automatic. Metadata about cell lines
and tissues were structured into a controlled dictionary,
which was linked with Cellosaurus (https://web.expasy.org/
cellosaurus/), Cell Ontology (http://www.obofoundry.org/
ontology/cl.html), Uberon (http://uberon.github.io/) and
Experiment Factor Ontology (https://www.ebi.ac.uk/efo/).
The current progress of GTRD is accompanied by greater
attention to developmental stages (mice, worms, flies,
plant), strains (mice, flies, yeasts) and treatment details.

Data processing workflow. To avoid variation in the results
obtained from different ChIP-seq datasets, raw sequenced
reads have been processed uniformly by a special workflow,
as previously described (18). In the current version, it was
improved in several ways. First, an alignment quality fil-
ter (mapq ≥ 10) was added. Second, more efficient imple-
mentation of the peak caller PICS––sPICS (https://github.
com/Biosoft-ru/cpics)––was used. Third, the processing of
paired-end data was added.

Paired-end data were aligned with Bowtie2 using
‘–no-mixed –no-discordant –maxins 1000’ options. Sub-
sequently, PCR duplicates were removed using Picard
MarkDuplicates (https://broadinstitute.github.io/picard/

command-line-overview.html#MarkDuplicates) and the
first mates of each paired read were selected for further
analysis. This procedure allowed us to use the same peak
callers with the same options for both paired-end and
single-end data.

Quality control. We applied quality control to all ChIP-
seq data in the GTRD database. Two types of quality con-
trol were implemented: standard quality control defined
by the ENCODE consortium and our own quality control
based on the comparison of peaks identified by different
peak callers (22).

The quality metrics developed within the ENCODE
project and used in the GTRD included: Non-redundancy
Fraction (NRF), PCR Bottlenecking Coefficient 1 and
2 (PBC1 and PBC2), Normalised and Relative Strand
Cross-correlation Coefficient (NSC and RSC), and Frac-
tion of Reads in Peaks (FRiP) (https://www.encodeproject.
org/data-standards/terms/; 20). However, the existing met-
rics did not allow researchers to control the number of
false positive and false negative peaks generated by differ-
ent peak callers. To avoid these disadvantages, we proposed
two quality control metrics, namely FPCM (False Positive
Control Metric) and FNCM (False Negative Control Met-
ric). Both are based on well-known capture-recapture ap-
proaches commonly used, for example, in ecology to esti-
mate the abundance of individuals of particular species, as
well as the total number of species present in a given area. To
control False Negative peaks, we proposed FNCM, defined
as a ratio of the observed to the expected number of peaks
in a given set obtained by any peak caller. To evaluate the
expected number of peaks, we initially merged all peaks gen-
erated by MACS (23), GEM (24), SISSRs (25), and PICS
(26), which were used in the GTRD ChIP-seq pipeline, and
counted the absolute frequencies of the overlapped peaks
forming each merged peak. Finally, the expected number of
peaks was computed as an average of the population size es-
timators (Chao’s estimate (27), Lanumteang-Bohning’s es-
timate (28), Zelterman’s estimate (29), maximum likelihood
estimate (30), or Chapman’s population size estimates (31))
based on the obtained frequencies.

To control False Positive peaks, we proposed the imple-
mentation of FPCM, defined as a ratio of the observed to
the expected number of merged peaks with unit frequen-
cies; additionally, the expected number was derived with the
help of the simple properties of Poisson’s distribution. The
proposed quality metrics allowed us to assess the quality of
the peaks and facilitated the performance of a comparative
analysis of peak callers. The details of the extended descrip-
tion and metric advantages are given in the supplementary
materials.

DNase-seq data

843 DNase-seq datasets from ENCODE were taken to in-
vestigate the chromatin accessibility of TFs. This part of
the data was useful to facilitate the better understanding
of the potential genomic localisation of complex TFBSs
whilst ChIP-seq data was processed simultaneously. To pro-
vide correspondence between DNase- and ChIP-seq data
the same sources for data annotations were used in both
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cases (e.g. cell line list from Cellosaurus). Processed DNase-
seq data were deposited in the GTRD for further analy-
sis and integration with ChIP-seq-derived meta-clusters to
compose a more comprehensive map of gene expression reg-
ulation in different living systems.

We applied the following special workflow to process
DNase-seq data. The DNase-seq processing pipeline be-
gan with the automatic querying of ENCODE for DNase-
seq experiments. ENCODE provides clean and structured
metadata, allowing its collection to be fully automatic.
To avoid variation in the results obtained from different
DNase-seq datasets, raw sequenced reads have been pro-
cessed uniformly by a special workflow. Each of the biolog-
ical replicates were processed separately.

Firstly, based on the information obtained from the
experiments, we removed adapter sequences from raw
DNase-seq data using trim-adapters-Illumina (https://
bitbucket.org/jvierstra/bio-tools/downloads/). We subse-
quently utilised Bowtie2 (version: 2.2.3) (32) to align the
processed reads to the reference genomes: H. sapiens
(build GRCh38), M. musculus (build GRCm38) and D.
melanogaster (build dm6; at this stage, we used parameters
that are identical to the ones used in the ChIP-seq process-
ing pipeline for both single- and paired-end data). The re-
sulting alignments were converted to .bam files, before being
filtered (-q 10), sorted, and indexed using SAMtools v1.0
(33). Thereafter, we performed peak calling with MACS2
(version: 2.1.2) (23). Due to differences in library prepa-
ration protocols, we used ‘–nomodel –shift -100 –extsize
200’ parameters for single-hit DNase-seq experiments and
the default parameters for double-hit ones. Peak identifica-
tion with other peak callers Hotspot2 (https://github.com/
Altius/hotspot2) and F-Seq (34) is currently in progress. Fi-
nally, we used Wellington (35), the digital genomic foot-
printing tool, to reveal de novo putative protein–DNA in-
teractions based on processed DNase-seq data.

Mappability tracks

The genomes of organisms whose regulatory regions were
annotated in GTRD contain numerous repeats. Generally,
next-generation sequencing (NGS) reads from ChIP-seq
and DNase-seq datasets vary from 30 to 100 bp. This causes
repeated sequences to be ‘black holes’ for short NGS reads
because the latter cannot be mapped unambiguously; while
there were attempts to solve this problem (e.g. 36), we be-
lieve that they were not accurate enough to apply in our uni-
form processing workflow. To highlight such regions where
short NGS reads cannot be mapped unambiguously and
thus TFBSs or DNase-seq footprints cannot be resolved,
we have calculated mappability tracks. First, we removed
alternative and patch sequences from genome assembly and
concatenated all other chromosomes and their reverse com-
plement sequences into a single string, separating them with
a unique character (EOL). Then, we built a suffix array (SA)
of this string in linear time using the SA-IS algorithm (37)
and a computed longest common prefix array (LCP) from
the SA using a linear time algorithm (38,39). Using LCP
and SA arrays, we computed the minimal unique length
array (MUL), where MUL[i] is the length of the short-
est read that can be mapped uniquely to position i, as-

Table 1. Data statistics for human and mouse TFs and their respective
binding sites predicted with position weight matrices taken from the HO-
COMOCO database

Species Number of TFs Number of TFBSs

Homo sapiens 402 445249948
Mus musculus 358 366668327

suming exact string matching. More specifically, let L =
Math.max(LCP[i], LCP[i + 1]), then MUL[SA[i]] = L + 1
if string[SA[i] + L] ! = EOL and MUL[SA[i]] = –1 other-
wise (in cases where it is not possi ble to map read of any
length to position SA[i]). Using MUL, it is easy to compute
unmappable tracks for any length of read, since position i is
unmappable for read length = k iff MUL[i] = –1 or MUL[i]
> k. For example, unmappable regions for reads of 30 bp
cover 12.4% of the human genome. We show unmappable
tracks in the GTRD web interface, as well as provide MUL
arrays in wig format to download. Additionally, we strongly
recommend that GTRD customers use mappability tracks
in their research. While TFBSs and DNase footprints can-
not be defined in unmappable regions, we can use computer
methods to predict TFBSs therein. For this purpose, we use
position weight matrices from the HOCOMOCO database.

Integration with the HOCOMOCO database

HOCOMOCO (http://hocomoco11.autosome.
ru/)––HOmo sapiens COmprehensive MOdel COllec-
tion (HOCOMOCO)––is one of the biggest collections of
motifs for the prediction of TFBSs (40) for human and
mouse. ChIP-Seq data for the discovery of these motifs
were extracted from the GTRD database. Nowadays,
GTRD contains tracks with TFBSs predicted for complete
human and mouse genomes using the HOCOMOCO
matrices and P-value threshold 0.0001, as seen in Table 1.

Database content and statistics

Supplementary Table S1 summarizes the GTRD content
and statistics.

Database maintenance

To ensure that the GTRD remains up to date, we have devel-
oped a semi-automatic procedure for the mining, process-
ing, accumulation and releasing of data: a GTRD update
is released every six months. During this period, new meta-
data are either accumulated automatically or manually from
different data sources (GEO, SRA and ENCODE). Finally,
new data are automatically processed and merged with the
previous release.

Web interface

Web interface A web interface with which to access GTRD
was developed using a BioUML platform (18). It allows
the user to: (i) browse and display information; (ii) access
advanced search possibilities and (iii) integrate the genome
browser to visualize the GTRD data and information from
the Ensembl database (gene structures, repeats, etc). The
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Table 2. Comparison statistics for GTRD and other databases based on ChIP-seq data

Database Number of TF ChIP-seq samples* Number of TFs Species ChIP-seq peak callers
Meta-cluster
approach

GTRD v18.06 total: 17485** total: 2399 H. sapiens, M. musculus, R.
norvegicus, D. melanogaster,
C. elegans, S. cerevisiae, D.
rerio, S. pombe, A. thaliana

MACS, SISSRs,
GEM, PICS

Yes

human: 7239** human: 852
ChIP-Atlas total: 19414** total: 1929** H. sapiens, M. musculus, R.

norvegicus, D. melanogaster,
C. elegans, S. cerevisiae

MACS2 No

human: 8368** human: 820**
Cistrome DB total: 20408** total: Unknown H. sapiens, M. musculus MACS2 No

human: 11348** human: Unknown
ReMap 2018 total: 2829** total: 485** H. sapiens MACS2 Yes (CRMs)

human: 2829** human: 485**
ENCODE total: 3684 total: Unknown H. sapiens, M. musculus, D.

melanogaster, C. elegans
SPP, GEM, PeakSeq,
MACS

No

human: 2489 human: Unknown
ChIPBase total: 4290 total: Unknown H. sapiens, M. musculus, R.

norvegicus, D. rerio, X.
tropicalis, C. elegans, D.
melanogaster, S. cerevisiae,
A. thaliana, G. gallus

>10 in total, but no
uniform pipeline,
each ChIP-seq is
processed by different
peak caller

No

human: 2498 human: Unknown
Factorbook total: 1007 total: 167** H. sapiens, M. musculus None No

human: 837 human: 51**
NGS-QC total: 22398 total: Unknown H. sapiens, M. musculus, R.

norvegicus, D. rerio, C.
elegans, D. melanogaster, S.
cerevisiae, A. thaliana, G.
gallus, P. troglodytes

None No

human: 11597 human: Unknown

*The number of ChIP-seq samples cannot be directly compared between databases as definition of sample may be distinct.
**These numbers includes non-TF ChIP-seq samples and non-TF proteins besides TF-related.

GTRD landing page (http://gtrd.biouml.org) describes the
use of cases in detail.

DISCUSSION

Table 2 compares the GTRD with other databases taking
into account ChIP-seq experiments. This is an updated ver-
sion of the table from our previous publication (18), which
was released two years ago. As we can see, all databases
continue to grow. Due to their expanding influence on each
other, they gradually become more similar, and so many of
them have uniform workflows to process ChIP-seq data and
quality control. Nevertheless, GTRD has a number of ad-
vantages. First, it contains the most comprehensive collec-
tion of ChIP-seq data (taking into account the number of
species and human TFs in comparison with ChIP-Atlas, an-
other comprehensive resource). Second, peaks for the same
factor and peak calling method, albeit different experiment
conditions (cell line, treatment, etc.), were merged into clus-
ters. To reduce noise, such clusters for different peak calling
methods were merged into meta-clusters that were consid-
ered to be non-redundant TFBS sets. GTRD meta-clusters
can be considered to be a first approximation of a cistrome
for nine species, in which we annotate and uniformly pro-
cess ChIP-seq data (Table 2).

Three branches of resources and databases have been cre-
ated using information from the GTRD database. First,
HOCOMOCO – the database of models for the recognition
of TFBSs (39). Second, the BaMM motifs database and the
BaMM server for the recognition of TFBSs (10). Third, hu-
man and mouse cistromes––genomic maps of putative cis-
regulatory regions bound by TFs (17). The integration of
GTRD with the HOCOMOCO database provides a unique

closed cycle, where ChIP-seq data from GTRD are used to
build the HOCOMOCO models; and, vice versa, the HO-
COMOCO models are used to locate TF motifs inside both
ChIP-seq peaks and whole human and mouse genomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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